/*
*******************************************************************************
*
* Copyright (C) 1999-2006, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uniset_props.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2004aug25
* created by: Markus W. Scherer
*
* Character property dependent functions moved here from uniset.cpp
*/
#include "unicode/utypes.h"
#include "unicode/uniset.h"
#include "unicode/parsepos.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "unicode/symtable.h"
#include "unicode/uset.h"
#include "unicode/locid.h"
#include "unicode/brkiter.h"
#include "uset_imp.h"
#include "ruleiter.h"
#include "cmemory.h"
#include "ucln_cmn.h"
#include "util.h"
#include "uvector.h"
#include "uprops.h"
#include "propname.h"
#include "unormimp.h"
#include "ucase.h"
#include "ubidi_props.h"
#include "uinvchar.h"
#include "charstr.h"
#include "cstring.h"
#include "mutex.h"
#include "uassert.h"
#include "hash.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
// initial storage. Must be >= 0
// *** same as in uniset.cpp ! ***
#define START_EXTRA 16
// Define UChar constants using hex for EBCDIC compatibility
// Used #define to reduce private static exports and memory access time.
#define SET_OPEN ((UChar)0x005B) /*[*/
#define SET_CLOSE ((UChar)0x005D) /*]*/
#define HYPHEN ((UChar)0x002D) /*-*/
#define COMPLEMENT ((UChar)0x005E) /*^*/
#define COLON ((UChar)0x003A) /*:*/
#define BACKSLASH ((UChar)0x005C) /*\*/
#define INTERSECTION ((UChar)0x0026) /*&*/
#define UPPER_U ((UChar)0x0055) /*U*/
#define LOWER_U ((UChar)0x0075) /*u*/
#define OPEN_BRACE ((UChar)123) /*{*/
#define CLOSE_BRACE ((UChar)125) /*}*/
#define UPPER_P ((UChar)0x0050) /*P*/
#define LOWER_P ((UChar)0x0070) /*p*/
#define UPPER_N ((UChar)78) /*N*/
#define EQUALS ((UChar)0x003D) /*=*/
//static const UChar POSIX_OPEN[] = { SET_OPEN,COLON,0 }; // "[:"
static const UChar POSIX_CLOSE[] = { COLON,SET_CLOSE,0 }; // ":]"
//static const UChar PERL_OPEN[] = { BACKSLASH,LOWER_P,0 }; // "\\p"
static const UChar PERL_CLOSE[] = { CLOSE_BRACE,0 }; // "}"
//static const UChar NAME_OPEN[] = { BACKSLASH,UPPER_N,0 }; // "\\N"
static const UChar HYPHEN_RIGHT_BRACE[] = {HYPHEN,SET_CLOSE,0}; /*-]*/
// Special property set IDs
static const char ANY[] = "ANY"; // [\u0000-\U0010FFFF]
static const char ASCII[] = "ASCII"; // [\u0000-\u007F]
static const char ASSIGNED[] = "Assigned"; // [:^Cn:]
// Unicode name property alias
#define NAME_PROP "na"
#define NAME_PROP_LENGTH 2
/**
* Delimiter string used in patterns to close a category reference:
* ":]". Example: "[:Lu:]".
*/
//static const UChar CATEGORY_CLOSE[] = {COLON, SET_CLOSE, 0x0000}; /* ":]" */
U_NAMESPACE_BEGIN
static UnicodeSet *INCLUSIONS[UPROPS_SRC_COUNT] = { NULL }; // cached getInclusions()
// helper functions for matching of pattern syntax pieces ------------------ ***
// these functions are parallel to the PERL_OPEN etc. strings above
// using these functions is not only faster than UnicodeString::compare() and
// caseCompare(), but they also make UnicodeSet work for simple patterns when
// no Unicode properties data is available - when caseCompare() fails
static inline UBool
isPerlOpen(const UnicodeString &pattern, int32_t pos) {
UChar c;
return pattern.charAt(pos)==BACKSLASH && ((c=pattern.charAt(pos+1))==LOWER_P || c==UPPER_P);
}
/*static inline UBool
isPerlClose(const UnicodeString &pattern, int32_t pos) {
return pattern.charAt(pos)==CLOSE_BRACE;
}*/
static inline UBool
isNameOpen(const UnicodeString &pattern, int32_t pos) {
return pattern.charAt(pos)==BACKSLASH && pattern.charAt(pos+1)==UPPER_N;
}
static inline UBool
isPOSIXOpen(const UnicodeString &pattern, int32_t pos) {
return pattern.charAt(pos)==SET_OPEN && pattern.charAt(pos+1)==COLON;
}
/*static inline UBool
isPOSIXClose(const UnicodeString &pattern, int32_t pos) {
return pattern.charAt(pos)==COLON && pattern.charAt(pos+1)==SET_CLOSE;
}*/
// TODO memory debugging provided inside uniset.cpp
// could be made available here but probably obsolete with use of modern
// memory leak checker tools
#define _dbgct(me)
//----------------------------------------------------------------
// Constructors &c
//----------------------------------------------------------------
/**
* Constructs a set from the given pattern, optionally ignoring
* white space. See the class description for the syntax of the
* pattern language.
* @param pattern a string specifying what characters are in the set
*/
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, USET_IGNORE_SPACE, NULL, status);
}
}
_dbgct(this);
}
/**
* Constructs a set from the given pattern, optionally ignoring
* white space. See the class description for the syntax of the
* pattern language.
* @param pattern a string specifying what characters are in the set
* @param options bitmask for options to apply to the pattern.
* Valid options are USET_IGNORE_SPACE and USET_CASE_INSENSITIVE.
*/
UnicodeSet::UnicodeSet(const UnicodeString& pattern,
uint32_t options,
const SymbolTable* symbols,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, options, symbols, status);
}
}
_dbgct(this);
}
UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos,
uint32_t options,
const SymbolTable* symbols,
UErrorCode& status) :
len(0), capacity(START_EXTRA), bufferCapacity(0),
list(0), buffer(0), strings(0)
{
if(U_SUCCESS(status)){
list = (UChar32*) uprv_malloc(sizeof(UChar32) * capacity);
/* test for NULL */
if(list == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}else{
allocateStrings();
applyPattern(pattern, pos, options, symbols, status);
}
}
_dbgct(this);
}
//----------------------------------------------------------------
// Public API
//----------------------------------------------------------------
/**
* Modifies this set to represent the set specified by the given
* pattern, optionally ignoring white space. See the class
* description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param ignoreSpaces if true
, all spaces in the
* pattern are ignored. Spaces are those characters for which
* uprv_isRuleWhiteSpace()
is true
.
* Characters preceded by '\\' are escaped, losing any special
* meaning they otherwise have. Spaces may be included by
* escaping them.
* @exception IllegalArgumentException
if the pattern
* contains a syntax error.
*/
UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern,
UErrorCode& status) {
return applyPattern(pattern, USET_IGNORE_SPACE, NULL, status);
}
/**
* Modifies this set to represent the set specified by the given
* pattern, optionally ignoring white space. See the class
* description for the syntax of the pattern language.
* @param pattern a string specifying what characters are in the set
* @param options bitmask for options to apply to the pattern.
* Valid options are USET_IGNORE_SPACE and USET_CASE_INSENSITIVE.
*/
UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern,
uint32_t options,
const SymbolTable* symbols,
UErrorCode& status) {
if (U_FAILURE(status)) {
return *this;
}
ParsePosition pos(0);
applyPattern(pattern, pos, options, symbols, status);
if (U_FAILURE(status)) return *this;
int32_t i = pos.getIndex();
if (options & USET_IGNORE_SPACE) {
// Skip over trailing whitespace
ICU_Utility::skipWhitespace(pattern, i, TRUE);
}
if (i != pattern.length()) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
UnicodeSet& UnicodeSet::applyPattern(const UnicodeString& pattern,
ParsePosition& pos,
uint32_t options,
const SymbolTable* symbols,
UErrorCode& status) {
if (U_FAILURE(status)) {
return *this;
}
// Need to build the pattern in a temporary string because
// _applyPattern calls add() etc., which set pat to empty.
UnicodeString rebuiltPat;
RuleCharacterIterator chars(pattern, symbols, pos);
applyPattern(chars, symbols, rebuiltPat, options, status);
if (U_FAILURE(status)) return *this;
if (chars.inVariable()) {
// syntaxError(chars, "Extra chars in variable value");
status = U_MALFORMED_SET;
return *this;
}
pat = rebuiltPat;
return *this;
}
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a UnicodeSet pattern.
*/
UBool UnicodeSet::resemblesPattern(const UnicodeString& pattern, int32_t pos) {
return ((pos+1) < pattern.length() &&
pattern.charAt(pos) == (UChar)91/*[*/) ||
resemblesPropertyPattern(pattern, pos);
}
//----------------------------------------------------------------
// Implementation: Pattern parsing
//----------------------------------------------------------------
/**
* A small all-inline class to manage a UnicodeSet pointer. Add
* operator->() etc. as needed.
*/
class UnicodeSetPointer {
UnicodeSet* p;
public:
inline UnicodeSetPointer() : p(0) {}
inline ~UnicodeSetPointer() { delete p; }
inline UnicodeSet* pointer() { return p; }
inline UBool allocate() {
if (p == 0) {
p = new UnicodeSet();
}
return p != 0;
}
};
/**
* Parse the pattern from the given RuleCharacterIterator. The
* iterator is advanced over the parsed pattern.
* @param chars iterator over the pattern characters. Upon return
* it will be advanced to the first character after the parsed
* pattern, or the end of the iteration if all characters are
* parsed.
* @param symbols symbol table to use to parse and dereference
* variables, or null if none.
* @param rebuiltPat the pattern that was parsed, rebuilt or
* copied from the input pattern, as appropriate.
* @param options a bit mask of zero or more of the following:
* IGNORE_SPACE, CASE.
