/* ****************************************************************************** * Copyright (C) 1999-2003, International Business Machines Corporation and * * others. All Rights Reserved. * ****************************************************************************** * * File unistr.cpp * * Modification History: * * Date Name Description * 09/25/98 stephen Creation. * 04/20/99 stephen Overhauled per 4/16 code review. * 07/09/99 stephen Renamed {hi,lo},{byte,word} to icu_X for HP/UX * 11/18/99 aliu Added handleReplaceBetween() to make inherit from * Replaceable. * 06/25/01 grhoten Removed the dependency on iostream ****************************************************************************** */ #include "unicode/utypes.h" #include "unicode/putil.h" #include "unicode/locid.h" #include "cstring.h" #include "cmemory.h" #include "unicode/ustring.h" #include "unicode/unistr.h" #include "unicode/uchar.h" #include "unicode/ucnv.h" #include "unicode/ubrk.h" #include "uhash.h" #include "ustr_imp.h" #include "unormimp.h" #include "umutex.h" #if 0 #if U_IOSTREAM_SOURCE >= 199711 #include using namespace std; #elif U_IOSTREAM_SOURCE >= 198506 #include #endif //DEBUGGING void print(const UnicodeString& s, const char *name) { UChar c; cout << name << ":|"; for(int i = 0; i < s.length(); ++i) { c = s[i]; if(c>= 0x007E || c < 0x0020) cout << "[0x" << hex << s[i] << "]"; else cout << (char) s[i]; } cout << '|' << endl; } void print(const UChar *s, int32_t len, const char *name) { UChar c; cout << name << ":|"; for(int i = 0; i < len; ++i) { c = s[i]; if(c>= 0x007E || c < 0x0020) cout << "[0x" << hex << s[i] << "]"; else cout << (char) s[i]; } cout << '|' << endl; } // END DEBUGGING #endif // Local function definitions for now // need to copy areas that may overlap static inline void us_arrayCopy(const UChar *src, int32_t srcStart, UChar *dst, int32_t dstStart, int32_t count) { if(count>0) { uprv_memmove(dst+dstStart, src+srcStart, (size_t)(count*sizeof(*src))); } } // u_unescapeAt() callback to get a UChar from a UnicodeString U_CDECL_BEGIN static UChar U_CALLCONV UnicodeString_charAt(int32_t offset, void *context) { return ((UnicodeString*) context)->charAt(offset); } U_CDECL_END U_NAMESPACE_BEGIN /* The Replaceable virtual destructor can't be defined in the header due to how AIX works with multiple definitions of virtual functions. */ Replaceable::~Replaceable() {} UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UnicodeString) //======================================== // Reference Counting functions, put at top of file so that optimizing compilers // have a chance to automatically inline. //======================================== void UnicodeString::addRef() { umtx_atomic_inc((int32_t *)fArray - 1);} int32_t UnicodeString::removeRef() { return umtx_atomic_dec((int32_t *)fArray - 1);} int32_t UnicodeString::refCount() const { umtx_lock(NULL); // Note: without the lock to force a memory barrier, we might see a very // stale value on some multi-processor systems. int32_t count = *((int32_t *)fArray - 1); umtx_unlock(NULL); return count; } void UnicodeString::releaseArray() { if((fFlags & kRefCounted) && removeRef() == 0) { uprv_free((int32_t *)fArray - 1); } } //======================================== // Constructors //======================================== UnicodeString::UnicodeString() : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) {} UnicodeString::UnicodeString(int32_t capacity, UChar32 c, int32_t count) : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(0), fFlags(0) { if(count <= 0 || (uint32_t)c > 0x10ffff) { // just allocate and do not do anything else allocate(capacity); } else { // count > 0, allocate and fill the new string with count c's int32_t unitCount = UTF_CHAR_LENGTH(c), length = count * unitCount; if(capacity < length) { capacity = length; } if(allocate(capacity)) { int32_t i = 0; // fill the new string with c if(unitCount == 1) { // fill with length UChars while(i < length) { fArray[i++] = (UChar)c; } } else { // get the code units for c UChar units[UTF_MAX_CHAR_LENGTH]; UTF_APPEND_CHAR_UNSAFE(units, i, c); // now it must be i==unitCount i = 0; // for Unicode, unitCount can only be 1, 2, 3, or 4 // 1 is handled above while(i < length) { int32_t unitIdx = 0; while(unitIdx < unitCount) { fArray[i++]=units[unitIdx++]; } } } } fLength = length; } } UnicodeString::UnicodeString(UChar ch) : fLength(1), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { fStackBuffer[0] = ch; } UnicodeString::UnicodeString(UChar32 ch) : fLength(1), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { int32_t i = 0; UBool isError = FALSE; U16_APPEND(fStackBuffer, i, US_STACKBUF_SIZE, ch, isError); fLength = i; } UnicodeString::UnicodeString(const