/* ******************************************************************************* * Copyright (C) 1997-2003, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* * * File GREGOCAL.CPP * * Modification History: * * Date Name Description * 02/05/97 clhuang Creation. * 03/28/97 aliu Made highly questionable fix to computeFields to * handle DST correctly. * 04/22/97 aliu Cleaned up code drastically. Added monthLength(). * Finished unimplemented parts of computeTime() for * week-based date determination. Removed quetionable * fix and wrote correct fix for computeFields() and * daylight time handling. Rewrote inDaylightTime() * and computeFields() to handle sensitive Daylight to * Standard time transitions correctly. * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to * not cutover. * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated * add() from Java source. * 07/28/98 stephen Sync up with JDK 1.2 * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double. * Fixed bug in roll() * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation. * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD. * {JDK bug 4210209 4209272} * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues * 12/09/99 aliu Fixed j81, calculation errors and roll bugs * in year of cutover. * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY. ******************************************************************************** */ #include "unicode/utypes.h" #include #if !UCONFIG_NO_FORMATTING #include "unicode/gregocal.h" #include "gregoimp.h" #include "mutex.h" #include "uassert.h" // ***************************************************************************** // class GregorianCalendar // ***************************************************************************** /** * Note that the Julian date used here is not a true Julian date, since * it is measured from midnight, not noon. This value is the Julian * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU] */ static const int32_t kNumDays[] = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year static const int32_t kLeapNumDays[] = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year static const int32_t kMonthLength[] = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based static const int32_t kLeapMonthLength[] = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = { // Minimum Greatest Least Maximum // Minimum Maximum { 0, 0, 1, 1 }, // ERA { 1, 1, 140742, 144683 }, // YEAR { 0, 0, 11, 11 }, // MONTH { 1, 1, 52, 53 }, // WEEK_OF_YEAR { 0, 0, 4, 6 }, // WEEK_OF_MONTH { 1, 1, 28, 31 }, // DAY_OF_MONTH { 1, 1, 365, 366 }, // DAY_OF_YEAR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// DAY_OF_WEEK { -1, -1, 4, 6 }, // DAY_OF_WEEK_IN_MONTH {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// AM_PM {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// HOUR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// HOUR_OF_DAY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// MINUTE {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// SECOND {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// MILLISECOND {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// ZONE_OFFSET {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// DST_OFFSET { -140742, -140742, 140742, 144683 }, // YEAR_WOY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// DOW_LOCAL { -140742, -140742, 140742, 144683 }, // EXTENDED_YEAR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1},// JULIAN_DAY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1} // MILLISECONDS_IN_DAY }; /* *
 *                            Greatest       Least 
 * Field name        Minimum   Minimum     Maximum     Maximum
 * ----------        -------   -------     -------     -------
 * ERA                     0         0           1           1
 * YEAR                    1         1      140742      144683
 * MONTH                   0         0          11          11
 * WEEK_OF_YEAR            1         1          52          53
 * WEEK_OF_MONTH           0         0           4           6
 * DAY_OF_MONTH            1         1          28          31
 * DAY_OF_YEAR             1         1         365         366
 * DAY_OF_WEEK             1         1           7           7
 * DAY_OF_WEEK_IN_MONTH   -1        -1           4           6
 * AM_PM                   0         0           1           1
 * HOUR                    0         0          11          11
 * HOUR_OF_DAY             0         0          23          23
 * MINUTE                  0         0          59          59
 * SECOND                  0         0          59          59
 * MILLISECOND             0         0         999         999
 * ZONE_OFFSET           -12*      -12*         12*         12*
 * DST_OFFSET              0         0           1*          1*
