/* ****************************************************************************** * * Copyright (C) 1999-2001, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * * * ucnv_io.c: * initializes global variables and defines functions pertaining to file * access, and name resolution aspect of the library. * * new implementation: * * created on: 1999nov22 * created by: Markus W. Scherer * * Use the binary cnvalias.icu (created from convrtrs.txt) to work * with aliases for converter names. * * Date Name Description * 11/22/1999 markus Created * 06/28/2002 grhoten Major overhaul of the converter alias design. * Now an alias can map to different converters * depending on the specified standard. ******************************************************************************* */ #include "unicode/utypes.h" #include "unicode/putil.h" #include "unicode/ucnv.h" /* This file implements ucnv_xXXX() APIs */ #include "unicode/udata.h" #include "umutex.h" #include "cstring.h" #include "cmemory.h" #include "ucnv_io.h" #include "uenumimp.h" #include "ucln_cmn.h" /* Format of cnvalias.icu ----------------------------------------------------- * * cnvalias.icu is a binary, memory-mappable form of convrtrs.txt. * This binary form contains several tables. All indexes are to uint16_t * units, and not to the bytes (uint8_t units). Addressing everything on * 16-bit boundaries allows us to store more information with small index * numbers, which are also 16-bit in size. The majority of the table (except * the string table) are 16-bit numbers. * * First there is the size of the Table of Contents (TOC). The TOC * entries contain the size of each section. In order to find the offset * you just need to sum up the previous offsets. * * 1) This section contains a list of converters. This list contains indexes * into the string table for the converter name. The index of this list is * also used by other sections, which are mentioned later on. * * 2) This section contains a list of tags. This list contains indexes * into the string table for the tag name. The index of this list is * also used by other sections, which are mentioned later on. * * 3) This section contains a list of sorted list of unique aliases. This * list contains indexes into the string table for the alias name. The * index of this list is also used by other sections, which are mentioned * later on. * * 4) This section contains a list of mapped converter names. Consider this * as a table that maps the 3rd section to the 1st section. This list contains * indexes into the 1st section. The index of this list is the same index in * the 3rd section. There is also some extra information in the high bits of * each converter index in this table. Currently it's only used to say that * an alias mapped to this converter is ambiguous. See UCNV_CONVERTER_INDEX_MASK * and UCNV_AMBIGUOUS_ALIAS_MAP_BIT for more information. This section is * the predigested form of the 5th section so that an alias lookup can be fast. * * 5) This section contains a 2D array with indexes to the 6th section. This * section is the full form of all alias mappings. The column index is the * index into the converter list (column header). The row index is the index * to tag list (row header). This 2D array is the top part a 3D array. The * third dimension is in the 6th section. * * 6) This is blob of variable length arrays. Each array starts with a size, * and is followed by indexes to alias names in the string table. This is * the third dimension to the section 5. No other section should be referencing * this section. * * 7) Reserved at this time (There is no information). This _usually_ has a * size of 0. Future versions may add more information here. * * 8) This is the string table. All strings are indexed on an even address. * There are two reasons for this. First many chip architectures locate