UChar *text) : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { doReplace(0, 0, text, 0, -1); } UnicodeString::UnicodeString(const UChar *text, int32_t textLength) : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { doReplace(0, 0, text, 0, textLength); } UnicodeString::UnicodeString(UBool isTerminated, const UChar *text, int32_t textLength) : fLength(textLength), fCapacity(isTerminated ? textLength + 1 : textLength), fArray((UChar *)text), fFlags(kReadonlyAlias) { if(text == NULL) { // treat as an empty string, do not alias fLength = 0; fCapacity = US_STACKBUF_SIZE; fArray = fStackBuffer; fFlags = kShortString; } else if(textLength < -1 || (textLength == -1 && !isTerminated) || (textLength >= 0 && isTerminated && text[textLength] != 0) ) { setToBogus(); } else if(textLength == -1) { // text is terminated, or else it would have failed the above test fLength = u_strlen(text); fCapacity = fLength + 1; } } UnicodeString::UnicodeString(UChar *buff, int32_t buffLength, int32_t buffCapacity) : fLength(buffLength), fCapacity(buffCapacity), fArray(buff), fFlags(kWritableAlias) { if(buff == NULL) { // treat as an empty string, do not alias fLength = 0; fCapacity = US_STACKBUF_SIZE; fArray = fStackBuffer; fFlags = kShortString; } else if(buffLength < -1 || buffLength > buffCapacity) { setToBogus(); } else if(buffLength == -1) { // fLength = u_strlen(buff); but do not look beyond buffCapacity const UChar *p = buff, *limit = buff + buffCapacity; while(p != limit && *p != 0) { ++p; } fLength = (int32_t)(p - buff); } } UnicodeString::UnicodeString(const char *codepageData, const char *codepage) : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { if(codepageData != 0) { doCodepageCreate(codepageData, (int32_t)uprv_strlen(codepageData), codepage); } } UnicodeString::UnicodeString(const char *codepageData, int32_t dataLength, const char *codepage) : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { if(codepageData != 0) { doCodepageCreate(codepageData, dataLength, codepage); } } UnicodeString::UnicodeString(const char *src, int32_t srcLength, UConverter *cnv, UErrorCode &errorCode) : fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { if(U_SUCCESS(errorCode)) { // check arguments if(src==NULL) { // treat as an empty string, do nothing more } else if(srcLength<-1) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { // get input length if(srcLength==-1) { srcLength=(int32_t)uprv_strlen(src); } if(srcLength>0) { if(cnv!=0) { // use the provided converter ucnv_resetToUnicode(cnv); doCodepageCreate(src, srcLength, cnv, errorCode); } else { // use the default converter cnv=u_getDefaultConverter(&errorCode); doCodepageCreate(src, srcLength, cnv, errorCode); u_releaseDefaultConverter(cnv); } } } if(U_FAILURE(errorCode)) { setToBogus(); } } } UnicodeString::UnicodeString(const UnicodeString& that) : Replaceable(), fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { copyFrom(that); } UnicodeString::UnicodeString(const UnicodeString& that, int32_t srcStart) : Replaceable(), fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { setTo(that, srcStart); } UnicodeString::UnicodeString(const UnicodeString& that, int32_t srcStart, int32_t srcLength) : Replaceable(), fLength(0), fCapacity(US_STACKBUF_SIZE), fArray(fStackBuffer), fFlags(kShortString) { setTo(that, srcStart, srcLength); } // Replaceable base class clone() default implementation, does not clone Replaceable * Replaceable::clone() const { return NULL; } // UnicodeString overrides clone() with a real implementation Replaceable * UnicodeString::clone() const { return new UnicodeString(*this); } //======================================== // array allocation //======================================== UBool UnicodeString::allocate(int32_t capacity) { if(capacity <= US_STACKBUF_SIZE) { fArray = fStackBuffer; fCapacity = US_STACKBUF_SIZE; fFlags = kShortString; } else { // count bytes for the refCounter and the string capacity, and // round up to a multiple of 16; then divide by 4 and allocate int32_t's // to be safely aligned for the refCount int32_t words = (int32_t)(((sizeof(int32_t) + capacity * U_SIZEOF_UCHAR + 15) & ~15) >> 2); int32_t *array = (int32_t*) uprv_malloc( sizeof(int32_t) * words ); if(array != 0) { // set initial refCount and point behind the refCount *array++ = 1; // have fArray point to the first UChar fArray = (UChar *)array; fCapacity = (int32_t)((words - 1) * (sizeof(int32_t) / U_SIZEOF_UCHAR)); fFlags = kLongString; } else { fLength = 0; fCapacity = 0; fFlags = kIsBogus; return FALSE; } } return TRUE; } //======================================== // Destructor //======================================== UnicodeString::~UnicodeString() { releaseArray(); } //======================================== // Assignment //======================================== UnicodeString & UnicodeString::operator=(const UnicodeString &src) { return copyFrom(src); } UnicodeString & UnicodeString::fastCopyFrom(const UnicodeString &src) { return copyFrom(src, TRUE); } UnicodeString & UnicodeString::copyFrom(const UnicodeString &src, UBool fastCopy) { // if assigning to ourselves, do nothing if(this == 0 || this == &src) { return *this; } // is the right side bogus? if(&src == 0 || src.isBogus()) { setToBogus(); return *this; } // delete the current contents releaseArray(); // we always copy the length fLength = src.fLength; if(fLength == 0) { // empty string - use the stack buffer fArray = fStackBuffer; fCapacity = US_STACKBUF_SIZE; fFlags = kShortString; return *this; } // fLength>0 and not an "open" src.getBuffer(minCapacity) switch(src.fFlags) { case kShortString: // short string using the stack buffer, do the same fArray = fStackBuffer; fCapacity = US_STACKBUF_SIZE; fFlags = kShortString; uprv_memcpy(fStackBuffer, src.fArray, fLength * U_SIZEOF_UCHAR); break; case kLongString: // src uses a refCounted string buffer, use that buffer with refCount // src is const, use a cast - we don't really change it ((UnicodeString &)src).addRef(); // copy all fields, share the reference-counted buffer fArray = src.fArray; fCapacity = src.fCapacity; fFlags = src.fFlags; break; case kReadonlyAlias: if(fastCopy) { // src is a readonly alias, do the same // -> maintain the readonly alias as such fArray = src.fArray; fCapacity = src.fCapacity; fFlags = src.fFlags; break; } // else if(!fastCopy) fall through to case kWritableAlias // -> allocate a new buffer and copy the contents case kWritableAlias: // src is a writable alias; we make a copy of that instead if(allocate(fLength)) { uprv_memcpy(fArray, src.fArray, fLength * U_SIZEOF_UCHAR); break; } // if there is not enough memory, then fall through to setting to bogus default: // if src is bogus, set ourselves to bogus // do not call setToBogus() here because fArray and fFlags are not consistent here fArray = 0; fLength = 0; fCapacity = 0; fFlags = kIsBogus; break; } return *this; } //======================================== // Miscellaneous operations //======================================== UnicodeString UnicodeString::unescape() const { UnicodeString result; for (int32_t i=0; i 0 && chars != srcChars) { int32_t result; # if U_IS_BIG_ENDIAN // big-endian: byte comparison works result = uprv_memcmp(chars, srcChars, minLength * sizeof(UChar)); if(result != 0) { return (int8_t)(result >> 15 | 1); } # else // little-endian: compare UChar units do { result = ((int32_t)*(chars++) - (int32_t)*(srcChars++)); if(result != 0) { return (int8_t)(result >> 15 | 1); } } while(--minLength > 0); # endif } return lengthResult; } /* String compare in code point order - doCompare() compares in code unit order. */ int8_t UnicodeString::doCompareCodePointOrder(int32_t start, int32_t length, const UChar *srcChars, int32_t srcStart, int32_t srcLength) const { // compare illegal string values // treat const UChar *srcChars==NULL as an empty string if(isBogus()) { return -1; } // pin indices to legal values pinIndices(start, length); if(srcChars == NULL) { srcStart = srcLength = 0; } int32_t diff = uprv_strCompare(fArray + start, length, srcChars + srcStart, srcLength, FALSE, TRUE); /* translate the 32-bit result into an 8-bit one */ if(diff!=0) { return (int8_t)(diff >> 15 | 1); } else { return 0; } } int8_t UnicodeString::doCaseCompare(int32_t start, int32_t length, const UChar *srcChars, int32_t srcStart, int32_t srcLength, uint32_t options) const { // compare illegal string values // treat const UChar *srcChars==NULL as an empty string if(isBogus()) { return -1; } // pin indices to legal values pinIndices(start, length); if(srcChars == NULL) { srcStart = srcLength = 0; } // get the correct pointer const UChar *chars = getArrayStart(); chars += start; srcChars += srcStart; if(chars != srcChars) { UErrorCode errorCode=U_ZERO_ERROR; int32_t result=unorm_cmpEquivFold(chars, length, srcChars, srcLength, options|U_COMPARE_IGNORE_CASE, &errorCode); if(result!