 * YEAR_WOY                1         1      140742      144683
 * DOW_LOCAL               1         1           7           7
 * 
* (*) In units of one-hour */ #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL) #include #endif U_NAMESPACE_BEGIN UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar) // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch. // Note that only Italy and other Catholic countries actually // observed this cutover. Most other countries followed in // the next few centuries, some as late as 1928. [LIU] // in Java, -12219292800000L //const UDate GregorianCalendar::kPapalCutover = -12219292800000L; static const uint32_t kCutoverJulianDay = 2299161; static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY; static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay); // ------------------------------------- GregorianCalendar::GregorianCalendar(UErrorCode& status) : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { setTimeInMillis(getNow(), status); } // ------------------------------------- GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status) : Calendar(zone, Locale::getDefault(), status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { setTimeInMillis(getNow(), status); } // ------------------------------------- GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status) : Calendar(zone, Locale::getDefault(), status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { setTimeInMillis(getNow(), status); } // ------------------------------------- GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status) : Calendar(TimeZone::createDefault(), aLocale, status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { setTimeInMillis(getNow(), status); } // ------------------------------------- GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale, UErrorCode& status) : Calendar(zone, aLocale, status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { setTimeInMillis(getNow(), status); } // ------------------------------------- GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale, UErrorCode& status) : Calendar(zone, aLocale, status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { setTimeInMillis(getNow(), status); } // ------------------------------------- GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, UErrorCode& status) : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { set(UCAL_ERA, AD); set(UCAL_YEAR, year); set(UCAL_MONTH, month); set(UCAL_DATE, date); } // ------------------------------------- GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, int32_t hour, int32_t minute, UErrorCode& status) : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { set(UCAL_ERA, AD); set(UCAL_YEAR, year); set(UCAL_MONTH, month); set(UCAL_DATE, date); set(UCAL_HOUR_OF_DAY, hour); set(UCAL_MINUTE, minute); } // ------------------------------------- GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, int32_t hour, int32_t minute, int32_t second, UErrorCode& status) : Calendar(TimeZone::createDefault(), Locale::getDefault(), status), fGregorianCutover(kPapalCutover), fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), fIsGregorian(TRUE), fInvertGregorian(FALSE) { set(UCAL_ERA, AD); set(UCAL_YEAR, year); set(UCAL_MONTH, month); set(UCAL_DATE, date); set(UCAL_HOUR_OF_DAY, hour); set(UCAL_MINUTE, minute); set(UCAL_SECOND, second); } // ------------------------------------- GregorianCalendar::~GregorianCalendar() { } // ------------------------------------- GregorianCalendar::GregorianCalendar(const GregorianCalendar &source) : Calendar(source), fGregorianCutover(source.fGregorianCutover), fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear), fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian) { } // ------------------------------------- Calendar* GregorianCalendar::clone() const { return new GregorianCalendar(*this); } // ------------------------------------- GregorianCalendar & GregorianCalendar::operator=(const GregorianCalendar &right) { if (this != &right) { Calendar::operator=(right); fGregorianCutover = right.fGregorianCutover; fNormalizedGregorianCutover = right.fNormalizedGregorianCutover; fGregorianCutoverYear = right.fGregorianCutoverYear; fCutoverJulianDay = right.fCutoverJulianDay; } return *this; } // ------------------------------------- UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const { // Calendar override. return Calendar::isEquivalentTo(other) && fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover; } // ------------------------------------- void GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status) { if (U_FAILURE(status)) return; fGregorianCutover = date; // Precompute two internal variables which we use to do the actual // cutover computations. These are the normalized cutover, which is the // midnight