strings * faster on even address boundaries. Second, since all indexes are 16-bit * numbers, this string table can be 128KB in size instead of 64KB when we * only have strings starting on an even address. * * * Here is the concept of section 5 and 6. It's a 3D cube. Each tag * has a unique alias among all converters. That same alias can * be mentioned in other standards on different converters, * but only one alias per tag can be unique. * * * Converter Names (Usually in TR22 form) * -------------------------------------------. * T / /| * a / / | * g / / | * s / / | * / / | * ------------------------------------------/ | * A | | | * l | | | * i | | / * a | | / * s | | / * e | | / * s | |/ * ------------------------------------------- * * * * Here is what it really looks like. It's like swiss cheese. * There are holes. Some converters aren't recognized by * a standard, or they are really old converters that the * standard doesn't recognize anymore. * * Converter Names (Usually in TR22 form) * -------------------------------------------. * T /##########################################/| * a / # # /# * g / # ## ## ### # ### ### ### #/ * s / # ##### #### ## ## #/# * / ### # # ## # # # ### # # #/## * ------------------------------------------/# # * A |### # # ## # # # ### # # #|# # * l |# # # # # ## # #|# # * i |# # # # # # #|# * a |# #|# * s | #|# * e * s * */ typedef struct UAliasContext { uint32_t stanardNum; uint32_t convNum; uint32_t listIdx; } UAliasContext; static const char DATA_NAME[] = "cnvalias"; static const char DATA_TYPE[] = "icu"; static UDataMemory *aliasData=NULL; static const uint16_t *converterList = NULL; static const uint16_t *tagList = NULL; static const uint16_t *aliasList = NULL; static const uint16_t *untaggedConvArray = NULL; static const uint16_t *taggedAliasArray = NULL; static const uint16_t *taggedAliasLists = NULL; static const uint16_t *stringTable = NULL; static uint32_t converterListNum; static uint32_t tagListNum; static uint32_t aliasListNum; static uint32_t untaggedConvArraySize; static uint32_t taggedAliasArraySize; static uint32_t taggedAliasListsSize; static uint32_t stringTableSize; static const char **availableConverters = NULL; static uint16_t availableConverterCount = 0; static char defaultConverterNameBuffer[UCNV_MAX_CONVERTER_NAME_LENGTH + 1]; /* +1 for NULL */ static const char *defaultConverterName = NULL; #define GET_STRING(idx) (const char *)(stringTable + (idx)) #define NUM_RESERVED_TAGS 2 static UBool isAcceptable(void *context, const char *type, const char *name, const UDataInfo *pInfo) { return (UBool)( pInfo->size>=20 && pInfo->isBigEndian==U_IS_BIG_ENDIAN && pInfo->charsetFamily==U_CHARSET_FAMILY && pInfo->dataFormat[0]==0x43 && /* dataFormat="CvAl" */ pInfo->dataFormat[1]==0x76 && pInfo->dataFormat[2]==0x41 && pInfo->dataFormat[3]==0x6c && pInfo->formatVersion[0]==3); } static UBool haveAliasData(UErrorCode *pErrorCode) { if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { return FALSE; } /* load converter alias data from file if necessary */ if(aliasData==NULL) { UDataMemory *data = NULL; const uint16_t *table = NULL; uint32_t tableStart; uint32_t currOffset; uint32_t reservedSize1; data = udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, pErrorCode); if(U_FAILURE(*pErrorCode)) { return FALSE; } table = (const uint16_t *)udata_getMemory(data); tableStart = ((const uint32_t *)(table))[0]; if (tableStart < 8) { *pErrorCode = U_INVALID_FORMAT_ERROR; return FALSE; } umtx_lock(NULL); if(aliasData==NULL) { aliasData = data; data=NULL; converterListNum = ((const uint32_t *)(table))[1]; tagListNum = ((const uint32_t *)(table))[2]; aliasListNum = ((const uint32_t *)(table))[3]; untaggedConvArraySize = ((const uint32_t *)(table))[4]; taggedAliasArraySize = ((const uint32_t *)(table))[5]; taggedAliasListsSize = ((const uint32_t *)(table))[6]; reservedSize1 = ((const uint32_t *)(table))[7]; /* reserved */ stringTableSize = ((const uint32_t *)(table))[8]; currOffset = tableStart * (sizeof(uint32_t)/sizeof(uint16_t)) + (sizeof(uint32_t)/sizeof(uint16_t)); converterList = table + currOffset; currOffset += converterListNum; tagList = table + currOffset; currOffset += tagListNum; aliasList = table + currOffset; currOffset += aliasListNum; untaggedConvArray = table + currOffset; currOffset += untaggedConvArraySize; taggedAliasArray = table + currOffset; /* aliasLists is a 1's based array, but it has a padding character */ currOffset += taggedAliasArraySize; taggedAliasLists = table + currOffset; currOffset += taggedAliasListsSize; /* reserved */ currOffset += reservedSize1; stringTable = table + currOffset; } umtx_unlock(NULL); /* if a different thread set it first, then close the extra data */ if(data!=NULL) { udata_close(data); /* NULL if it was set correctly */ } } return TRUE; } static UBool isAlias(const char *alias, UErrorCode *pErrorCode) { if(alias==NULL) { *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return FALSE; } else if(*alias==0) { return FALSE; } else { return TRUE; } } UBool ucnv_io_cleanup() { if (aliasData) { udata_close(aliasData); aliasData = NULL; } ucnv_io_flushAvailableConverterCache(); converterListNum = 0; tagListNum = 0; aliasListNum = 0; untaggedConvArraySize = 0; taggedAliasArraySize = 0; taggedAliasListsSize = 0; stringTableSize = 0; converterList = NULL; tagList = NULL; aliasList = NULL; untaggedConvArray = NULL; taggedAliasArray = NULL; taggedAliasLists = NULL; stringTable = NULL; defaultConverterName = NULL; defaultConverterNameBuffer[0] = 0; return TRUE; /* Everything was cleaned up */ } static uint32_t getTagNumber(const char *tagname) { if (tagList) { uint32_t tagNum; for (tagNum = 0; tagNum < tagListNum; tagNum++) { if (!uprv_stricmp(GET_STRING(tagList[tagNum]), tagname)) { return tagNum; } } } return UINT32_MAX; } /** * Do a fuzzy compare of a two converter/alias names. The comparison * is case-insensitive. It also ignores the characters '-', '_', and * ' ' (dash, underscore, and space). Thus the strings "UTF-8", * "utf_8", and "Utf 8" are exactly equivalent. * * This is a symmetrical (commutative) operation; order of arguments * is insignificant. This is an important property for sorting the * list (when the list is preprocessed into binary form) and for * performing binary searches on it at run time. * * @param name1 a converter name or alias, zero-terminated * @param name2 a converter name or alias, zero-terminated * @return 0 if the names match, or a negative value if the name1 * lexically precedes name2, or a positive value if the name1 * lexically follows name2. */ U_CAPI int U_EXPORT2 ucnv_compareNames(const char *name1, const char *name2) { int rc; char c1, c2; for (;;) { /* Ignore delimiters '-', '_', and ' ' */ while ((c1 = *name1) == '-' || c1 == '_' || c1 == ' ') { ++name1; } while ((c2 = *name2) == '-' || c2 == '_' || c2 == ' ') { ++name2; } /* If we reach the ends of both strings then they match */ if ((c1|c2)==0) { return 0; } /* Case-insensitive comparison */ rc = (int)(unsigned char)uprv_tolower(c1) - (int)(unsigned char)uprv_tolower(c2); if (rc != 0) { return rc; } ++name1; ++name2; } } /* * search for an alias * return the converter number index for converterList */ static uint32_t findConverter(const char *alias, UErrorCode *pErrorCode) { uint32_t mid, start, limit; int result; /* do a binary search for the alias */ start = 0; limit = untaggedConvArraySize - 1; mid = limit; /* Once mid == 0 we've already checked the 0'th element and we can stop */ while (start <= limit && mid != 0) { mid = (uint32_t)((start + limit + 1) / 2); /* +1 is to round properly */ result = ucnv_compareNames(alias, GET_STRING(aliasList[mid])); if (result < 0) { limit = mid-1; } else if (result > 0) { start = mid+1; } else { /* Since the gencnval tool folds duplicates into one entry, * this alias in aliasList is unique, but different standards * may map an alias to different converters. */ if (untaggedConvArray[mid] & UCNV_AMBIGUOUS_ALIAS_MAP_BIT) { *pErrorCode = U_AMBIGUOUS_ALIAS_WARNING; } return untaggedConvArray[mid] & UCNV_CONVERTER_INDEX_MASK; } } return UINT32_MAX; } U_CFUNC const char * ucnv_io_getConverterName(const char *alias, UErrorCode *pErrorCode) { if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) { uint32_t convNum = findConverter(alias, pErrorCode); if (convNum < converterListNum) { return GET_STRING(converterList[convNum]); } /* else converter not found */ } return NULL; } static int32_t U_CALLCONV ucnv_io_countStandardAliases(UEnumeration *enumerator, UErrorCode *pErrorCode) { int32_t value = -1; if (!pErrorCode || U_FAILURE(*pErrorCode)) { return -1; } if (enumerator) { UAliasContext *myContext = (UAliasContext *)(enumerator->context); uint32_t listOffset = taggedAliasArray[myContext->stanardNum*converterListNum + myContext->convNum]; if (listOffset) { value = taggedAliasLists[listOffset]; } else { value = 0; } } else { *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; } return value; } static const char* U_CALLCONV ucnv_io_nextStandardAliases(UEnumeration *enumerator, int32_t* resultLength, UErrorCode *pErrorCode) { if (!pErrorCode || U_FAILURE(*pErrorCode)) { return NULL; } if (enumerator) { UAliasContext *myContext = (UAliasContext *)(enumerator->context); uint32_t listOffset = taggedAliasArray[myContext->stanardNum*converterListNum + myContext->convNum]; if (listOffset) { uint32_t listCount = taggedAliasLists[listOffset]; const uint16_t *currList = taggedAliasLists + listOffset + 1; if (myContext->listIdx < listCount) { return GET_STRING(currList[myContext->listIdx++]); } } /* Either we accessed a zero length list, or we enumerated too far. */ *pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR; } else { *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; } return NULL; } static void U_CALLCONV ucnv_io_resetStandardAliases(UEnumeration *enumerator, UErrorCode *pErrorCode) { if (pErrorCode && U_SUCCESS(*pErrorCode)) { if (enumerator) { ((UAliasContext *)(enumerator->context))->listIdx = 0; } else { *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR; } } } static void U_CALLCONV ucnv_io_closeUEnumeration(UEnumeration *enumerator) { uprv_free(enumerator->context); uprv_free(enumerator); } /* Enumerate the aliases for the specified converter and standard tag */ static const UEnumeration gEnumAliases = { NULL, ucnv_io_closeUEnumeration, ucnv_io_countStandardAliases, NULL, ucnv_io_nextStandardAliases, ucnv_io_resetStandardAliases }; U_CAPI UEnumeration * ucnv_openStandardNames(const char *convName, const char *standard, UErrorCode *pErrorCode) { UEnumeration *myEnum = NULL; if (haveAliasData(pErrorCode) && isAlias(convName, pErrorCode)) { uint32_t convNum = findConverter(convName, pErrorCode); uint32_t tagNum = getTagNumber(standard); if (tagNum < (tagListNum - NUM_RESERVED_TAGS) && convNum < converterListNum) { UAliasContext *myContext; myEnum = uprv_malloc(sizeof(UEnumeration)); if (myEnum == NULL) { *pErrorCode = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memcpy(myEnum, &gEnumAliases, sizeof(UEnumeration)); myContext = uprv_malloc(sizeof(UAliasContext)); if (myContext == NULL) { *pErrorCode = U_MEMORY_ALLOCATION_ERROR; uprv_free(myEnum); return NULL; } myEnum->context = myContext; myContext->stanardNum = tagNum; myContext->convNum = convNum; myContext->listIdx = 0; } /* else converter or tag not found */ } return myEnum; } U_CFUNC uint16_t ucnv_io_countAliases(const char *alias, UErrorCode *pErrorCode) { if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) { uint32_t convNum = findConverter(alias, pErrorCode); if (convNum < converterListNum) { /* tagListNum - 1 is the ALL tag */ int32_t listOffset = taggedAliasArray[(tagListNum - 1)*converterListNum + convNum]; if (listOffset) { return taggedAliasLists[listOffset]; } /* else this shouldn't happen. internal program error */ } /* else converter not found */ } return 0; } U_CFUNC uint16_t ucnv_io_getAliases(const char *alias, uint16_t start, const char **aliases, UErrorCode *pErrorCode) { if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) { uint32_t currAlias; uint32_t convNum = findConverter(alias, pErrorCode); if (convNum < converterListNum) { /* tagListNum - 1 is the ALL tag */ int32_t listOffset = taggedAliasArray[(tagListNum - 1)*converterListNum + convNum]; if (listOffset) { uint32_t listCount = taggedAliasLists[listOffset]; /* +1 to skip listCount */ const uint16_t *currList = taggedAliasLists + listOffset + 1; for (currAlias = start; currAlias < listCount; currAlias++) { aliases[currAlias] = GET_STRING(currList[currAlias]); } } /* else this shouldn't happen. internal program error */ } /* else converter not found */ } return 0; } U_CFUNC const char * ucnv_io_getAlias(const char *alias, uint16_t n, UErrorCode *pErrorCode) { if(haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) { uint32_t convNum = findConverter(alias, pErrorCode); if (convNum < converterListNum) { /* tagListNum - 1 is the ALL tag */ int32_t listOffset = taggedAliasArray[(tagListNum - 1)*converterListNum + convNum]; if (listOffset) { uint32_t listCount = taggedAliasLists[listOffset]; /* +1 to skip listCount */ const uint16_t *currList = taggedAliasLists + listOffset + 1; if (n < listCount) { return GET_STRING(currList[n]); } *pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR; } /* else this shouldn't happen. internal program error */ } /* else converter not found */ } return NULL; } U_CFUNC uint16_t ucnv_io_countStandards(UErrorCode *pErrorCode) { if (haveAliasData(pErrorCode)) { /* Don't include the empty list */ return (uint16_t)(tagListNum - NUM_RESERVED_TAGS); } return 0; } U_CAPI const char * U_EXPORT2 ucnv_getStandard(uint16_t n, UErrorCode *pErrorCode) { if (haveAliasData(pErrorCode)) { if (n < tagListNum - NUM_RESERVED_TAGS) { return GET_STRING(tagList[n]); } *pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR; } return NULL; } U_CAPI const char * U_EXPORT2 ucnv_getStandardName(const char *alias, const char *standard, UErrorCode *pErrorCode) { if (haveAliasData(pErrorCode) && isAlias(alias, pErrorCode)) { uint32_t idx; uint32_t listOffset; uint32_t convNum; uint32_t tagNum = getTagNumber(standard); UErrorCode myErr = U_ZERO_ERROR; /* Make a quick guess. Hopefully they used a TR22 canonical alias. */ convNum = findConverter(alias, &myErr); if (tagNum < (tagListNum - NUM_RESERVED_TAGS) && convNum < converterListNum) { if (myErr == U_AMBIGUOUS_ALIAS_WARNING) { /* Uh Oh! They used an ambiguous alias. Hopefully the standard knows the alias. This may take a while. */ for (idx = 0; idx < converterListNum; idx++) { listOffset = taggedAliasArray[tagNum*converterListNum + idx]; if (listOffset) { uint32_t currAlias; uint32_t listCount = taggedAliasLists[listOffset]; /* +1 to skip listCount */ const uint16_t *currList = taggedAliasLists + listOffset + 1; for (currAlias = 0; currAlias < listCount; currAlias++) { if (currList[currAlias] && ucnv_compareNames(alias, GET_STRING(currList[currAlias]))==0) { if (currList[0]) { return GET_STRING(currList[0]); } else { /* Someone screwed up the alias table. */ return NULL; } } } } } /* The standard doesn't know about the alias */ *pErrorCode = U_AMBIGUOUS_ALIAS_WARNING; } listOffset = taggedAliasArray[tagNum*converterListNum + convNum]; if (listOffset && taggedAliasLists[listOffset + 1]) { return GET_STRING(taggedAliasLists[listOffset + 1]); } /* else no default name */ } /* else converter or tag not found */ } return