=0) { return (int8_t)(result >> 24 | 1); } } else { // get the srcLength if necessary if(srcLength < 0) { srcLength = u_strlen(srcChars + srcStart); } if(length != srcLength) { return (int8_t)((length - srcLength) >> 24 | 1); } } return 0; } int32_t UnicodeString::getLength() const { return length(); } UChar UnicodeString::getCharAt(int32_t offset) const { return charAt(offset); } UChar32 UnicodeString::getChar32At(int32_t offset) const { return char32At(offset); } int32_t UnicodeString::countChar32(int32_t start, int32_t length) const { pinIndices(start, length); // if(isBogus()) then fArray==0 and start==0 - u_countChar32() checks for NULL return u_countChar32(fArray+start, length); } UBool UnicodeString::hasMoreChar32Than(int32_t start, int32_t length, int32_t number) const { pinIndices(start, length); // if(isBogus()) then fArray==0 and start==0 - u_strHasMoreChar32Than() checks for NULL return u_strHasMoreChar32Than(fArray+start, length, number); } int32_t UnicodeString::moveIndex32(int32_t index, int32_t delta) const { // pin index if(index<0) { index=0; } else if(index>fLength) { index=fLength; } if(delta>0) { UTF_FWD_N(fArray, index, fLength, delta); } else { UTF_BACK_N(fArray, 0, index, -delta); } return index; } void UnicodeString::doExtract(int32_t start, int32_t length, UChar *dst, int32_t dstStart) const { // pin indices to legal values pinIndices(start, length); // do not copy anything if we alias dst itself if(fArray + start != dst + dstStart) { us_arrayCopy(getArrayStart(), start, dst, dstStart, length); } } int32_t UnicodeString::extract(UChar *dest, int32_t destCapacity, UErrorCode &errorCode) const { if(U_SUCCESS(errorCode)) { if(isBogus() || destCapacity<0 || (destCapacity>0 && dest==0)) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { if(fLength>0 && fLength<=destCapacity && fArray!=dest) { uprv_memcpy(dest, fArray, fLength*U_SIZEOF_UCHAR); } return u_terminateUChars(dest, destCapacity, fLength, &errorCode); } } return fLength; } int32_t UnicodeString::indexOf(const UChar *srcChars, int32_t srcStart, int32_t srcLength, int32_t start, int32_t length) const { if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength == 0) { return -1; } // UnicodeString does not find empty substrings if(srcLength < 0 && srcChars[srcStart] == 0) { return -1; } // get the indices within bounds pinIndices(start, length); // find the first occurrence of the substring const UChar *match = u_strFindFirst(fArray + start, length, srcChars + srcStart, srcLength); if(match == NULL) { return -1; } else { return match - fArray; } } int32_t UnicodeString::doIndexOf(UChar c, int32_t start, int32_t length) const { // pin indices pinIndices(start, length); // find the first occurrence of c const UChar *match = u_memchr(fArray + start, c, length); if(match == NULL) { return -1; } else { return match - fArray; } } int32_t UnicodeString::doIndexOf(UChar32 c, int32_t start, int32_t length) const { // pin indices pinIndices(start, length); // find the first occurrence of c const UChar *match = u_memchr32(fArray + start, c, length); if(match == NULL) { return -1; } else { return match - fArray; } } int32_t UnicodeString::lastIndexOf(const UChar *srcChars, int32_t srcStart, int32_t srcLength, int32_t start, int32_t length) const { if(isBogus() || srcChars == 0 || srcStart < 0 || srcLength == 0) { return -1; } // UnicodeString does not find empty substrings if(srcLength < 0 && srcChars[srcStart] == 0) { return -1; } // get the indices within bounds pinIndices(start, length); // find the last occurrence of the substring const UChar *match = u_strFindLast(fArray + start, length, srcChars + srcStart, srcLength); if(match == NULL) { return -1; } else { return match - fArray; } } int32_t UnicodeString::doLastIndexOf(UChar c, int32_t start, int32_t length) const { if(isBogus()) { return -1; } // pin indices pinIndices(start, length); // find the last occurrence of c const UChar *match = u_memrchr(fArray + start, c, length); if(match == NULL) { return -1; } else { return match - fArray; } } int32_t UnicodeString::doLastIndexOf(UChar32 c, int32_t start, int32_t length) const { // pin indices pinIndices(start, length); // find the last occurrence of c const UChar *match = u_memrchr32(fArray + start, c, length); if(match == NULL) { return -1; } else { return match - fArray; } } //======================================== // Write implementation //======================================== UnicodeString& UnicodeString::findAndReplace(int32_t start, int32_t length, const UnicodeString& oldText, int32_t oldStart, int32_t oldLength, const UnicodeString& newText, int32_t newStart, int32_t newLength) { if(isBogus() || oldText.isBogus() || newText.isBogus()) { return *this; } pinIndices(start, length); oldText.pinIndices(oldStart, oldLength); newText.pinIndices(newStart, newLength); if(oldLength == 0) { return *this; } while(length > 0 && length >= oldLength) { int32_t pos = indexOf(oldText, oldStart, oldLength, start, length); if(pos < 0) { // no more oldText's here: done break; } else { // we found oldText, replace it by newText and go beyond it replace(pos, oldLength, newText, newStart, newLength); length -= pos + oldLength - start; start = pos + newLength; } } return *this; } void UnicodeString::setToBogus() { releaseArray(); fArray = 