at or before the cutover, and the cutover year. The // normalized cutover is in pure date milliseconds; it contains no time // of day or timezone component, and it used to compare against other // pure date values. int32_t cutoverDay = (int32_t)Math::floorDivide(fGregorianCutover, (double)kOneDay); fNormalizedGregorianCutover = cutoverDay * kOneDay; // Handle the rare case of numeric overflow. If the user specifies a // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian // calendar, then the epoch day is -106751991168, which when multiplied // by ONE_DAY gives 9223372036794351616 -- the negative value is too // large for 64 bits, and overflows into a positive value. We correct // this by using the next day, which for all intents is semantically // equivalent. if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) { fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay; } // Normalize the year so BC values are represented as 0 and negative // values. GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status); /* test for NULL */ if (cal == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } if(U_FAILURE(status)) return; cal->setTime(date, status); fGregorianCutoverYear = cal->get(UCAL_YEAR, status); if (cal->get(UCAL_ERA, status) == BC) fGregorianCutoverYear = 1 - fGregorianCutoverYear; fCutoverJulianDay = cutoverDay; delete cal; } void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) { int32_t eyear, month, dayOfMonth, dayOfYear; if(U_FAILURE(status)) { return; } #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n", __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay); #endif if (julianDay >= fCutoverJulianDay) { month = getGregorianMonth(); dayOfMonth = getGregorianDayOfMonth(); dayOfYear = getGregorianDayOfYear(); eyear = getGregorianYear(); } else { // The Julian epoch day (not the same as Julian Day) // is zero on Saturday December 30, 0 (Gregorian). int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2); eyear = Math::floorDivide(4*julianEpochDay + 1464, (int32_t)1461); // Compute the Julian calendar day number for January 1, eyear int32_t january1 = 365*(eyear-1) + Math::floorDivide(eyear-1, (int32_t)4); dayOfYear = (julianEpochDay - january1); // 0-based // Julian leap years occurred historically every 4 years starting // with 8 AD. Before 8 AD the spacing is irregular; every 3 years // from 45 BC to 9 BC, and then none until 8 AD. However, we don't // implement this historical detail; instead, we implement the // computatinally cleaner proleptic calendar, which assumes // consistent 4-year cycles throughout time. UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0) // Common Julian/Gregorian calculation int32_t correction = 0; int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 if (dayOfYear >= march1) { correction = isLeap ? 1 : 2; } month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM ++dayOfYear; #if defined (U_DEBUG_CAL) // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month ); // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n", // __FILE__, __LINE__,julianDay, // eyear,month,dayOfMonth, // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() ); fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n", __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay); #endif } // [j81] if we are after the cutover in its year, shift the day of the year if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) { //from handleComputeMonthStart int32_t gregShift = Grego::gregorianShift(eyear); #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n", __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay); #endif dayOfYear += gregShift; } internalSet(UCAL_MONTH, month); internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); internalSet(UCAL_DAY_OF_YEAR, dayOfYear); internalSet(UCAL_EXTENDED_YEAR, eyear); int32_t era = AD; if (eyear < 1) { era = BC; eyear = 1 - eyear; } internalSet(UCAL_ERA, era); internalSet(UCAL_YEAR, eyear); } // ------------------------------------- UDate GregorianCalendar::getGregorianChange() const { return fGregorianCutover; } // ------------------------------------- UBool GregorianCalendar::isLeapYear(int32_t year) const { // MSVC complains bitterly if we try to use Grego::isLeapYear here // NOTE: year&0x3 == year%4 return (year >= fGregorianCutoverYear ? (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian ((year&0x3) == 0)); // Julian } // ------------------------------------- int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField) { fInvertGregorian = FALSE; int32_t jd = Calendar::handleComputeJulianDay(bestField); if((bestField == UCAL_WEEK_OF_YEAR) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian* (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) && jd >= fCutoverJulianDay) { fInvertGregorian = TRUE; // So that the