NULL; } void ucnv_io_flushAvailableConverterCache() { if (availableConverters) { umtx_lock(NULL); availableConverterCount = 0; uprv_free((char **)availableConverters); availableConverters = NULL; umtx_unlock(NULL); } } static UBool haveAvailableConverterList(UErrorCode *pErrorCode) { if (availableConverters == NULL) { uint16_t idx; uint16_t localConverterCount; UErrorCode status; const char *converterName; const char **localConverterList; if (!haveAliasData(pErrorCode)) { return FALSE; } /* We can't have more than "*converterTable" converters to open */ localConverterList = (const char **) uprv_malloc(converterListNum * sizeof(char*)); if (!localConverterList) { *pErrorCode = U_MEMORY_ALLOCATION_ERROR; return FALSE; } localConverterCount = 0; for (idx = 0; idx < converterListNum; idx++) { status = U_ZERO_ERROR; converterName = GET_STRING(converterList[idx]); ucnv_close(ucnv_open(converterName, &status)); if (U_SUCCESS(status)) { localConverterList[localConverterCount++] = converterName; } } umtx_lock(NULL); if (availableConverters == NULL) { availableConverters = localConverterList; availableConverterCount = localConverterCount; } else { uprv_free((char **)localConverterList); } umtx_unlock(NULL); } return TRUE; } U_CFUNC uint16_t ucnv_io_countAvailableConverters(UErrorCode *pErrorCode) { if (haveAvailableConverterList(pErrorCode)) { return availableConverterCount; } return 0; } U_CFUNC const char * ucnv_io_getAvailableConverter(uint16_t n, UErrorCode *pErrorCode) { if (haveAvailableConverterList(pErrorCode)) { if (n < availableConverterCount) { return availableConverters[n]; } *pErrorCode = U_INDEX_OUTOFBOUNDS_ERROR; } return NULL; } U_CFUNC void ucnv_io_fillAvailableConverters(const char **aliases, UErrorCode *pErrorCode) { if (haveAvailableConverterList(pErrorCode)) { uint16_t count = 0; while (count < availableConverterCount) { *aliases++=availableConverters[count++]; } } } U_CFUNC uint16_t ucnv_io_countAvailableAliases(UErrorCode *pErrorCode) { if (haveAliasData(pErrorCode)) { return (uint16_t)aliasListNum; } return 0; } /* default converter name --------------------------------------------------- */ /* * In order to be really thread-safe, the get function would have to take * a buffer parameter and copy the current string inside a mutex block. * This implementation only tries to be really thread-safe while * setting the name. * It assumes that setting a pointer is atomic. */ U_CFUNC const char * ucnv_io_getDefaultConverterName() { /* local variable to be thread-safe */ const char *name=defaultConverterName; if(name==NULL) { const char *codepage = uprv_getDefaultCodepage(); if(codepage!=NULL) { UErrorCode errorCode=U_ZERO_ERROR; name=ucnv_io_getConverterName(codepage, &errorCode); if(U_FAILURE(errorCode) || name==NULL) { name=codepage; } } /* if the name is there, test it out */ if(name != NULL) { UErrorCode errorCode = U_ZERO_ERROR; UConverter *cnv = ucnv_open(name, &errorCode); if(U_FAILURE(errorCode) || (cnv == NULL)) { /* Panic time, let's use a fallback. */ #if (U_CHARSET_FAMILY == U_ASCII_FAMILY) name = "US-ASCII"; /* there is no 'algorithmic' converter for EBCDIC */ #elif defined(OS390) name = "ibm-1047-s390"; #else name = "ibm-37"; #endif } ucnv_close(cnv); } if(name != NULL) { umtx_lock(NULL); /* Did find a name. And it works.*/ defaultConverterName=name; umtx_unlock(NULL); } } return name; } U_CFUNC void ucnv_io_setDefaultConverterName(const char *converterName) { if(converterName==NULL) { /* reset to the default codepage */ defaultConverterName=NULL; } else { UErrorCode errorCode=U_ZERO_ERROR; const char *name=ucnv_io_getConverterName(converterName, &errorCode); if(U_SUCCESS(errorCode) && name!=NULL) { defaultConverterName=name; } else { /* do not set the name if the alias lookup failed and it is too long */ int32_t length=(int32_t)(uprv_strlen(converterName)); if(length