0; fCapacity = fLength = 0; fFlags = kIsBogus; } // turn a bogus string into an empty one void UnicodeString::unBogus() { if(fFlags & kIsBogus) { fArray = fStackBuffer; fLength = 0; fCapacity = US_STACKBUF_SIZE; fFlags = kShortString; } } // setTo() analogous to the readonly-aliasing constructor with the same signature UnicodeString & UnicodeString::setTo(UBool isTerminated, const UChar *text, int32_t textLength) { if(fFlags & kOpenGetBuffer) { // do not modify a string that has an "open" getBuffer(minCapacity) return *this; } if(text == NULL) { // treat as an empty string, do not alias releaseArray(); fLength = 0; fCapacity = US_STACKBUF_SIZE; fArray = fStackBuffer; fFlags = kShortString; return *this; } if( textLength < -1 || (textLength == -1 && !isTerminated) || (textLength >= 0 && isTerminated && text[textLength] != 0) ) { setToBogus(); return *this; } releaseArray(); fArray = (UChar *)text; if(textLength != -1) { fLength = textLength; fCapacity = isTerminated ? fLength + 1 : fLength; } else { // text is terminated, or else it would have failed the above test fLength = u_strlen(text); fCapacity = fLength + 1; } fFlags = kReadonlyAlias; return *this; } // setTo() analogous to the writable-aliasing constructor with the same signature UnicodeString & UnicodeString::setTo(UChar *buffer, int32_t buffLength, int32_t buffCapacity) { if(fFlags & kOpenGetBuffer) { // do not modify a string that has an "open" getBuffer(minCapacity) return *this; } if(buffer == NULL) { // treat as an empty string, do not alias releaseArray(); fLength = 0; fCapacity = US_STACKBUF_SIZE; fArray = fStackBuffer; fFlags = kShortString; return *this; } if(buffLength < 0 || buffLength > buffCapacity) { setToBogus(); return *this; } releaseArray(); fArray = buffer; fLength = buffLength; fCapacity = buffCapacity; fFlags = kWritableAlias; return *this; } UnicodeString& UnicodeString::setCharAt(int32_t offset, UChar c) { if(cloneArrayIfNeeded() && fLength > 0) { if(offset < 0) { offset = 0; } else if(offset >= fLength) { offset = fLength - 1; } fArray[offset] = c; } return *this; } /* * Implement argument checking and buffer handling * for string case mapping as a common function. */ enum { TO_LOWER, TO_UPPER, TO_TITLE, FOLD_CASE }; UnicodeString & UnicodeString::toLower() { return caseMap(0, Locale::getDefault(), 0, TO_LOWER); } UnicodeString & UnicodeString::toLower(const Locale &locale) { return caseMap(0, locale, 0, TO_LOWER); } UnicodeString & UnicodeString::toUpper() { return caseMap(0, Locale::getDefault(), 0, TO_UPPER); } UnicodeString & UnicodeString::toUpper(const Locale &locale) { return caseMap(0, locale, 0, TO_UPPER); } #if !UCONFIG_NO_BREAK_ITERATION UnicodeString & UnicodeString::toTitle(BreakIterator *titleIter) { return caseMap(titleIter, Locale::getDefault(), 0, TO_TITLE); } UnicodeString & UnicodeString::toTitle(BreakIterator *titleIter, const Locale &locale) { return caseMap(titleIter, locale, 0, TO_TITLE); } #endif UnicodeString & UnicodeString::foldCase(uint32_t options) { return caseMap(0, Locale::getDefault(), options, FOLD_CASE); } UnicodeString & UnicodeString::caseMap(BreakIterator *titleIter, const Locale& locale, uint32_t options, int32_t toWhichCase) { if(fLength <= 0) { // nothing to do return *this; } // We need to allocate a new buffer for the internal string case mapping function. // This is very similar to how doReplace() below keeps the old array pointer // and deletes the old array itself after it is done. // In addition, we are forcing cloneArrayIfNeeded() to always allocate a new array. UChar *oldArray = fArray; int32_t oldLength = fLength; int32_t *bufferToDelete = 0; // Make sure that if the string is in fStackBuffer we do not overwrite it! int32_t capacity; if(fLength <= US_STACKBUF_SIZE) { if(fArray == fStackBuffer) { capacity = 2 * US_STACKBUF_SIZE; // make sure that cloneArrayIfNeeded() allocates a new buffer } else { capacity = US_STACKBUF_SIZE; } } else { capacity = fLength + 20; } if(!cloneArrayIfNeeded(capacity, capacity, FALSE, &bufferToDelete, TRUE)) { return *this; } UErrorCode errorCode; #if !UCONFIG_NO_BREAK_ITERATION // set up the titlecasing break iterator UBreakIterator *cTitleIter = 0; if(toWhichCase == TO_TITLE) { if(titleIter != 0) { cTitleIter = (UBreakIterator *)titleIter; } else { errorCode = U_ZERO_ERROR; cTitleIter = ubrk_open(UBRK_WORD, locale.getName(), oldArray, oldLength, &errorCode); if(U_FAILURE(errorCode)) { uprv_free(bufferToDelete); setToBogus(); return *this; } } } #endif // Case-map, and if the result is too long, then reallocate and repeat. do { errorCode = U_ZERO_ERROR; if(toWhichCase==TO_LOWER) { fLength = u_internalStrToLower(fArray, fCapacity, oldArray, oldLength, 0, oldLength, locale.getName(), &errorCode); } else