Julian Jan 1 will be used in handleComputeMonthStart return Calendar::handleComputeJulianDay(bestField); } // The following check handles portions of the cutover year BEFORE the // cutover itself happens. //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */ if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */ #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: jd [invert] %d\n", __FILE__, __LINE__, jd); #endif fInvertGregorian = TRUE; jd = Calendar::handleComputeJulianDay(bestField); #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ", __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F"); fprintf(stderr, " jd NOW %d\n", jd); #endif } else { #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n", __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField); #endif } if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) { int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR)); if (bestField == UCAL_DAY_OF_YEAR) { #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n", __FILE__, __LINE__, fFields[bestField],jd, gregShift); #endif jd -= gregShift; } else if ( bestField == UCAL_WEEK_OF_MONTH ) { int32_t weekShift = 14; #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n", __FILE__, __LINE__, jd, weekShift); #endif jd += weekShift; // shift by weeks for week based fields. } } return jd; } int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /* useMonth */) const { GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const // If the month is out of range, adjust it into range, and // modify the extended year value accordingly. if (month < 0 || month > 11) { eyear += Math::floorDivide(month, 12, month); } UBool isLeap = eyear%4 == 0; int32_t y = eyear-1; int32_t julianDay = 365*y + Math::floorDivide(y, 4) + (kJan1_1JulianDay - 3); nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear); #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n", __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F"); #endif if (fInvertGregorian) { nonConstThis->fIsGregorian = !fIsGregorian; } if (fIsGregorian) { isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0)); // Add 2 because Gregorian calendar starts 2 days after // Julian calendar int32_t gregShift = Grego::gregorianShift(eyear); #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n", __FILE__, __LINE__, eyear, month, julianDay, gregShift); #endif julianDay += gregShift; } // At this point julianDay indicates the day BEFORE the first // day of January 1, of either the Julian or Gregorian // calendar. if (month != 0) { julianDay += isLeap?kLeapNumDays[month]:kNumDays[month]; } return julianDay; } int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month]; } int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const { return isLeapYear(eyear) ? 366 : 365; } int32_t GregorianCalendar::monthLength(int32_t month) const { int32_t year = internalGet(UCAL_EXTENDED_YEAR); return handleGetMonthLength(year, month); } // ------------------------------------- int32_t GregorianCalendar::monthLength(int32_t month, int32_t year) const { return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month]; } // ------------------------------------- int32_t GregorianCalendar::yearLength(int32_t year) const { return isLeapYear(year) ? 366 : 365; } // ------------------------------------- int32_t GregorianCalendar::yearLength() const { return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365; } // ------------------------------------- /** * After adjustments such as add(MONTH), add(YEAR), we don't want the * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar * 3, we want it to go to Feb 28. Adjustments which might run into this * problem call this method to retain the proper month. */ void GregorianCalendar::pinDayOfMonth() { int32_t monthLen = monthLength(internalGet(UCAL_MONTH)); int32_t dom = internalGet(UCAL_DATE); if(dom > monthLen) set(UCAL_DATE, monthLen); } // ------------------------------------- UBool GregorianCalendar::validateFields() const { for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) { // Ignore DATE and DAY_OF_YEAR which are handled below if (field != UCAL_DATE && field != UCAL_DAY_OF_YEAR && isSet((UCalendarDateFields)field) && ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field)) return FALSE; } // Values differ in Least-Maximum and Maximum should be handled // specially. if (isSet(UCAL_DATE)) { int32_t date = internalGet(UCAL_DATE); if (date < getMinimum(UCAL_DATE) || date > monthLength(internalGet(UCAL_MONTH))) { return FALSE; } } if (isSet(UCAL_DAY_OF_YEAR)) { int32_t days = internalGet(UCAL_DAY_OF_YEAR); if (days < 1 || days > yearLength()) { return FALSE; } } // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero. // We've checked against minimum and maximum above already. if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) && 