*/
void UnicodeSet::applyPattern(RuleCharacterIterator& chars,
const SymbolTable* symbols,
UnicodeString& rebuiltPat,
uint32_t options,
UErrorCode& ec) {
if (U_FAILURE(ec)) return;
// Syntax characters: [ ] ^ - & { }
// Recognized special forms for chars, sets: c-c s-s s&s
int32_t opts = RuleCharacterIterator::PARSE_VARIABLES |
RuleCharacterIterator::PARSE_ESCAPES;
if ((options & USET_IGNORE_SPACE) != 0) {
opts |= RuleCharacterIterator::SKIP_WHITESPACE;
}
UnicodeString patLocal, buf;
UBool usePat = FALSE;
UnicodeSetPointer scratch;
RuleCharacterIterator::Pos backup;
// mode: 0=before [, 1=between [...], 2=after ]
// lastItem: 0=none, 1=char, 2=set
int8_t lastItem = 0, mode = 0;
UChar32 lastChar = 0;
UChar op = 0;
UBool invert = FALSE;
clear();
while (mode != 2 && !chars.atEnd()) {
U_ASSERT((lastItem == 0 && op == 0) ||
(lastItem == 1 && (op == 0 || op == HYPHEN /*'-'*/)) ||
(lastItem == 2 && (op == 0 || op == HYPHEN /*'-'*/ ||
op == INTERSECTION /*'&'*/)));
UChar32 c = 0;
UBool literal = FALSE;
UnicodeSet* nested = 0; // alias - do not delete
// -------- Check for property pattern
// setMode: 0=none, 1=unicodeset, 2=propertypat, 3=preparsed
int8_t setMode = 0;
if (resemblesPropertyPattern(chars, opts)) {
setMode = 2;
}
// -------- Parse '[' of opening delimiter OR nested set.
// If there is a nested set, use `setMode' to define how
// the set should be parsed. If the '[' is part of the
// opening delimiter for this pattern, parse special
// strings "[", "[^", "[-", and "[^-". Check for stand-in
// characters representing a nested set in the symbol
// table.
else {
// Prepare to backup if necessary
chars.getPos(backup);
c = chars.next(opts, literal, ec);
if (U_FAILURE(ec)) return;
if (c == 0x5B /*'['*/ && !literal) {
if (mode == 1) {
chars.setPos(backup); // backup
setMode = 1;
} else {
// Handle opening '[' delimiter
mode = 1;
patLocal.append((UChar) 0x5B /*'['*/);
chars.getPos(backup); // prepare to backup
c = chars.next(opts, literal, ec);
if (U_FAILURE(ec)) return;
if (c == 0x5E /*'^'*/ && !literal) {
invert = TRUE;
patLocal.append((UChar) 0x5E /*'^'*/);
chars.getPos(backup); // prepare to backup
c = chars.next(opts, literal, ec);
if (U_FAILURE(ec)) return;
}
// Fall through to handle special leading '-';
// otherwise restart loop for nested [], \p{}, etc.
if (c == HYPHEN /*'-'*/) {
literal = TRUE;
// Fall through to handle literal '-' below
} else {
chars.setPos(backup); // backup
continue;
}
}
} else if (symbols != 0) {
const UnicodeFunctor *m = symbols->lookupMatcher(c);
if (m != 0) {
if (m->getDynamicClassID() != UnicodeSet::getStaticClassID()) {
ec = U_MALFORMED_SET;
return;
}
// casting away const, but `nested' won't be modified
// (important not to modify stored set)
nested = (UnicodeSet*) m;
setMode = 3;
}
}
}
// -------- Handle a nested set. This either is inline in
// the pattern or represented by a stand-in that has
// previously been parsed and was looked up in the symbol
// table.
if (setMode != 0) {
if (lastItem == 1) {
if (op != 0) {
// syntaxError(chars, "Char expected after operator");
ec = U_MALFORMED_SET;
return;
}
add(lastChar, lastChar);
_appendToPat(patLocal, lastChar, FALSE);
lastItem = 0;
op = 0;
}
if (op == HYPHEN /*'-'*/ || op == INTERSECTION /*'&'*/) {
patLocal.append(op);
}
if (nested == 0) {
// lazy allocation
if (!scratch.allocate()) {
ec = U_MEMORY_ALLOCATION_ERROR;
return;
}
nested = scratch.pointer();
}
switch (setMode) {
case 1:
nested->applyPattern(chars, symbols, patLocal, options, ec);
break;
case 2:
chars.skipIgnored(opts);
nested->applyPropertyPattern(chars, patLocal, ec);
if (U_FAILURE(ec)) return;
break;
case 3: // `nested' already parsed
nested->_toPattern(patLocal, FALSE);
break;
}
usePat = TRUE;
if (mode == 0) {
// Entire pattern is a category; leave parse loop
*this = *nested;
mode = 2;
break;
}
switch (op) {
case HYPHEN: /*'-'*/
removeAll(*nested);
break;
case INTERSECTION: /*'&'*/
retainAll(*nested);
break;
case 0:
addAll(*nested);
break;
}
op = 0;
lastItem = 2;
continue;
}
if (mode == 0) {
// syntaxError(chars, "Missing '['");
ec = U_MALFORMED_SET;
return;
}
// -------- Parse special (syntax) characters. If the
// current character is not special, or if it is escaped,
// then fall through and handle it below.
if (!literal) {
switch (c) {
case 0x5D /*']'*/:
if (lastItem == 1) {
add(lastChar, lastChar);
_appendToPat(patLocal, lastChar, FALSE);
}
// Treat final trailing '-' as a literal
if (op == HYPHEN /*'-'*/) {
add(op, op);
patLocal.append(op);
} else if (op == INTERSECTION /*'&'*/) {
// syntaxError(chars, "Trailing '&'");
ec = U_MALFORMED_SET;
return;
}
patLocal.append((UChar) 0x5D /*']'*/);
mode = 2;
continue;
case HYPHEN /*'-'*/:
if (op == 0) {
if (lastItem != 0) {
op = (UChar) c;
continue;
} else {
// Treat final trailing '-' as a literal
add(c, c);
c = chars.next(opts, literal, ec);
if (U_FAILURE(ec)) return;
if (c == 0x5D /*']'*/ && !literal) {
patLocal.append(HYPHEN_RIGHT_BRACE);
mode = 2;
continue;
}
}
}
// syntaxError(chars, "'-' not after char or set");
ec = U_MALFORMED_SET;
return;
case INTERSECTION /*'&'*/:
if (lastItem == 2 && op == 0) {
op = (UChar) c;
continue;
}
// syntaxError(chars, "'&' not after set");
ec = U_MALFORMED_SET;
return;
case 0x5E /*'^'*/:
// syntaxError(chars, "'^' not after '['");
ec = U_MALFORMED_SET;
return;
case 0x7B /*'{'*/:
if (op != 0) {
// syntaxError(chars, "Missing operand after operator");
ec = U_MALFORMED_SET;
return;
}
if (lastItem == 1) {
add(lastChar, lastChar);
_appendToPat(patLocal, lastChar, FALSE);
}
lastItem = 0;
buf.truncate(0);
{
UBool ok = FALSE;
while (!chars.atEnd()) {
c = chars.next(opts, literal, ec);
if (U_FAILURE(ec)) return;
if (c == 0x7D /*'}'*/ && !literal) {
ok = TRUE;
break;
}
buf.append(c);
}
if (buf.length() < 1 || !ok) {
// syntaxError(chars, "Invalid multicharacter string");
ec = U_MALFORMED_SET;
return;
}
}
// We have new string. Add it to set and continue;
// we don't need to drop through to the further
// processing
add(buf);
patLocal.append((UChar) 0x7B /*'{'*/);
_appendToPat(patLocal, buf, FALSE);
patLocal.append((UChar) 0x7D /*'}'*/);
continue;
case SymbolTable::SYMBOL_REF:
// symbols nosymbols
// [a-$] error error (ambiguous)
// [a$] anchor anchor
// [a-$x] var "x"* literal '$'
// [a-$.] error literal '$'
// *We won't get here in the case of var "x"
{
chars.getPos(backup);
c = chars.next(opts, literal, ec);
if (U_FAILURE(ec)) return;
UBool anchor = (c == 0x5D /*']'*/ && !literal);
if (symbols == 0 && !anchor) {
c = SymbolTable::SYMBOL_REF;
chars.setPos(backup);
break; // literal '$'
}
if (anchor && op == 0) {
if (lastItem == 1) {
add(lastChar, lastChar);
_appendToPat(patLocal, lastChar, FALSE);
}
add(U_ETHER);
usePat = TRUE;
patLocal.append((UChar) SymbolTable::SYMBOL_REF);
patLocal.append((UChar) 0x5D /*']'*/);
mode = 2;
continue;
}
// syntaxError(chars, "Unquoted '$'");
ec = U_MALFORMED_SET;
return;
}
default:
break;
}
}
// -------- Parse literal characters. This includes both
// escaped chars ("\u4E01") and non-syntax characters
// ("a").
switch (lastItem) {
case 0:
lastItem = 1;
lastChar = c;
break;
case 1:
if (op == HYPHEN /*'-'*/) {
if (lastChar >= c) {
// Don't allow redundant (a-a) or empty (b-a) ranges;
// these are most likely typos.
// syntaxError(chars, "Invalid range");
ec = U_MALFORMED_SET;
return;
}
add(lastChar, c);
_appendToPat(patLocal, lastChar, FALSE);
patLocal.append(op);
_appendToPat(patLocal, c, FALSE);
lastItem = 0;
op = 0;
} else {
add(lastChar, lastChar);
_appendToPat(patLocal, lastChar, FALSE);
lastChar = c;
}
break;
case 2:
if (op != 0) {
// syntaxError(chars, "Set expected after operator");
ec = U_MALFORMED_SET;
return;
}
lastChar = c;
lastItem = 1;
break;
}
}
if (mode != 2) {
// syntaxError(chars, "Missing ']'");
ec = U_MALFORMED_SET;
return;
}
chars.skipIgnored(opts);
/**
* Handle global flags (invert, case insensitivity). If this
* pattern should be compiled case-insensitive, then we need
* to close over case BEFORE COMPLEMENTING. This makes
* patterns like /[^abc]/i work.
*/
if ((options & USET_CASE_INSENSITIVE) != 0) {
closeOver(USET_CASE_INSENSITIVE);
}
else if ((options & USET_ADD_CASE_MAPPINGS) != 0) {
closeOver(USET_ADD_CASE_MAPPINGS);
}
if (invert) {
complement();
}
// Use the rebuilt pattern (patLocal) only if necessary. Prefer the
// generated pattern.
if (usePat) {
rebuiltPat.append(patLocal);
} else {
_generatePattern(rebuiltPat, FALSE);
}
}
//----------------------------------------------------------------
// Property set implementation
//----------------------------------------------------------------
static UBool numericValueFilter(UChar32 ch, void* context) {
return u_getNumericValue(ch) == *(double*)context;
}
static UBool generalCategoryMaskFilter(UChar32 ch, void* context) {
int32_t value = *(int32_t*)context;
return (U_GET_GC_MASK((UChar32) ch) & value) != 0;
}
static UBool versionFilter(UChar32 ch, void* context) {
UVersionInfo v, none = { 0, 0, 0, 0};
UVersionInfo* version = (UVersionInfo*)context;
u_charAge(ch, v);
return uprv_memcmp(&v, &none, sizeof(v)) > 0 && uprv_memcmp(&v, version, sizeof(v)) <= 0;
}
typedef struct {
UProperty prop;
int32_t value;
} IntPropertyContext;
static UBool intPropertyFilter(UChar32 ch, void* context) {
IntPropertyContext* c = (IntPropertyContext*)context;
return u_getIntPropertyValue((UChar32) ch, c->prop) == c->value;
}
/**
* Generic filter-based scanning code for UCD property UnicodeSets.
*/
void UnicodeSet::applyFilter(UnicodeSet::Filter filter,
void* context,
int32_t src,
UErrorCode &status) {
// Walk through all Unicode characters, noting the start
// and end of each range for which filter.contain(c) is
// true. Add each range to a set.
//
// To improve performance, use the INCLUSIONS set, which
// encodes information about character ranges that are known
// to have identical properties. INCLUSIONS contains
// only the first characters of such ranges.
//
// TODO Where possible, instead of scanning over code points,
// use internal property data to initialize UnicodeSets for
// those properties. Scanning code points is slow.
if (U_FAILURE(status)) return;
const UnicodeSet* inclusions = getInclusions(src, status);
if (U_FAILURE(status)) {
return;
}
clear();
UChar32 startHasProperty = -1;
int limitRange = inclusions->getRangeCount();
for (int j=0; jgetRangeStart(j);
UChar32 end = inclusions->getRangeEnd(j);
// for all the code points in the range, process
for (UChar32 ch = start; ch <= end; ++ch) {
// only add to this UnicodeSet on inflection points --
// where the hasProperty value changes to false
if ((*filter)(ch, context)) {
if (startHasProperty < 0) {
startHasProperty = ch;
}
} else if (startHasProperty >= 0) {
add(startHasProperty, ch-1);
startHasProperty = -1;
}
}
}
if (startHasProperty >= 0) {
add((UChar32)startHasProperty, (UChar32)0x10FFFF);
}
}
static UBool mungeCharName(char* dst, const char* src, int32_t dstCapacity) {
/* Note: we use ' ' in compiler code page */
int32_t j = 0;
char ch;
--dstCapacity; /* make room for term. zero */
while ((ch = *src++) != 0) {
if (ch == ' ' && (j==0 || (j>0 && dst[j-1]==' '))) {
continue;
}
if (j >= dstCapacity) return FALSE;
dst[j++] = ch;
}
if (j > 0 && dst[j-1] == ' ') --j;
dst[j] = 0;
return TRUE;
}
//----------------------------------------------------------------
// Property set API
//----------------------------------------------------------------
#define FAIL(ec) {ec=U_ILLEGAL_ARGUMENT_ERROR; return *this;}
UnicodeSet&
UnicodeSet::applyIntPropertyValue(UProperty prop, int32_t value, UErrorCode& ec) {
if (U_FAILURE(ec)) return *this;
if (prop == UCHAR_GENERAL_CATEGORY_MASK) {
applyFilter(generalCategoryMaskFilter, &value, UPROPS_SRC_CHAR, ec);
} else {
IntPropertyContext c = {prop, value};
applyFilter(intPropertyFilter, &c, uprops_getSource(prop), ec);
}
return *this;
}
UnicodeSet&
UnicodeSet::applyPropertyAlias(const UnicodeString& prop,
const UnicodeString& value,
UErrorCode& ec) {
if (U_FAILURE(ec)) return *this;
// prop and value used to be converted to char * using the default
// converter instead of the invariant conversion.
// This should not be necessary because all Unicode property and value
// names use only invariant characters.
// If there are any variant characters, then we won't find them anyway.
// Checking first avoids assertion failures in the conversion.
if( !uprv_isInvariantUString(prop.getBuffer(), prop.length()) ||
!uprv_isInvariantUString(value.getBuffer(), value.length())
) {
FAIL(ec);
}
CharString pname(prop);
CharString vname(value);
UProperty p;
int32_t v;
UBool mustNotBeEmpty = FALSE, invert = FALSE;
if (value.length() > 0) {
p = u_getPropertyEnum(pname);
if (p == UCHAR_INVALID_CODE) FAIL(ec);
// Treat gc as gcm
if (p == UCHAR_GENERAL_CATEGORY) {
p = UCHAR_GENERAL_CATEGORY_MASK;
}
if ((p >= UCHAR_BINARY_START && p < UCHAR_BINARY_LIMIT) ||
(p >= UCHAR_INT_START && p < UCHAR_INT_LIMIT) ||
(p >= UCHAR_MASK_START && p < UCHAR_MASK_LIMIT)) {
v = u_getPropertyValueEnum(p, vname);
if (v == UCHAR_INVALID_CODE) {
// Handle numeric CCC
if (p == UCHAR_CANONICAL_COMBINING_CLASS ||
p == UCHAR_TRAIL_CANONICAL_COMBINING_CLASS ||
p == UCHAR_LEAD_CANONICAL_COMBINING_CLASS) {
char* end;
double value = uprv_strtod(vname, &end);
v = (int32_t) value;
if (v != value || v < 0 || *end != 0) {
// non-integral or negative value, or trailing junk
FAIL(ec);
}
// If the resultant set is empty then the numeric value
// was invalid.
mustNotBeEmpty = TRUE;
} else {
FAIL(ec);
}
}
}
else {
switch (p) {
case UCHAR_NUMERIC_VALUE:
{
char* end;
double value = uprv_strtod(vname, &end);
if (*end != 0) {
FAIL(ec);
}
applyFilter(numericValueFilter, &value, UPROPS_SRC_CHAR, ec);
return *this;
}
break;
case UCHAR_NAME:
case UCHAR_UNICODE_1_NAME:
{
// Must munge name, since u_charFromName() does not do
// 'loose' matching.
char buf[128]; // it suffices that this be > uprv_getMaxCharNameLength
if (!mungeCharName(buf, vname, sizeof(buf))) FAIL(ec);
UCharNameChoice choice = (p == UCHAR_NAME) ?
U_EXTENDED_CHAR_NAME : U_UNICODE_10_CHAR_NAME;
UChar32 ch = u_charFromName(choice, buf, &ec);
if (U_SUCCESS(ec)) {
clear();
add(ch);
return *this;
} else {
FAIL(ec);
}
}
break;
case UCHAR_AGE:
{
// Must munge name, since u_versionFromString() does not do
// 'loose' matching.
char buf[128];
if (!mungeCharName(buf, vname, sizeof(buf))) FAIL(ec);
UVersionInfo version;
u_versionFromString(version, buf);
applyFilter(versionFilter, &version, UPROPS_SRC_PROPSVEC, ec);
return *this;
}
break;
default:
// p is a non-binary, non-enumerated property that we
// don't support (yet).
FAIL(ec);
}
}
}
else {
// value is empty. Interpret as General Category, Script, or
// Binary property.
p = UCHAR_GENERAL_CATEGORY_MASK;
v = u_getPropertyValueEnum(p, pname);
if (v == UCHAR_INVALID_CODE) {
p = UCHAR_SCRIPT;
v = u_getPropertyValueEnum(p, pname);
if (v == UCHAR_INVALID_CODE) {
p = u_getPropertyEnum(pname);
if (p >= UCHAR_BINARY_START && p < UCHAR_BINARY_LIMIT) {
v = 1;
} else if (0 == uprv_comparePropertyNames(ANY, pname)) {
set(MIN_VALUE, MAX_VALUE);
return *this;
} else if (0 == uprv_comparePropertyNames(ASCII, pname)) {
set(0, 0x7F);
return *this;
} else if (0 == uprv_comparePropertyNames(ASSIGNED, pname)) {
// [:Assigned:]=[:^Cn:]
p = UCHAR_GENERAL_CATEGORY_MASK;
v = U_GC_CN_MASK;
invert = TRUE;
} else {
FAIL(ec);
}
}
}
}
applyIntPropertyValue(p, v, ec);
if(invert) {
complement();
}
if (U_SUCCESS(ec) && (mustNotBeEmpty && isEmpty())) {
// mustNotBeEmpty is set to true if an empty set indicates
// invalid input.
ec = U_ILLEGAL_ARGUMENT_ERROR;
}
return *this;
}
//----------------------------------------------------------------
// Property set patterns
//----------------------------------------------------------------
/**
* Return true if the given position, in the given pattern, appears
* to be the start of a property set pattern.
*/
UBool UnicodeSet::resemblesPropertyPattern(const UnicodeString& pattern,
int32_t pos) {
// Patterns are at least 5 characters long
if ((pos+5) > pattern.length()) {
return FALSE;
}
// Look for an opening [:, [:^, \p, or \P
return isPOSIXOpen(pattern, pos) || isPerlOpen(pattern, pos) || isNameOpen(pattern, pos);
}
/**
* Return true if the given iterator appears to point at a
* property pattern. Regardless of the result, return with the
* iterator unchanged.
* @param chars iterator over the pattern characters. Upon return
* it will be unchanged.
* @param iterOpts RuleCharacterIterator options
*/
UBool UnicodeSet::resemblesPropertyPattern(RuleCharacterIterator& chars,
int32_t iterOpts) {
// NOTE: literal will always be FALSE, because we don't parse escapes.
UBool result = FALSE, literal;
UErrorCode ec = U_ZERO_ERROR;
iterOpts &= ~RuleCharacterIterator::PARSE_ESCAPES;
RuleCharacterIterator::Pos pos;
chars.getPos(pos);
UChar32 c = chars.next(iterOpts, literal, ec);
if (c == 0x5B /*'['*/ || c == 0x5C /*'\\'*/) {
UChar32 d = chars.next(iterOpts & ~RuleCharacterIterator::SKIP_WHITESPACE,
literal, ec);
result = (c == 0x5B /*'['*/) ? (d == 0x3A /*':'*/) :
(d == 0x4E /*'N'*/ || d == 0x70 /*'p'*/ || d == 0x50 /*'P'*/);
}
chars.setPos(pos);
return result && U_SUCCESS(ec);
}
/**
* Parse the given property pattern at the given parse position.
*/
UnicodeSet& UnicodeSet::applyPropertyPattern(const UnicodeString& pattern,
ParsePosition& ppos,
UErrorCode &ec) {
int32_t pos = ppos.getIndex();
UBool posix = FALSE; // true for [:pat:], false for \p{pat} \P{pat} \N{pat}
UBool isName = FALSE; // true for \N{pat}, o/w false
UBool invert = FALSE;
if (U_FAILURE(ec)) return *this;
// Minimum length is 5 characters, e.g. \p{L}
if ((pos+5) > pattern.length()) {
FAIL(ec);
}
// On entry, ppos should point to one of the following locations:
// Look for an opening [:, [:^, \p, or \P
if (isPOSIXOpen(pattern, pos)) {
posix = TRUE;
pos += 2;
pos = ICU_Utility::skipWhitespace(pattern, pos);
if (pos < pattern.length() && pattern.charAt(pos) == COMPLEMENT) {
++pos;
invert = TRUE;
}
} else if (isPerlOpen(pattern, pos) || isNameOpen(pattern, pos)) {
UChar c = pattern.charAt(pos+1);
invert = (c == UPPER_P);
isName = (c == UPPER_N);
pos += 2;
pos = ICU_Utility::skipWhitespace(pattern, pos);
if (pos == pattern.length() || pattern.charAt(pos++) != OPEN_BRACE) {
// Syntax error; "\p" or "\P" not followed by "{"
FAIL(ec);
}
} else {
// Open delimiter not seen
FAIL(ec);
}
// Look for the matching close delimiter, either :] or }
int32_t close = pattern.indexOf(posix ? POSIX_CLOSE : PERL_CLOSE, pos);
if (close < 0) {
// Syntax error; close delimiter missing
FAIL(ec);
}
// Look for an '=' sign. If this is present, we will parse a
// medium \p{gc=Cf} or long \p{GeneralCategory=Format}
// pattern.
int32_t equals = pattern.indexOf(EQUALS, pos);
UnicodeString propName, valueName;
if (equals >= 0 && equals < close && !isName) {
// Equals seen; parse medium/long pattern
pattern.extractBetween(pos, equals, propName);
pattern.extractBetween(equals+1, close, valueName);
}
else {
// Handle case where no '=' is seen, and \N{}
pattern.extractBetween(pos, close, propName);
// Handle \N{name}
if (isName) {
// This is a little inefficient since it means we have to
// parse NAME_PROP back to UCHAR_NAME even though we already
// know it's UCHAR_NAME. If we refactor the API to
// support args of (UProperty, char*) then we can remove
// NAME_PROP and make this a little more efficient.
valueName = propName;
propName = UnicodeString(NAME_PROP, NAME_PROP_LENGTH, US_INV);
}
}
applyPropertyAlias(propName, valueName, ec);
if (U_SUCCESS(ec)) {
if (invert) {
complement();
}
// Move to the limit position after the close delimiter if the
// parse succeeded.
ppos.setIndex(close + (posix ? 2 : 1));
}
return *this;
}
/**
* Parse a property pattern.
* @param chars iterator over the pattern characters. Upon return
* it will be advanced to the first character after the parsed
* pattern, or the end of the iteration if all characters are
* parsed.
* @param rebuiltPat the pattern that was parsed, rebuilt or
* copied from the input pattern, as appropriate.
*/
void UnicodeSet::applyPropertyPattern(RuleCharacterIterator& chars,
UnicodeString& rebuiltPat,
UErrorCode& ec) {
if (U_FAILURE(ec)) return;
UnicodeString pattern;
chars.lookahead(pattern);
ParsePosition pos(0);
applyPropertyPattern(pattern, pos, ec);
if (U_FAILURE(ec)) return;
if (pos.getIndex() == 0) {
// syntaxError(chars, "Invalid property pattern");
ec = U_MALFORMED_SET;
return;
}
chars.jumpahead(pos.getIndex());
rebuiltPat.append(pattern, 0, pos.getIndex());
}
//----------------------------------------------------------------
// Inclusions list
//----------------------------------------------------------------
U_CDECL_BEGIN
// USetAdder implementation
// Does not use uset.h to reduce code dependencies
static void U_CALLCONV
_set_add(USet *set, UChar32 c) {
((UnicodeSet *)set)->add(c);
}
static void U_CALLCONV
_set_addRange(USet *set, UChar32 start, UChar32 end) {
((UnicodeSet *)set)->add(start, end);
}
static void U_CALLCONV
_set_addString(USet *set, const UChar *str, int32_t length) {
((UnicodeSet *)set)->add(UnicodeString((UBool)(length<0), str, length));
}
/**
* Cleanup function for UnicodeSet
*/
static UBool U_CALLCONV uset_cleanup(void) {
int32_t i;
for(i = UPROPS_SRC_NONE; i < UPROPS_SRC_COUNT; ++i) {
if (INCLUSIONS[i] != NULL) {
delete INCLUSIONS[i];
INCLUSIONS[i] = NULL;
}
}
return TRUE;
}
U_CDECL_END
const UnicodeSet* UnicodeSet::getInclusions(int32_t src, UErrorCode &status) {
umtx_lock(NULL);
UBool f = (INCLUSIONS[src] == NULL);
umtx_unlock(NULL);
if (f) {
UnicodeSet* incl = new UnicodeSet();
USetAdder sa = {
(USet *)incl,
_set_add,
_set_addRange,
_set_addString,
NULL // don't need remove()
};
if (incl != NULL) {
switch(src) {
case UPROPS_SRC_CHAR:
uchar_addPropertyStarts(&sa, &status);
break;
case UPROPS_SRC_PROPSVEC:
upropsvec_addPropertyStarts(&sa, &status);
break;
case UPROPS_SRC_CHAR_AND_PROPSVEC:
uchar_addPropertyStarts(&sa, &status);
upropsvec_addPropertyStarts(&sa, &status);
break;
case UPROPS_SRC_HST:
uhst_addPropertyStarts(&sa, &status);
break;
#if !UCONFIG_NO_NORMALIZATION
case UPROPS_SRC_NORM:
unorm_addPropertyStarts(&sa, &status);
break;
#endif
case UPROPS_SRC_CASE:
ucase_addPropertyStarts(ucase_getSingleton(&status), &sa, &status);
break;
case UPROPS_SRC_BIDI:
ubidi_addPropertyStarts(ubidi_getSingleton(&status), &sa, &status);
break;
default:
status = U_INTERNAL_PROGRAM_ERROR;
break;
}
if (U_SUCCESS(status)) {
umtx_lock(NULL);
if (INCLUSIONS[src] == NULL) {
INCLUSIONS[src] = incl;
incl = NULL;
ucln_common_registerCleanup(UCLN_COMMON_USET, uset_cleanup);
}
umtx_unlock(NULL);
}
delete incl;
} else {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
return INCLUSIONS[src];
}
//----------------------------------------------------------------
// Case folding API
//----------------------------------------------------------------
// add the result of a full case mapping to the set
// use str as a temporary string to avoid constructing one
static inline void
addCaseMapping(UnicodeSet &set, int32_t result, const UChar *full, UnicodeString &str) {
if(result >= 0) {
if(result > UCASE_MAX_STRING_LENGTH) {
// add a single-code point case mapping
set.add(result);
} else {
// add a string case mapping from full with length result
str.setTo((UBool)FALSE, full, result);
set.add(str);
}
}
// result < 0: the code point mapped to itself, no need to add it
// see ucase.h
}
UnicodeSet& UnicodeSet::closeOver(int32_t attribute) {
if (attribute & (USET_CASE_INSENSITIVE | USET_ADD_CASE_MAPPINGS)) {
UErrorCode status = U_ZERO_ERROR;
const UCaseProps *csp = ucase_getSingleton(&status);
if (U_SUCCESS(status)) {
UnicodeSet foldSet(*this);
UnicodeString str;
USetAdder sa = {
(USet *)&foldSet,
_set_add,
_set_addRange,
_set_addString,
NULL // don't need remove()
};
// start with input set to guarantee inclusion
// USET_CASE: remove strings because the strings will actually be reduced (folded);
// therefore, start with no strings and add only those needed
if (attribute & USET_CASE_INSENSITIVE) {
foldSet.strings->removeAllElements();
}
int32_t n = getRangeCount();
UChar32 result;
const UChar *full;
int32_t locCache = 0;
for (int32_t i=0; isize() > 0) {
if (attribute & USET_CASE_INSENSITIVE) {
for (int32_t j=0; jsize(); ++j) {
str = *(const UnicodeString *) strings->elementAt(j);
str.foldCase();
if(!ucase_addStringCaseClosure(csp, str.getBuffer(), str.length(), &sa)) {
foldSet.add(str); // does not map to code points: add the folded string itself
}
}
} else {
Locale root("");
#if !UCONFIG_NO_BREAK_ITERATION
BreakIterator *bi = BreakIterator::createWordInstance(root, status);
#endif
if (U_SUCCESS(status)) {
const UnicodeString *pStr;
for (int32_t j=0; jsize(); ++j) {
pStr = (const UnicodeString *) strings->elementAt(j);
(str = *pStr).toLower(root);
foldSet.add(str);
#if !UCONFIG_NO_BREAK_ITERATION
(str = *pStr).toTitle(bi, root);
foldSet.add(str);
#endif
(str = *pStr).toUpper(root);
foldSet.add(str);
(str = *pStr).foldCase();
foldSet.add(str);
}
}
#if !UCONFIG_NO_BREAK_ITERATION
delete bi;
#endif
}
}
*this = foldSet;
}
}
return *this;
}
U_NAMESPACE_END