/* ****************************************************************************** * Copyright (c) 1996-2001, International Business Machines * Corporation and others. All Rights Reserved. ****************************************************************************** * File unorm.cpp * * Created by: Vladimir Weinstein 12052000 * * Modification history : * * Date Name Description * 02/01/01 synwee Added normalization quickcheck enum and method. * 02/12/01 synwee Commented out quickcheck util api has been approved * Added private method for doing FCD checks * 02/23/01 synwee Modified quickcheck and checkFCE to run through * string for codepoints < 0x300 for the normalization * mode NFC. * 05/25/01+ Markus Scherer total rewrite, implement all normalization here * instead of just wrappers around normlzr.cpp, * load unorm.dat, support Unicode 3.1 with * supplementary code points, etc. */ #include "unicode/utypes.h" #include "unicode/ustring.h" #include "unicode/chariter.h" #include "unicode/udata.h" #include "unicode/unorm.h" #include "cmemory.h" #include "ustr_imp.h" #include "umutex.h" #include "unormimp.h" /* * This new implementation of the normalization code loads its data from * unorm.dat, which is generated with the gennorm tool. * The format of that file is described in unormimp.h . */ /* -------------------------------------------------------------------------- */ /* Korean Hangul and Jamo constants */ enum { JAMO_L_BASE=0x1100, /* "lead" jamo */ JAMO_V_BASE=0x1161, /* "vowel" jamo */ JAMO_T_BASE=0x11a7, /* "trail" jamo */ HANGUL_BASE=0xac00, JAMO_L_COUNT=19, JAMO_V_COUNT=21, JAMO_T_COUNT=28, HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT }; inline UBool isHangulWithoutJamoT(UChar c) { c-=HANGUL_BASE; return c=_NORM_MIN_HANGUL; } /* * Given isNorm32HangulOrJamo(), * is this a Hangul syllable or a Jamo? */ inline UBool isHangulJamoNorm32HangulOrJamoL(uint32_t norm32) { return norm32<_NORM_MIN_JAMO_V; } /* * Given norm32 for Jamo V or T, * is this a Jamo V? */ inline UBool isJamoVTNorm32JamoV(uint32_t norm32) { return norm32<_NORM_JAMO_V_TOP; } /* load unorm.dat ----------------------------------------------------------- */ #define DATA_NAME "unorm" #define DATA_TYPE "dat" static UDataMemory *normData=NULL; static UErrorCode dataErrorCode=U_ZERO_ERROR; static int8_t haveNormData=0; /* * pointers into the memory-mapped unorm.dat */ static const uint16_t *indexes=NULL, *normTrieIndex=NULL, *extraData=NULL, *combiningTable=NULL, *fcdTrieIndex=NULL; /* * note that there is no uint32_t *normTrieData: * the indexes in the trie are adjusted so that they point to the data based on * (uint32_t *)normTrieIndex - this saves one variable at runtime */ #define normTrieData ((uint32_t *)normTrieIndex) /* similarly for the FCD trie index and data - but both are uint16_t * */ /* the Unicode version of the normalization data */ static UVersionInfo dataVersion={ 3, 1, 0, 0 }; U_CDECL_BEGIN U_CFUNC UBool U_CALLCONV unorm_cleanup() { if(normData!=NULL) { udata_close(normData); normData=NULL; } dataErrorCode=U_ZERO_ERROR; haveNormData=0; return TRUE; } static UBool U_CALLCONV isAcceptable(void * /* context */, const char * /* type */, const char * /* name */, const UDataInfo *pInfo) { if( pInfo->size>=20 && pInfo->isBigEndian==U_IS_BIG_ENDIAN && pInfo->charsetFamily==U_CHARSET_FAMILY && pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */ pInfo->dataFormat[1]==0x6f && pInfo->dataFormat[2]==0x72 && pInfo->dataFormat[3]==0x6d && pInfo->formatVersion[0]==1 && pInfo->formatVersion[3]==_NORM_TRIE_SHIFT ) { uprv_memcpy(dataVersion, pInfo->dataVersion, 4); return TRUE; } else { return FALSE; } } U_CDECL_END static int8_t loadNormData(UErrorCode &errorCode) { /* load Unicode normalization data from file */ if(haveNormData==0) { UDataMemory *data; const uint16_t *p=NULL; if(&errorCode==NULL || U_FAILURE(errorCode)) { return 0; } /* open the data outside the mutex block */ data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errorCode); dataErrorCode=errorCode; if(U_FAILURE(errorCode)) { return haveNormData=-1; } p=(const uint16_t *)udata_getMemory(data); /* in the mutex block, set the data for this process */ umtx_lock(NULL); if(normData==NULL) { normData=data; data=NULL; indexes=p; p=NULL; } umtx_unlock(NULL); /* initialize some variables */ normTrieIndex=indexes+indexes[_NORM_INDEX_COUNT]; extraData=normTrieIndex+indexes[_NORM_INDEX_TRIE_INDEX_COUNT]+2*indexes[_NORM_INDEX_TRIE_DATA_COUNT]; combiningTable=extraData+indexes[_NORM_INDEX_UCHAR_COUNT]; fcdTrieIndex=combiningTable+indexes[_NORM_INDEX_COMBINE_DATA_COUNT]; haveNormData=1; /* if a different thread set it first, then close the extra data */ if(data!