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) { return FALSE; } return TRUE; } // ------------------------------------- UBool GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const { return value >= getMinimum(field) && value <= getMaximum(field); } // ------------------------------------- UDate GregorianCalendar::getEpochDay(UErrorCode& status) { complete(status); // Divide by 1000 (convert to seconds) in order to prevent overflow when // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE). double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000; return Math::floorDivide(wallSec, kOneDay/1000.0); } // ------------------------------------- // ------------------------------------- /** * Compute the julian day number of the day BEFORE the first day of * January 1, year 1 of the given calendar. If julianDay == 0, it * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian * or Gregorian). */ double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian, int32_t year, UBool& isLeap) { isLeap = year%4 == 0; int32_t y = year - 1; double julianDay = 365.0*y + Math::floorDivide(y, 4) + (kJan1_1JulianDay - 3); if (isGregorian) { isLeap = isLeap && ((year%100 != 0) || (year%400 == 0)); // Add 2 because Gregorian calendar starts 2 days after Julian calendar julianDay += Grego::gregorianShift(year); } return julianDay; } // /** // * Compute the day of week, relative to the first day of week, from // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is // * equivalent to get(DOW_LOCAL) - 1. // */ // int32_t GregorianCalendar::computeRelativeDOW() const { // int32_t relDow = 0; // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) { // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) { // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); // if (relDow < 0) relDow += 7; // } // return relDow; // } // /** // * Compute the day of week, relative to the first day of week, // * from 0..6 of the given julian day. // */ // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const { // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek(); // if (relDow < 0) { // relDow += 7; // } // return relDow; // } // /** // * Compute the DOY using the WEEK_OF_YEAR field and the julian day // * of the day BEFORE January 1 of a year (a return value from // * computeJulianDayOfYear). // */ // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const { // // Compute DOY from day of week plus week of year // // Find the day of the week for the first of this year. This // // is zero-based, with 0 being the locale-specific first day of // // the week. Add 1 to get first day of year. // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1); // return // // Compute doy of first (relative) DOW of WOY 1 // (((7 - fdy) < getMinimalDaysInFirstWeek()) // ? (8 - fdy) : (1 - fdy)) // // Adjust for the week number. // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1)) // // Adjust for the DOW // + computeRelativeDOW(); // } // ------------------------------------- double GregorianCalendar::millisToJulianDay(UDate millis) { return (double)kEpochStartAsJulianDay + Math::floorDivide(millis, (double)kOneDay); } // ------------------------------------- UDate GregorianCalendar::julianDayToMillis(double julian) { return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay); } // ------------------------------------- int32_t GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b) { return (((stamp_a != kUnset && stamp_b != kUnset) ? uprv_max(stamp_a, stamp_b) : kUnset)); } // ------------------------------------- /** * Roll a field by a signed amount. * Note: This will be made public later. [LIU] */ void GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { roll((UCalendarDateFields) field, amount, status); } void GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) { if((amount == 0) || U_FAILURE(status)) { return; } // J81 processing. (gregorian cutover) UBool inCutoverMonth = FALSE; int32_t cMonthLen; // 'c' for cutover; in days int32_t cDayOfMonth; // no discontinuity: [0, cMonthLen) double cMonthStart; // in ms // Common code - see if we're in the cutover month of the cutover year if(internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear) { switch (field) { case UCAL_DAY_OF_MONTH: case UCAL_WEEK_OF_MONTH: { int32_t max = monthLength(internalGet(UCAL_MONTH)); UDate t = internalGetTime(); // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an // additional 10 if we are after the cutover. Thus the monthStart // value will be correct iff we actually are in the cutover month. cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0); cMonthStart = t - ((cDayOfMonth - 1) * kOneDay); // A month containing the cutover is 10 days shorter. if ((cMonthStart < fGregorianCutover) && (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) { inCutoverMonth = TRUE; } } default: ; } } switch (field) { case UCAL_WEEK_OF_YEAR: { // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the // week. Also, rolling the week of the year can have seemingly // strange effects simply because the year of the week of year // may be different from the calendar year. For example, the // date Dec 28, 1997 is the first day of week 1 of 1998 (if // weeks start on Sunday and the minimal days in first week is // <= 3). int32_t woy = get(UCAL_WEEK_OF_YEAR, status); // Get the ISO year, which matches the week of year. This // may be one year before or after the calendar year. int32_t isoYear = get(UCAL_YEAR_WOY, status); int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR); if (internalGet(UCAL_MONTH) == UCAL_JANUARY) { if (woy >= 52) { isoDoy += handleGetYearLength(isoYear); } } else { if (woy == 1) { isoDoy -= handleGetYearLength(isoYear - 1); } } woy += amount; // Do fast checks to avoid unnecessary computation: if (woy < 1 || woy > 52) { // Determine the last week of the ISO year. // We do this using the standard formula we use // everywhere in this file. If we can see that the // days at the end of the year are going to fall into // week 1 of the next year, we drop the last week by // subtracting 7 from the last day of the year. int32_t lastDoy = handleGetYearLength(isoYear); int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek()) % 7; if (lastRelDow < 0) lastRelDow += 7; if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7; int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1); woy = ((woy + lastWoy - 1) % lastWoy) + 1; } set(UCAL_WEEK_OF_YEAR, woy); set(UCAL_YEAR_WOY,isoYear); return; } case UCAL_DAY_OF_MONTH: if( !inCutoverMonth ) { Calendar::roll(field, amount, status); return; } else { // [j81] 1582 special case for DOM // The default computation works except when the current month // contains the Gregorian cutover. We handle this special case // here. [j81 - aliu] double monthLen = cMonthLen * kOneDay; double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart + amount * kOneDay, monthLen); if (msIntoMonth < 0) { msIntoMonth += monthLen; } #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: roll DOM %d -> %.0lf ms \n", __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth); #endif setTimeInMillis(cMonthStart + msIntoMonth, status); return; } case UCAL_WEEK_OF_MONTH: if( !inCutoverMonth ) { Calendar::roll(field, amount, status); return; } else { #if defined (U_DEBUG_CAL) fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n", __FILE__, __LINE__,amount); #endif // NOTE: following copied from the old // GregorianCalendar::roll( WEEK_OF_MONTH ) code // This is tricky, because during the roll we may have to shift // to a different day of the week. For example: // s m t w r f s // 1 2 3 4 5 // 6 7 8 9 10 11 12 // When rolling from the 6th or 7th back one week, we go to the // 1st (assuming that the first partial week counts). The same // thing happens at the end of the month. // The other tricky thing is that we have to figure out whether // the first partial week actually counts or not, based on the // minimal first days in the week. And we have to use the // correct first day of the week to delineate the week // boundaries. // Here's our algorithm. First, we find the real boundaries of // the month. Then we discard the first partial week if it // doesn't count in this locale. Then we fill in the ends with // phantom days, so that the first partial week and the last // partial week are full weeks. We then have a nice square // block of weeks. We do the usual rolling within this block, // as is done elsewhere in this method. If we wind up on one of // the phantom days that we added, we recognize this and pin to // the first or the last day of the month. Easy, eh? // Another wrinkle: To fix jitterbug 81, we have to make all this // work in the oddball month containing the Gregorian cutover. // This month is 10 days shorter than usual, and also contains // a discontinuity in the days; e.g., the default cutover month // is Oct 1582, and goes from day of month 4 to day of month 15. // Normalize the DAY_OF_WEEK so that 0 is the first day of the week // in this locale. We have dow in 0..6. int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); if (dow < 0) dow += 7; // Find the day of month, compensating for cutover discontinuity. int32_t dom = cDayOfMonth; // Find the day of the week (normalized for locale) for the first // of the month. int32_t fdm = (dow - dom + 1) % 7; if (fdm < 0) fdm += 7; // Get the first day of the first full week of the month, // including phantom days, if any. Figure out if the first week // counts or not; if it counts, then fill in phantom days. If // not, advance to the first real full week (skip the partial week). int32_t