if(toWhichCase==TO_UPPER) { fLength = u_internalStrToUpper(fArray, fCapacity, oldArray, oldLength, locale.getName(), &errorCode); #if !UCONFIG_NO_BREAK_ITERATION } else if(toWhichCase==TO_TITLE) { fLength = u_internalStrToTitle(fArray, fCapacity, oldArray, oldLength, cTitleIter, locale.getName(), &errorCode); #endif } else { fLength = u_internalStrFoldCase(fArray, fCapacity, oldArray, oldLength, options, &errorCode); } } while(errorCode==U_BUFFER_OVERFLOW_ERROR && cloneArrayIfNeeded(fLength, fLength, FALSE)); #if !UCONFIG_NO_BREAK_ITERATION if(cTitleIter != 0 && titleIter == 0) { ubrk_close(cTitleIter); } #endif if (bufferToDelete) { uprv_free(bufferToDelete); } if(U_FAILURE(errorCode)) { setToBogus(); } return *this; } UnicodeString& UnicodeString::doReplace( int32_t start, int32_t length, const UnicodeString& src, int32_t srcStart, int32_t srcLength) { if(!src.isBogus()) { // pin the indices to legal values src.pinIndices(srcStart, srcLength); // get the characters from src // and replace the range in ourselves with them return doReplace(start, length, src.getArrayStart(), srcStart, srcLength); } else { // remove the range return doReplace(start, length, 0, 0, 0); } } UnicodeString& UnicodeString::doReplace(int32_t start, int32_t length, const UChar *srcChars, int32_t srcStart, int32_t srcLength) { if(isBogus()) { return *this; } if(srcChars == 0) { srcStart = srcLength = 0; } else if(srcLength < 0) { // get the srcLength if necessary srcLength = u_strlen(srcChars + srcStart); } int32_t *bufferToDelete = 0; // the following may change fArray but will not copy the current contents; // therefore we need to keep the current fArray UChar *oldArray = fArray; int32_t oldLength = fLength; // pin the indices to legal values pinIndices(start, length); // calculate the size of the string after the replace int32_t newSize = oldLength - length + srcLength; // clone our array and allocate a bigger array if needed if(!cloneArrayIfNeeded(newSize, newSize + (newSize >> 2) + kGrowSize, FALSE, &bufferToDelete) ) { return *this; } // now do the replace if(fArray != oldArray) { // if fArray changed, then we need to copy everything except what will change us_arrayCopy(oldArray, 0, fArray, 0, start); us_arrayCopy(oldArray, start + length, fArray, start + srcLength, oldLength - (start + length)); } else if(length != srcLength) { // fArray did not change; copy only the portion that isn't changing, leaving a hole us_arrayCopy(oldArray, start + length, fArray, start + srcLength, oldLength - (start + length)); } // now fill in the hole with the new string us_arrayCopy(srcChars, srcStart, getArrayStart(), start, srcLength); fLength = newSize; // delayed delete in case srcChars == fArray when we started, and // to keep oldArray alive for the above operations if (bufferToDelete) { uprv_free(bufferToDelete); } return *this; } /** * Replaceable API */ void UnicodeString::handleReplaceBetween(int32_t start, int32_t limit, const UnicodeString& text) { replaceBetween(start, limit, text); } /** * Replaceable API */ void UnicodeString::copy(int32_t start, int32_t limit, int32_t dest) { if (limit <= start) { return; // Nothing to do; avoid bogus malloc call } UChar* text = (UChar*) uprv_malloc( sizeof(UChar) * (limit - start) ); extractBetween(start, limit, text, 0); insert(dest, text, 0, limit - start); uprv_free(text); } /** * Replaceable API * * NOTE: This is for the Replaceable class. There is no rep.cpp, * so we implement this function here. */ UBool Replaceable::hasMetaData() const { return TRUE; } /** * Replaceable API */ UBool UnicodeString::hasMetaData() const { return FALSE; } UnicodeString& UnicodeString::doReverse(int32_t start, int32_t length) { if(fLength <= 1 || !cloneArrayIfNeeded()) { return *this; } // pin the indices to legal values pinIndices(start, length); UChar *left = getArrayStart() + start; UChar *right = getArrayStart() + start + length; UChar swap; UBool hasSupplementary = FALSE; while(left < --right) { hasSupplementary |= (UBool)UTF_IS_LEAD(swap = *left); hasSupplementary |= (UBool)UTF_IS_LEAD(*left++ = *right); *right = swap; } /* if there are supplementary code points in the reversed range, then re-swap their surrogates */ if(hasSupplementary) { UChar swap2; left = getArrayStart() + start; right = getArrayStart() + start + length - 1; // -1 so that we can look at *(left+1) if left= targetLength || !cloneArrayIfNeeded(targetLength)) { return FALSE; } else { // move contents up by padding width int32_t start = targetLength - fLength; us_arrayCopy(fArray, 0, fArray, start, fLength); // fill in padding character while(--start >= 0) { fArray[start] = padChar; } fLength = targetLength; return TRUE; } } UBool UnicodeString::padTrailing(int32_t targetLength, UChar padChar) { if(fLength >= targetLength || !cloneArrayIfNeeded(targetLength)) { return FALSE; } else { // fill in padding character int32_t length = targetLength; while(--length >= fLength) { fArray[length] = padChar; } fLength = targetLength; return TRUE; } } UnicodeString& UnicodeString::trim() { if(isBogus()) { return *this; } UChar32 c; int32_t i = fLength, length; // first cut off trailing white space for(;;) { length = i; if(i <= 0) { break; } UTF_PREV_CHAR(fArray, 0, i, c); if(!(c == 0x20 || u_isWhitespace(c))) { break; } } if(length < fLength) { fLength = length; } // find leading white space int32_t start; i = 0; for(;;) { start = i; if(i >= length) { break; } UTF_NEXT_CHAR(fArray, i, length, c); if(!(c == 0x20 || u_isWhitespace(c))) { break; } } // move string forward over leading white space if(start > 0) { doReplace(0, start, 0, 0, 0); } return *this; } //======================================== // Hashing //======================================== int32_t UnicodeString::doHashCode() const { /* Delegate hash computation to uhash. This makes UnicodeString * hashing consistent with UChar* hashing. */ int32_t hashCode = uhash_hashUCharsN(getArrayStart(), fLength); if (hashCode == kInvalidHashCode) { hashCode = kEmptyHashCode; } return hashCode; } //======================================== // Codeset conversion //======================================== int32_t UnicodeString::extract(int32_t start, int32_t length, char *target, uint32_t dstSize, const char *codepage) const { // if the arguments are illegal, then do nothing if(/*dstSize < 0 || */(dstSize > 0 && target == 0)) { return 0; } // pin the indices to legal values pinIndices(start, length); // create the converter UConverter *converter; UErrorCode status = U_ZERO_ERROR; // just write the NUL if the string length is 0 if(length == 0) { if(dstSize >= 0x80000000) { // careful: dstSize is unsigned! (0xffffffff means "unlimited") // make sure that the NUL-termination works (takes int32_t) dstSize=0x7fffffff; } return u_terminateChars(target, dstSize, 0, &status); } // if the codepage is the default, use our cache // if it is an empty string, then use the "invariant character" conversion if (codepage == 0) { converter = u_getDefaultConverter(&status); } else if (*codepage == 0) { // use the "invariant characters" conversion int32_t destLength; // careful: dstSize is unsigned! (0xffffffff means "unlimited") if(dstSize >= 0x80000000) { destLength = length; // make sure that the NUL-termination works (takes int32_t) dstSize=0x7fffffff; } else if(length <= (int32_t)dstSize) { destLength = length; } else { destLength = (int32_t)dstSize; } u_UCharsToChars(getArrayStart() + start, target, destLength); return u_terminateChars(target, (int32_t)dstSize, length, &status); } else { converter = ucnv_open(codepage, &status); } length = doExtract(start, length, target, (int32_t)dstSize, converter, status); // close the converter if (codepage == 0) { u_releaseDefaultConverter(converter); } else { ucnv_close(converter); } return length; } int32_t UnicodeString::extract(char *dest, int32_t destCapacity, UConverter *cnv, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { return 0; } if(isBogus() || destCapacity<0 || (destCapacity>0 && dest==0)) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; return 0; } // nothing to do? if(fLength<=0) { return u_terminateChars(dest, destCapacity, 0, &errorCode); } // get the converter UBool isDefaultConverter; if(cnv==0) { isDefaultConverter=TRUE; cnv=u_getDefaultConverter(&errorCode); if(U_FAILURE(errorCode)) { return 0; } } else { isDefaultConverter=FALSE; ucnv_resetFromUnicode(cnv); } // convert int32_t length=doExtract(0, fLength, dest, destCapacity, cnv, errorCode); // release the converter if(isDefaultConverter) { u_releaseDefaultConverter(cnv); } return length; } void UnicodeString::extractBetween(int32_t start, int32_t limit, UnicodeString& target) const { doExtract(start, limit - start, target); } int32_t UnicodeString::doExtract(int32_t start, int32_t length, char *dest, int32_t destCapacity, UConverter *cnv, UErrorCode &errorCode) const { if(U_FAILURE(errorCode)) { if(destCapacity!=0) { *dest=0; } return 0; } const UChar *src=fArray+start, *srcLimit=src+length; char *originalDest=dest; const char *destLimit; if(destCapacity==0) { destLimit=dest=0; } else if(destCapacity==-1) { // Pin the limit to U_MAX_PTR if the "magic" destCapacity is used. destLimit=(char*)U_MAX_PTR(dest); // for NUL-termination, translate into highest int32_t destCapacity=0x7fffffff; } else { destLimit=dest+destCapacity; } // perform the conversion ucnv_fromUnicode(cnv, &dest, destLimit, &src, srcLimit, 0, TRUE, &errorCode); length=(int32_t)(dest-originalDest); // if an overflow occurs, then get the preflighting length if(errorCode==U_BUFFER_OVERFLOW_ERROR) { char buffer[1024]; destLimit=buffer+sizeof(buffer); do { dest=buffer; errorCode=U_ZERO_ERROR; ucnv_fromUnicode(cnv, &dest, destLimit, &src, srcLimit, 0, TRUE, &errorCode); length+=(int32_t)(dest-buffer); } while(errorCode==U_BUFFER_OVERFLOW_ERROR); } return u_terminateChars(originalDest, destCapacity, length, &errorCode); } void UnicodeString::doCodepageCreate(const char *codepageData, int32_t dataLength, const char *codepage) { // if there's nothing to convert, do nothing if(codepageData == 0 || dataLength <= 0) { return; } UErrorCode status = U_ZERO_ERROR; // create the converter // if the codepage is the default, use our cache // if it is an empty string, then use the "invariant character" conversion UConverter *converter = (codepage == 0 ? u_getDefaultConverter(&status) : *codepage == 0 ? 0 : ucnv_open(codepage, &status)); // if we failed, set the appropriate flags and return if(U_FAILURE(status)) { setToBogus(); return; } // perform the conversion if(converter == 0) { // use the "invariant characters" conversion if(cloneArrayIfNeeded(dataLength, dataLength, FALSE)) { u_charsToUChars(codepageData, getArrayStart(), dataLength); fLength = dataLength; } else { setToBogus(); } return; } // convert using the real converter doCodepageCreate(codepageData, dataLength, converter, status); if(U_FAILURE(status)) { setToBogus(); } // close the converter if(codepage == 0) { u_releaseDefaultConverter(converter); } else { ucnv_close(converter); } } void UnicodeString::doCodepageCreate(const char *codepageData, int32_t dataLength, UConverter *converter, UErrorCode &status) { if(U_FAILURE(status)) { return; } // set up the conversion parameters const char *mySource = codepageData; const char *mySourceEnd = mySource + dataLength; UChar *myTarget; // estimate the size needed: // 1.25 UChar's per source byte should cover most cases int32_t arraySize = dataLength + (dataLength >> 2); // we do not care about the current contents UBool doCopyArray = FALSE; for(;;) { if(!cloneArrayIfNeeded(arraySize, arraySize, doCopyArray)) { setToBogus(); break; } // perform the conversion myTarget = fArray + fLength; ucnv_toUnicode(converter, &myTarget, fArray + fCapacity, &mySource, mySourceEnd, 0, TRUE, &status); // update the conversion parameters fLength = (int32_t)(myTarget - fArray); // allocate more space and copy data, if needed if(status == U_BUFFER_OVERFLOW_ERROR) { // reset the error code status = U_ZERO_ERROR; // keep the previous conversion results doCopyArray = TRUE; // estimate the new size needed, larger than before // try 2 UChar's per remaining source byte arraySize = (int32_t)(fLength + 2 * (mySourceEnd - mySource)); } else { break; } } } //======================================== // External Buffer //======================================== UChar * UnicodeString::getBuffer(int32_t minCapacity) { if(minCapacity>=-1 && cloneArrayIfNeeded(minCapacity)) { fFlags|=kOpenGetBuffer; fLength=0; return fArray; } else { return 0; } } void UnicodeString::releaseBuffer(int32_t newLength) { if(fFlags&kOpenGetBuffer && newLength>=-1) { // set the new fLength if(newLength==-1) { // the new length is the string length, capped by fCapacity const UChar *p=fArray, *limit=fArray+fCapacity; while(p1, or * the buffer is too small. * Return FALSE if memory could not be allocated. */ if(forceClone || fFlags & kBufferIsReadonly || fFlags & kRefCounted && refCount() > 1 || newCapacity > fCapacity ) { // save old values UChar *array = fArray; uint16_t flags = fFlags; // check growCapacity for default value and use of the stack buffer if(growCapacity == -1) { growCapacity = newCapacity; } else if(newCapacity <= US_STACKBUF_SIZE && growCapacity > US_STACKBUF_SIZE) { growCapacity = US_STACKBUF_SIZE; } // allocate a new array if(allocate(growCapacity) || newCapacity < growCapacity && allocate(newCapacity) ) { if(doCopyArray) { // copy the contents // do not copy more than what fits - it may be smaller than before if(fCapacity < fLength) { fLength = fCapacity; } us_arrayCopy(array, 0, fArray, 0, fLength); } else { fLength = 0; } // release the old array if(flags & kRefCounted) { // the array is refCounted; decrement and release if 0 int32_t *pRefCount = ((int32_t *)array - 1); if(umtx_atomic_dec(pRefCount) == 0) { if(pBufferToDelete == 0) { uprv_free(pRefCount); } else { // the caller requested to delete it himself *pBufferToDelete = pRefCount; } } } } else { // not enough memory for growCapacity and not even for the smaller newCapacity // reset the old values for setToBogus() to release the array fArray = array; fFlags = flags; setToBogus(); return FALSE; } } return TRUE; } U_NAMESPACE_END