=NULL) { udata_close(data); /* NULL if it was set correctly */ } } return haveNormData; } inline UBool _haveData(UErrorCode &errorCode) { if(haveNormData!=0) { errorCode=dataErrorCode; return (UBool)(haveNormData>0); } else { return (UBool)(loadNormData(errorCode)>0); } } U_CAPI UBool U_EXPORT2 unorm_haveData(UErrorCode *pErrorCode) { return _haveData(*pErrorCode); } U_CAPI const uint16_t * U_EXPORT2 unorm_getFCDTrie(UErrorCode *pErrorCode) { if(_haveData(*pErrorCode)) { return fcdTrieIndex; } else { return NULL; } } /* data access primitives --------------------------------------------------- */ inline uint32_t _getNorm32(UChar c) { return normTrieData[ normTrieIndex[ c>>_NORM_TRIE_SHIFT ]+ (c&_NORM_STAGE_2_MASK) ]; } inline uint32_t _getNorm32FromSurrogatePair(uint32_t norm32, UChar c2) { /* the surrogate index in norm32 is an offset over the BMP top of stage 1 */ uint32_t c= ((norm32>>(_NORM_EXTRA_SHIFT-10))&0xffc00)| (c2&0x3ff); return normTrieData[ normTrieIndex[ _NORM_STAGE_1_BMP_COUNT+ (c>>_NORM_TRIE_SHIFT) ]+ (c&_NORM_STAGE_2_MASK) ]; } /* * get a norm32 from text with complete code points * (like from decompositions) */ inline uint32_t _getNorm32(const UChar *p, uint32_t mask) { uint32_t norm32=_getNorm32(*p); if((norm32&mask) && isNorm32LeadSurrogate(norm32)) { /* *p is a lead surrogate, get the real norm32 */ norm32=_getNorm32FromSurrogatePair(norm32, *(p+1)); } return norm32; } inline uint16_t _getFCD16(UChar c) { return fcdTrieIndex[ fcdTrieIndex[ c>>_NORM_TRIE_SHIFT ]+ (c&_NORM_STAGE_2_MASK) ]; } inline uint16_t _getFCD16FromSurrogatePair(uint16_t fcd16, UChar c2) { /* the surrogate index in fcd16 is an absolute offset over the start of stage 1 */ uint32_t c= ((uint32_t)fcd16<<10)| (c2&0x3ff); return fcdTrieIndex[ fcdTrieIndex[ c>>_NORM_TRIE_SHIFT ]+ (c&_NORM_STAGE_2_MASK) ]; } inline const uint16_t * _getExtraData(uint32_t norm32) { return extraData+(norm32>>_NORM_EXTRA_SHIFT); } /* get the canonical or compatibility decomposition for one character */ inline const UChar * _decompose(uint32_t norm32, uint32_t qcMask, int32_t &length, uint8_t &cc, uint8_t &trailCC) { const UChar *p=(const UChar *)_getExtraData(norm32); length=*p++; if((norm32&qcMask&_NORM_QC_NFKD)!=0 && length>=0x100) { /* use compatibility decomposition, skip canonical data */ p+=((length>>7)&1)+(length&_NORM_DECOMP_LENGTH_MASK); length>>=8; } if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) { /* get the lead and trail cc's */ UChar bothCCs=*p++; cc=(uint8_t)(bothCCs>>8); trailCC=(uint8_t)bothCCs; } else { /* lead and trail cc's are both 0 */ cc=trailCC=0; } length&=_NORM_DECOMP_LENGTH_MASK; return p; } /* get the canonical decomposition for one character */ inline const UChar * _decompose(uint32_t norm32, int32_t &length, uint8_t &cc, uint8_t &trailCC) { const UChar *p=(const UChar *)_getExtraData(norm32); length=*p++; if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) { /* get the lead and trail cc's */ UChar bothCCs=*p++; cc=(uint8_t)(bothCCs>>8); trailCC=(uint8_t)bothCCs; } else { /* lead and trail cc's are both 0 */ cc=trailCC=0; } length&=_NORM_DECOMP_LENGTH_MASK; return p; } /* * get the combining class of (c, c2)=*p++ * before: p>_NORM_CC_SHIFT); } } /* * read backwards and get norm32 * return 0 if the character is >_NORM_CC_SHIFT); } /* * is this (or does its decomposition begin with) a "true starter"? * (cc==0 and NF*C_YES) */ inline UBool _isTrueStarter(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) { if((norm32&ccOrQCMask)==0) { return TRUE; /* this is a true starter (could be Hangul or Jamo L) */ } /* inspect its decomposition - not a Hangul or a surrogate here */ if((norm32&decompQCMask)!=0) { const UChar *p; int32_t length; uint8_t cc, trailCC; /* decomposes, get everything from the variable-length extra data */ p=_decompose(norm32, decompQCMask, length, cc, trailCC); if(cc==0) { uint32_t qcMask=ccOrQCMask&_NORM_QC_MASK; /* does it begin with NFC_YES? */ if((_getNorm32(p, qcMask)&qcMask)==0) { /* yes, the decomposition begins with a true starter */ return TRUE; } } } return FALSE; } /* reorder UTF-16 in-place -------------------------------------------------- */ /* * simpler, single-character version of _mergeOrdered() - * bubble-insert one single code point into the preceding string * which is already canonically ordered * (c, c2) may or may not yet have been inserted at [current..p[ * * it must be p=current+lengthof(c, c2) i.e. p=current+(c2==0 ? 1 : 2) * * before: [start..current[ is already ordered, and * [current..p[ may or may not hold (c, c2) but * must be exactly the same length as (c, c2) * after: [start..p[ is ordered * * returns the trailing combining class */ static uint8_t _insertOrdered(const UChar *start, UChar *current, UChar *p, UChar c, UChar c2, uint8_t cc) { const UChar *pBack, *pPreBack; UChar *r; uint8_t prevCC, trailCC=cc; if(start=prevCC */ pPreBack=pBack=current; prevCC=_getPrevCC(start, pPreBack); if(cc=prevCC) { break; } pBack=pPreBack; } /* * this is where we are right now with all these pointers: * [start..pPreBack[ 0..? code points that we can ignore * [pPreBack..pBack[ 0..1 code points with prevCC<=cc * [pBack..current[ 0..n code points with >cc, move up to insert (c, c2) * [current..p[ 1 code point (c, c2) with cc */ /* move the code units in between up */ r=p; do { *--r=*--current; } while(pBack!=current); } } /* insert (c, c2) */ *current=c; if(c2!=0) { *(current+1)=c2; } /* we know the cc of the last code point */ return trailCC; } /* * merge two UTF-16 string parts together * to canonically order (order by combining classes) their concatenation * * the two strings may already be adjacent, so that the merging is done in-place * if the two strings are not adjacent, then the buffer holding the first one * must be large enough * the second string may or may not be ordered in itself * * before: [start..current[ is already ordered, and * [next..limit[ may be ordered in itself, but * is not in relation to [start..current[ * after: [start..current+(limit-next)[ is ordered * * the algorithm is a simple bubble-sort that takes the characters from *next++ * and inserts them in correct combining class order into the preceding part * of the string * * since this function is called much less often than the single-code point * _insertOrdered(), it just uses that for easier maintenance * (see file version from before 2001aug31 for a more optimized version) * * returns the trailing combining class */ static uint8_t _mergeOrdered(UChar *start, UChar *current, const UChar *next, const UChar *limit, UBool isOrdered=TRUE) { UChar *r; UChar c, c2; uint8_t cc, trailCC=0; UBool adjacent; adjacent= current==next; if(start!=current || !isOrdered) { while(next=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* skip a run of code units below the minimum or with irrelevant data for the FCD check */ if(limit==NULL) { for(;;) { c=*src++; if(c<_NORM_MIN_WITH_LEAD_CC) { if(c==0) { return TRUE; } /* * delay _getFCD16(c) for any character <_NORM_MIN_WITH_LEAD_CC * because chances are good that the next one will have * a leading cc of 0; * _getFCD16(-prevCC) is later called when necessary - * -c fits into int16_t because it is <_NORM_MIN_WITH_LEAD_CC==0x300 */ prevCC=-(int16_t)c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } } } else { for(;;) { if(src==limit) { return TRUE; } else if((c=*src++)<_NORM_MIN_WITH_LEAD_CC) { prevCC=-(int16_t)c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } } } /* check one above-minimum, relevant code unit */ if(UTF_IS_FIRST_SURROGATE(c)) { /* c is a lead surrogate, get the real fcd16 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; fcd16=_getFCD16FromSurrogatePair(fcd16, c2); } else { fcd16=0; } } /* * prevCC has values from the following ranges: * 0..0xff - the previous trail combining class * <0 - the negative value of the previous code unit; * that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16() * was deferred so that average text is checked faster */ /* check the combining order */ cc=(int16_t)(fcd16>>8); if(cc!=0) { if(prevCC<0) { /* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */ prevCC=(int16_t)_getFCD16((UChar)-prevCC)&0xff; } if(cc=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* skip a run of code units below the minimum or with irrelevant data for the quick check */ if(limit==NULL) { for(;;) { c=*src++; if(c=minNoMaybe && ((norm32=_getNorm32(c))&ccOrQCMask)!=0) { break; } prevCC=0; } } /* check one above-minimum, relevant code unit */ if(isNorm32LeadSurrogate(norm32)) { /* c is a lead surrogate, get the real norm32 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { norm32=0; } } /* check the combining order */ cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); if(cc!=0 && cc=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* count code units below the minimum or with irrelevant data for the quick check */ prevSrc=src; if(limit==NULL) { while((c=*src)0) { buffer[2]=(UChar)(JAMO_T_BASE+c2); length=3; } else { length=2; } buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); } } else { if(isNorm32Regular(norm32)) { c2=0; length=1; } else { /* c is a lead surrogate, get the real norm32 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; length=2; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { c2=0; length=1; norm32=0; } } /* get the decomposition and the lead and trail cc's */ if((norm32&qcMask)==0) { /* c does not decompose */ cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT); p=NULL; } else { /* c decomposes, get everything from the variable-length extra data */ p=_decompose(norm32, qcMask, length, cc, trailCC); if(length==1) { /* fastpath a single code unit from decomposition */ c=*p; c2=0; p=NULL; } } } /* append the decomposition to the destination buffer, assume length>0 */ if( (destIndex+length)<=destCapacity || /* attempt to grow the buffer */ (canGrow && (canGrow=growBuffer(context, &dest, &destCapacity, limit==NULL ? 2*destCapacity+length+20 : destCapacity+length+2*(limit-src)+20, destIndex))!=FALSE) ) { UChar *reorderSplit=dest+destIndex; if(p==NULL) { /* fastpath: single code point */ if(cc!=0 && cc0); } } } else { /* buffer overflow */ /* keep incrementing the destIndex for preflighting */ destIndex+=length; } prevCC=trailCC; if(prevCC==0) { reorderStartIndex=destIndex; } } outTrailCC=prevCC; return destIndex; } U_CAPI int32_t U_EXPORT2 unorm_decompose(UChar **pDest, int32_t *pDestCapacity, const UChar *src, int32_t srcLength, UBool compat, UBool ignoreHangul, UGrowBuffer *growBuffer, void *context, UErrorCode *pErrorCode) { int32_t destIndex; uint8_t trailCC; if(!_haveData(*pErrorCode)) { return 0; } destIndex=_decompose(*pDest, *pDestCapacity, src, srcLength, compat, ignoreHangul, growBuffer, context, trailCC, pErrorCode); return u_terminateUChars(*pDest, *pDestCapacity, destIndex, pErrorCode); } /* make FCD ----------------------------------------------------------------- */ static const UChar * _findSafeFCD(const UChar *src, const UChar *limit, uint16_t fcd16) { UChar c, c2; /* * find the first position in [src..limit[ after some cc==0 according to FCD data * * at the beginning of the loop, we have fcd16 from before src * * stop at positions: * - after trail cc==0 * - at the end of the source * - before lead cc==0 */ for(;;) { /* stop if trail cc==0 for the previous character */ if((fcd16&0xff)==0) { break; } /* get c=*src - stop at end of string */ if(src==limit) { break; } c=*src; /* stop if lead cc==0 for this character */ if(c<_NORM_MIN_WITH_LEAD_CC || (fcd16=_getFCD16(c))==0) { break; /* catches terminating NUL, too */ } if(!UTF_IS_FIRST_SURROGATE(c)) { if(fcd16<=0xff) { break; } ++src; } else if((src+1)!=limit && (c2=*(src+1), UTF_IS_SECOND_SURROGATE(c2))) { /* c is a lead surrogate, get the real fcd16 */ fcd16=_getFCD16FromSurrogatePair(fcd16, c2); if(fcd16<=0xff) { break; } src+=2; } else { /* c is an unpaired first surrogate, lead cc==0 */ break; } } return src; } static uint8_t _decomposeFCD(const UChar *src, const UChar *decompLimit, const UChar *limit, UChar *&dest, int32_t &destIndex, int32_t &destCapacity, UBool canGrow, UGrowBuffer *growBuffer, void *context) { const UChar *p; uint32_t norm32; int32_t reorderStartIndex, length; UChar c, c2; uint8_t cc, prevCC, trailCC; /* * canonically decompose [src..decompLimit[ * * all characters in this range have some non-zero cc, * directly or in decomposition, * so that we do not need to check in the following for quick-check limits etc. * * there _are_ _no_ Hangul syllables or Jamos in here because they are FCD-safe (cc==0)! * * we also do not need to check for c==0 because we have an established decompLimit */ reorderStartIndex=destIndex; prevCC=0; while(src>_NORM_CC_SHIFT); p=NULL; } else { /* c decomposes, get everything from the variable-length extra data */ p=_decompose(norm32, length, cc, trailCC); if(length==1) { /* fastpath a single code unit from decomposition */ c=*p; c2=0; p=NULL; } } /* append the decomposition to the destination buffer, assume length>0 */ if( (destIndex+length)<=destCapacity || /* attempt to grow the buffer */ (canGrow && (canGrow=growBuffer(context, &dest, &destCapacity, limit==NULL ? 2*destCapacity+length+20 : destCapacity+length+2*(limit-src)+20, destIndex))!=FALSE) ) { UChar *reorderSplit=dest+destIndex; if(p==NULL) { /* fastpath: single code point */ if(cc!=0 && cc0); } } } else { /* buffer overflow */ /* keep incrementing the destIndex for preflighting */ destIndex+=length; } prevCC=trailCC; if(prevCC==0) { reorderStartIndex=destIndex; } } return prevCC; } static int32_t unorm_makeFCD(UChar *&dest, int32_t &destCapacity, const UChar *src, int32_t srcLength, UGrowBuffer *growBuffer, void *context, UErrorCode *pErrorCode) { const UChar *limit, *prevSrc, *decompStart; int32_t destIndex, length; UChar c, c2; uint16_t fcd16; int16_t prevCC, cc; UBool canGrow; if(!_haveData(*pErrorCode)) { return 0; } /* initialize */ decompStart=src; destIndex=0; prevCC=0; /* avoid compiler warnings */ c=0; fcd16=0; /* do not attempt to grow if there is no growBuffer function or if it has failed before */ canGrow=(UBool)(growBuffer!=NULL); if(srcLength>=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* skip a run of code units below the minimum or with irrelevant data for the FCD check */ prevSrc=src; if(limit==NULL) { for(;;) { c=*src; if(c<_NORM_MIN_WITH_LEAD_CC) { if(c==0) { break; } prevCC=-(int16_t)c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } ++src; } } else { for(;;) { if(src==limit) { break; } else if((c=*src)<_NORM_MIN_WITH_LEAD_CC) { prevCC=-(int16_t)c; } else if((fcd16=_getFCD16(c))==0) { prevCC=0; } else { break; } ++src; } } /* * prevCC has values from the following ranges: * 0..0xff - the previous trail combining class * <0 - the negative value of the previous code unit; * that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16() * was deferred so that average text is checked faster */ /* copy these code units all at once */ if(src!=prevSrc) { length=(int32_t)(src-prevSrc); if( (destIndex+length)<=destCapacity || /* attempt to grow the buffer */ (canGrow && (canGrow=growBuffer(context, &dest, &destCapacity, limit==NULL ? 2*destCapacity+length+20 : destCapacity+length+2*(limit-src)+20, destIndex))!=FALSE) ) { uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR); } destIndex+=length; prevSrc=src; /* prevCC<0 is only possible from the above loop, i.e., only if prevSrc=0 */ /* end of source reached? */ if(limit==NULL ? c==0 : src==limit) { break; } /* set a pointer to after the last source position where prevCC==0 */ if(prevCC==0) { decompStart=prevSrc; } /* c already contains *src and fcd16 is set for it, increment src */ ++src; /* check one above-minimum, relevant code unit */ if(UTF_IS_FIRST_SURROGATE(c)) { /* c is a lead surrogate, get the real fcd16 */ if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { ++src; fcd16=_getFCD16FromSurrogatePair(fcd16, c2); } else { c2=0; fcd16=0; } } else { c2=0; } /* we are looking at the character (c, c2) at [prevSrc..src[ */ /* check the combining order, get the lead cc */ cc=(int16_t)(fcd16>>8); if(cc==0 || cc>=prevCC) { /* the order is ok */ if(cc==0) { decompStart=prevSrc; } prevCC=(int16_t)fcd16&0xff; /* just append (c, c2) */ length= c2==0 ? 1 : 2; if( (destIndex+length)<=destCapacity || /* attempt to grow the buffer */ (canGrow && (canGrow=growBuffer(context, &dest, &destCapacity, limit==NULL ? 2*destCapacity+length+20 : destCapacity+length+2*(limit-src)+20, destIndex))!=FALSE) ) { dest[destIndex++]=c; if(c2!=0) { dest[destIndex++]=c2; } } else { destIndex+=length; } } else { /* * back out the part of the source that we copied already but * is now going to be decomposed; * prevSrc is set to after what was copied */ destIndex-=(int32_t)(prevSrc-decompStart); /* * find the part of the source that needs to be decomposed; * to be safe and simple, decompose to before the next character with lead cc==0 */ src=_findSafeFCD(src, limit, fcd16); /* * the source text does not fulfill the conditions for FCD; * decompose and reorder a limited piece of the text */ prevCC=_decomposeFCD(decompStart, src, limit, dest, destIndex, destCapacity, canGrow, growBuffer, context); decompStart=src; } } return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode); } /* make NFC & NFKC ---------------------------------------------------------- */ enum { _STACK_BUFFER_CAPACITY=100 }; /* get the composition properties of the next character */ inline uint32_t _getNextCombining(UChar *&p, const UChar *limit, UChar &c, UChar &c2, uint16_t &combiningIndex, uint8_t &cc) { uint32_t norm32, combineFlags; c=*p++; norm32=_getNorm32(c); if((norm32&(_NORM_CC_MASK|_NORM_COMBINES_ANY))==0) { c2=0; combiningIndex=0; cc=0; return 0; } else { if(isNorm32Regular(norm32)) { c2=0; } else if(isNorm32HangulOrJamo(norm32)) { /* a compatibility decomposition contained Jamos */ c2=0; combiningIndex=(uint16_t)(0xfff0|(norm32>>_NORM_EXTRA_SHIFT)); cc=0; return norm32&_NORM_COMBINES_ANY; } else { /* c is a lead surrogate, get the real norm32 */ if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) { ++p; norm32=_getNorm32FromSurrogatePair(norm32, c2); } else { c2=0; combiningIndex=0; cc=0; return 0; } } combineFlags=norm32&_NORM_COMBINES_ANY; if(combineFlags!=0) { combiningIndex=*(_getExtraData(norm32)-1); } cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); return combineFlags; } } /* * given a composition-result starter (c, c2) - which means its cc==0, * it combines forward, it has extra data, its norm32!=0, * it is not a Hangul or Jamo, * get just its combineFwdIndex * * norm32(c) is special if and only if c2!=0 */ inline uint16_t _getCombiningIndexFromStarter(UChar c, UChar c2) { uint32_t norm32; norm32=_getNorm32(c); if(c2!=0) { norm32=_getNorm32FromSurrogatePair(norm32, c2); } return *(_getExtraData(norm32)-1); } /* * Find the recomposition result for * a forward-combining character * (specified with a pointer to its part of the combiningTable[]) * and a backward-combining character * (specified with its combineBackIndex). * * If these two characters combine, then set (value, value2) * with the code unit(s) of the composition character. * * Return value: * 0 do not combine * 1 combine * >1 combine, and the composition is a forward-combining starter * * See unormimp.h for a description of the composition table format. */ inline uint16_t _combine(const uint16_t *table, uint16_t combineBackIndex, uint16_t &value, uint16_t &value2) { uint16_t key; /* search in the starter's composition table */ for(;;) { key=*table++; if(key>=combineBackIndex) { break; } table+= *table&0x8000 ? 2 : 1; } /* mask off bit 15, the last-entry-in-the-list flag */ if((key&0x7fff)==combineBackIndex) { /* found! combine! */ value=*table; /* is the composition a starter that combines forward? */ key=(value&0x2000)+1; /* get the composition result code point from the variable-length result value */ if(value&0x8000) { if(value&0x4000) { /* surrogate pair composition result */ value=(value&0x3ff)|0xd800; value2=*(table+1); } else { /* BMP composition result U+2000..U+ffff */ value=*(table+1); value2=0; } } else { /* BMP composition result U+0000..U+1fff */ value&=0x1fff; value2=0; } return key; } else { /* not found */ return 0; } } /* * recompose the characters in [p..limit[ (which is canonically ordered), * adjust limit, and return the trailing cc * * since for NFKC we may get Jamos in decompositions, we need to * recompose those too * * note that recomposition never lengthens the text: * any character consists of either one or two code units; * a composition may contain at most one more code unit than the original starter, * while the combining mark that is removed has at least one code unit */ static uint8_t _recompose(UChar *p, UChar *&limit) { UChar *starter, *pRemove, *q, *r; uint32_t combineFlags; UChar c, c2; uint16_t combineFwdIndex, combineBackIndex; uint16_t result, value, value2; uint8_t cc, prevCC; UBool starterIsSupplementary; starter=NULL; /* no starter */ combineFwdIndex=0; /* will not be used until starter!=NULL - avoid compiler warnings */ starterIsSupplementary=FALSE; /* will not be used until starter!=NULL - avoid compiler warnings */ prevCC=0; for(;;) { combineFlags=_getNextCombining(p, limit, c, c2, combineBackIndex, cc); if((combineFlags&_NORM_COMBINES_BACK) && starter!=NULL) { if(combineBackIndex&0x8000) { /* c is a Jamo V/T, see if we can compose it with the previous character */ pRemove=NULL; /* NULL while no Hangul composition */ c2=*starter; if(combineBackIndex==0xfff2) { /* Jamo V, compose with previous Jamo L and following Jamo T */ c2=(UChar)(c2-JAMO_L_BASE); if(c2 * the rest of the loop body will reset starter to NULL; * technically, a composed Hangul syllable is a starter, but it * does not combine forward now that we have consumed all eligible Jamos; * for Jamo V/T, combineFlags does not contain _NORM_COMBINES_FWD */ } else if( /* the starter is not a Jamo V/T and */ !(combineFwdIndex&0x8000) && /* the combining mark is not blocked and */ (prevCC1) { combineFwdIndex=_getCombiningIndexFromStarter((UChar)value, (UChar)value2); } else { starter=NULL; } /* we combined and set prevCC, continue with looking for compositions */ continue; } } /* no combination this time */ prevCC=cc; if(p==limit) { return prevCC; } /* if (c, c2) did not combine, then check if it is a starter */ if(cc==0) { /* found a new starter */ if(combineFlags&_NORM_COMBINES_FWD) { /* it may combine with something, prepare for it */ if(c2==0) { starterIsSupplementary=FALSE; starter=p-1; } else { starterIsSupplementary=TRUE; starter=p-2; } combineFwdIndex=combineBackIndex; } else { /* it will not combine with anything */ starter=NULL; } } } } /* find the first true starter in [src..limit[ and return the pointer to it */ static const UChar * _findNextStarter(const UChar *src, const UChar *limit, uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe) { const UChar *p; uint32_t norm32, ccOrQCMask; int32_t length; UChar c, c2; uint8_t cc, trailCC; ccOrQCMask=_NORM_CC_MASK|qcMask; for(;;) { if(src==limit) { break; /* end of string */ } c=*src; if(c=2) { prevCC=_recompose(buffer, recomposeLimit); } /* return with a pointer to the recomposition and its length */ length=recomposeLimit-buffer; return buffer; } static int32_t _compose(UChar *&dest, int32_t &destCapacity, const UChar *src, int32_t srcLength, UBool compat, UBool /* ### TODO: need to do this? -- ignoreHangul -- ### */, UGrowBuffer *growBuffer, void *context, UErrorCode *pErrorCode) { UChar stackBuffer[_STACK_BUFFER_CAPACITY]; UChar *buffer; int32_t bufferCapacity; const UChar *limit, *prevSrc, *prevStarter; uint32_t norm32, ccOrQCMask, qcMask; int32_t destIndex, reorderStartIndex, length; UChar c, c2, minNoMaybe; uint8_t cc, prevCC; UBool canGrow; if(!_haveData(*pErrorCode)) { return 0; } if(!compat) { minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; qcMask=_NORM_QC_NFC; } else { minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; qcMask=_NORM_QC_NFKC; } /* initialize */ buffer=stackBuffer; bufferCapacity=_STACK_BUFFER_CAPACITY; /* * prevStarter points to the last character before the current one * that is a "true" starter with cc==0 and quick check "yes". * * prevStarter will be used instead of looking for a true starter * while incrementally decomposing [prevStarter..prevSrc[ * in _composePart(). Having a good prevStarter allows to just decompose * the entire [prevStarter..prevSrc[. * * This relies on the assumption that the decomposition of a true starter * also begins with a true starter. gennorm/store.c checks for this. */ prevStarter=src; ccOrQCMask=_NORM_CC_MASK|qcMask; destIndex=reorderStartIndex=0; prevCC=0; /* avoid compiler warnings */ norm32=0; c=0; /* do not attempt to grow if there is no growBuffer function or if it has failed before */ canGrow=(UBool)(growBuffer!=NULL); if(srcLength>=0) { /* string with length */ limit=src+srcLength; } else /* srcLength==-1 */ { /* zero-terminated string */ limit=NULL; } U_ALIGN_CODE(16); for(;;) { /* count code units below the minimum or with irrelevant data for the quick check */ prevSrc=src; if(limit==NULL) { while((c=*src)0) { /* c is a Jamo V/T, see if we can compose it with the previous character */ c2=*(prevSrc-1); if(isJamoVTNorm32JamoV(norm32)) { /* Jamo V, compose with previous Jamo L and following Jamo T */ c2=(UChar)(c2-JAMO_L_BASE); if(c2>_NORM_CC_SHIFT); } else { const UChar *p; /* * find appropriate boundaries around this character, * decompose the source text from between the boundaries, * and recompose it * * this puts the intermediate text into the side buffer because * it might be longer than the recomposition end result, * or the destination buffer may be too short or missing * * note that destIndex may be adjusted backwards to account * for source text that passed the quick check but needed to * take part in the recomposition */ p=_composePart(stackBuffer, buffer, bufferCapacity, length, prevStarter, /* in/out, will be set to the following true starter */ prevSrc, src, limit, norm32, qcMask, prevCC, /* output */ destIndex, /* will be adjusted */ pErrorCode); if(p==NULL) { destIndex=0; /* an error occurred (out of memory) */ break; } /* append the recomposed buffer contents to the destination buffer */ if( (destIndex+length)<=destCapacity || /* attempt to grow the buffer */ (canGrow && (canGrow=growBuffer(context, &dest, &destCapacity, limit==NULL ? 2*destCapacity+length+20 : destCapacity+length+2*(limit-src)+20, destIndex))!=FALSE) ) { while(length>0) { dest[destIndex++]=*p++; --length; } } else { /* buffer overflow */ /* keep incrementing the destIndex for preflighting */ destIndex+=length; } src=prevStarter; continue; } } /* append the single code point (c, c2) to the destination buffer */ if( (destIndex+length)<=destCapacity || /* attempt to grow the buffer */ (canGrow && (canGrow=growBuffer(context, &dest, &destCapacity, limit==NULL ? 2*destCapacity+length+20 : destCapacity+length+2*(limit-src)+20, destIndex))!=FALSE) ) { if(cc!=0 && cc0) || src==NULL || srcLength<-1 ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } /* check for overlapping src and destination */ if( dest!=NULL && ((src>=dest && src<(dest+destCapacity)) || (srcLength>0 && dest>=src && dest<(src+srcLength))) ) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } return unorm_internalNormalize(&dest, &destCapacity, src, srcLength, mode, (UBool)((option&UNORM_IGNORE_HANGUL)!=0), NULL, NULL, pErrorCode); } /* iteration functions ------------------------------------------------------ */ /* * These iteration functions are the core implementations of the * Normalizer class iteration API. * They read from a CharacterIterator into their own buffer * and normalize into the Normalizer iteration buffer. * Normalizer itself then iterates over its buffer until that needs to be * filled again. */ /* backward iteration ------------------------------------------------------- */ /* * read backwards and get norm32 * return 0 if the character is 0) { destLength=unorm_internalNormalize(&dest, &destCapacity, buffer+startIndex, bufferLength, mode, ignoreHangul, growBuffer, context, pErrorCode); } else { destLength=0; } /* cleanup */ if(buffer!=stackBuffer) { uprv_free(buffer); } return destLength; } /* forward iteration -------------------------------------------------------- */ /* * read forward and get norm32 * return 0 if the character is 0) { destLength=unorm_internalNormalize(&dest, &destCapacity, buffer, bufferLength, mode, ignoreHangul, growBuffer, context, pErrorCode); } else { destLength=0; } /* cleanup */ if(buffer!=stackBuffer) { uprv_free(buffer); } return destLength; } /* * ### TODO: check if NF*D and FCD iteration finds optimal boundaries * and if not, how hard it would be to improve it. * For example, see _findSafeFCD(). */