start; if ((7 - fdm) < getMinimalDaysInFirstWeek()) start = 8 - fdm; // Skip the first partial week else start = 1 - fdm; // This may be zero or negative // Get the day of the week (normalized for locale) for the last // day of the month. int32_t monthLen = cMonthLen; int32_t ldm = (monthLen - dom + dow) % 7; // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here. // Get the limit day for the blocked-off rectangular month; that // is, the day which is one past the last day of the month, // after the month has already been filled in with phantom days // to fill out the last week. This day has a normalized DOW of 0. int32_t limit = monthLen + 7 - ldm; // Now roll between start and (limit - 1). int32_t gap = limit - start; int32_t newDom = (dom + amount*7 - start) % gap; if (newDom < 0) newDom += gap; newDom += start; // Finally, pin to the real start and end of the month. if (newDom < 1) newDom = 1; if (newDom > monthLen) newDom = monthLen; // Set the DAY_OF_MONTH. We rely on the fact that this field // takes precedence over everything else (since all other fields // are also set at this point). If this fact changes (if the // disambiguation algorithm changes) then we will have to unset // the appropriate fields here so that DAY_OF_MONTH is attended // to. // If we are in the cutover month, manipulate ms directly. Don't do // this in general because it doesn't work across DST boundaries // (details, details). This takes care of the discontinuity. setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status); return; } default: Calendar::roll(field, amount, status); return; } } // ------------------------------------- /** * Return the minimum value that this field could have, given the current date. * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum(). * @param field the time field. * @return the minimum value that this field could have, given the current date. * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead. */ int32_t GregorianCalendar::getActualMinimum(EDateFields field) const { return getMinimum((UCalendarDateFields)field); } /** * Return the minimum value that this field could have, given the current date. * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum(). * @param field the time field. * @return the minimum value that this field could have, given the current date. * @draft ICU 2.6. */ int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field) const { return getMinimum(field); } // ------------------------------------ /** * Old year limits were least max 292269054, max 292278994. */ /** * @stable ICU 2.0 */ int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { return kGregorianCalendarLimits[field][limitType]; } /** * Return the maximum value that this field could have, given the current date. * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar, * for some years the actual maximum for MONTH is 12, and for others 13. * @stable ICU 2.0 */ int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const { /* It is a known limitation that the code here (and in getActualMinimum) * won't behave properly at the extreme limits of GregorianCalendar's * representable range (except for the code that handles the YEAR * field). That's because the ends of the representable range are at * odd spots in the year. For calendars with the default Gregorian * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT * zones. As a result, if the calendar is set to Aug 1 292278994 AD, * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar * 31 in that year, the actual maximum month might be Jul, whereas is * the date is Mar 15, the actual maximum might be Aug -- depending on * the precise semantics that are desired. Similar considerations * affect all fields. Nonetheless, this effect is sufficiently arcane * that we permit it, rather than complicating the code to handle such * intricacies. - liu 8/20/98 * UPDATE: No longer true, since we have pulled in the limit values on * the year. - Liu 11/6/00 */ switch (field) { case UCAL_YEAR: /* The year computation is no different, in principle, from the * others, however, the range of possible maxima is large. In * addition, the way we know we've exceeded the range is different. * For these reasons, we use the special case code below to handle * this field. * * The actual maxima for YEAR depend on the type of calendar: * * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD * * We know we've exceeded the maximum when either the month, date, * time, or era changes in response to setting the year. We don't * check for month, date, and time here because the year and era are * sufficient to detect an invalid year setting. NOTE: If code is * added to check the month and date in the future for some reason, * Feb 29 must be allowed to shift to Mar 1 when setting the year. */ { if(U_FAILURE(status)) return 0; Calendar *cal = clone(); if(!cal) { status = U_MEMORY_ALLOCATION_ERROR; return 0; } cal->setLenient(TRUE); int32_t era = cal->get(UCAL_ERA, status); UDate d = cal->getTime(status); /* Perform a binary search, with the invariant that lowGood is a * valid year, and highBad is an out of range year. */ int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1]; int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1; while ((lowGood + 1) < highBad) { int32_t y = (lowGood + highBad) / 2; cal->set(UCAL_YEAR, y); if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) { lowGood = y; } else { highBad = y; cal->setTime(d, status); // Restore original fields } } delete cal; return lowGood; } default: return Calendar::getActualMaximum(field,status); } } int32_t GregorianCalendar::handleGetExtendedYear() { int32_t year = kEpochYear; switch(resolveFields(kYearPrecedence)) { case UCAL_EXTENDED_YEAR: year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear); break; case UCAL_YEAR: { // The year defaults to the epoch start, the era to AD int32_t era = internalGet(UCAL_ERA, AD); if (era == BC) { year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year } else { year = internalGet(UCAL_YEAR, kEpochYear); } } break; case UCAL_YEAR_WOY: year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR)); #if defined (U_DEBUG_CAL) // if(internalGet(UCAL_YEAR_WOY) != year) { fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] -> %d\n", __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year); //} #endif break; default: year = kEpochYear; } return year; } int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy) { // convert year to extended form int32_t era = internalGet(UCAL_ERA, AD); if(era == BC) { yearWoy = 1 - yearWoy; } return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy); } // ------------------------------------- UBool GregorianCalendar::inDaylightTime(UErrorCode& status) const { if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) return FALSE; // Force an update of the state of the Calendar. ((GregorianCalendar*)this)->complete(status); // cast away const return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); } // ------------------------------------- /** * Return the ERA. We need a special method for this because the * default ERA is AD, but a zero (unset) ERA is BC. */ int32_t GregorianCalendar::internalGetEra() const { return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : AD; } const char * GregorianCalendar::getType() const { //static const char kGregorianType = "gregorian"; return "gregorian"; } const UDate GregorianCalendar::fgSystemDefaultCentury = DBL_MIN; const int32_t GregorianCalendar::fgSystemDefaultCenturyYear = -1; UDate GregorianCalendar::fgSystemDefaultCenturyStart = DBL_MIN; int32_t GregorianCalendar::fgSystemDefaultCenturyStartYear = -1; UBool GregorianCalendar::haveDefaultCentury() const { return TRUE; } UDate GregorianCalendar::defaultCenturyStart() const { return internalGetDefaultCenturyStart(); } int32_t GregorianCalendar::defaultCenturyStartYear() const { return internalGetDefaultCenturyStartYear(); } UDate GregorianCalendar::internalGetDefaultCenturyStart() const { // lazy-evaluate systemDefaultCenturyStart UBool needsUpdate; { Mutex m; needsUpdate = (fgSystemDefaultCenturyStart == fgSystemDefaultCentury); } if (needsUpdate) { initializeSystemDefaultCentury(); } // use defaultCenturyStart unless it's the flag value; // then use systemDefaultCenturyStart return fgSystemDefaultCenturyStart; } int32_t GregorianCalendar::internalGetDefaultCenturyStartYear() const { // lazy-evaluate systemDefaultCenturyStartYear UBool needsUpdate; { Mutex m; needsUpdate = (fgSystemDefaultCenturyStart == fgSystemDefaultCentury); } if (needsUpdate) { initializeSystemDefaultCentury(); } // use defaultCenturyStart unless it's the flag value; // then use systemDefaultCenturyStartYear return fgSystemDefaultCenturyStartYear; } void GregorianCalendar::initializeSystemDefaultCentury() { // initialize systemDefaultCentury and systemDefaultCenturyYear based // on the current time. They'll be set to 80 years before // the current time. // No point in locking as it should be idempotent. if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) { UErrorCode status = U_ZERO_ERROR; Calendar *calendar = new GregorianCalendar(status); if (calendar != NULL && U_SUCCESS(status)) { calendar->setTime(Calendar::getNow(), status); calendar->add(UCAL_YEAR, -80, status); UDate newStart = calendar->getTime(status); int32_t newYear = calendar->get(UCAL_YEAR, status); { Mutex m; fgSystemDefaultCenturyStart = newStart; fgSystemDefaultCenturyStartYear = newYear; } delete calendar; } // We have no recourse upon failure unless we want to propagate the failure // out. } } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof