/* ******************************************************************************* * * Copyright (C) 2002, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: uset.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2002mar07 * created by: Markus W. Scherer * * The serialized structure, the array of range limits, is * the same as in UnicodeSet, except that the HIGH value is not stored. * * There are functions to efficiently serialize a USet into an array of uint16_t * and functions to use such a serialized form efficiently without * instantiating a new USet. */ #include "unicode/utypes.h" #include "cmemory.h" #include "unicode/uset.h" #include "unicode/uniset.h" #define USET_STATIC_CAPACITY 12 #define USET_GROW_DELTA 20 U_CAPI USet * U_EXPORT2 uset_open(UChar32 start, UChar32 end) { return (USet*) new UnicodeSet(start, end); } U_CAPI void U_EXPORT2 uset_close(USet *set) { delete (UnicodeSet*) set; } U_CAPI void U_EXPORT2 uset_add(USet *set, UChar32 c) { ((UnicodeSet*) set)->add(c); } U_CAPI void U_EXPORT2 uset_remove(USet *set, UChar32 c) { ((UnicodeSet*) set)->remove(c); } U_CAPI UBool U_EXPORT2 uset_isEmpty(const USet *set) { return ((const UnicodeSet*) set)->isEmpty(); } U_CAPI UBool U_EXPORT2 uset_contains(const USet *set, UChar32 c) { return ((const UnicodeSet*) set)->contains(c); } U_CAPI int32_t U_EXPORT2 uset_size(const USet* set) { return ((const UnicodeSet*) set)->size(); } U_CAPI int32_t U_EXPORT2 uset_getRangeCount(const USet *set) { return ((const UnicodeSet*) set)->getRangeCount(); } U_CAPI UBool U_EXPORT2 uset_getRange(const USet *set, int32_t rangeIndex, UChar32 *pStart, UChar32 *pEnd) { if ((uint32_t) rangeIndex >= (uint32_t) uset_getRangeCount(set)) { return FALSE; } const UnicodeSet* us = (const UnicodeSet*) set; *pStart = us->getRangeStart(rangeIndex); *pEnd = us->getRangeEnd(rangeIndex); return TRUE; } /* * Serialize a USet into 16-bit units. * Store BMP code points as themselves with one 16-bit unit each. * * Important: the code points in the array are in ascending order, * therefore all BMP code points precede all supplementary code points. * * Store each supplementary code point in 2 16-bit units, * simply with higher-then-lower 16-bit halfs. * * Precede the entire list with the length. * If there are supplementary code points, then set bit 15 in the length * and add the bmpLength between it and the array. * * In other words: * - all BMP: (length=bmpLength) BMP, .., BMP * - some supplementary: (length|0x8000) (bmpLengthserialize(dest, destCapacity, *ec); } U_CAPI UBool U_EXPORT2 uset_getSerializedSet(USerializedSet *fillSet, const uint16_t *src, int32_t srcLength) { int32_t length; if(fillSet==NULL) { return FALSE; } if(src==NULL || srcLength<=0) { fillSet->length=fillSet->bmpLength=0; return FALSE; } length=*src++; if(length&0x8000) { /* there are supplementary values */ length&=0x7fff; if(srcLength<(2+length)) { fillSet->length=fillSet->bmpLength=0; return FALSE; } fillSet->bmpLength=*src++; } else { /* only BMP values */ if(srcLength<(1+length)) { fillSet->length=fillSet->bmpLength=0; return FALSE; } fillSet->bmpLength=length; } fillSet->array=src; fillSet->length=length; return TRUE; } U_CAPI void U_EXPORT2 uset_setSerializedToOne(USerializedSet *fillSet, UChar32 c) { if(fillSet==NULL || (uint32_t)c>0x10ffff) { return; } fillSet->array=fillSet->staticArray; if(c<0xffff) { fillSet->bmpLength=fillSet->length=2; fillSet->staticArray[0]=(uint16_t)c; fillSet->staticArray[1]=(uint16_t)c+1; } else if(c==0xffff) { fillSet->bmpLength=1; fillSet->length=3; fillSet->staticArray[0]=0xffff; fillSet->staticArray[1]=1; fillSet->staticArray[2]=0; } else if(c<0x10ffff) { fillSet->bmpLength=0; fillSet->length=4; fillSet->staticArray[0]=(uint16_t)(c>>16); fillSet->staticArray[1]=(uint16_t)c; ++c; fillSet->staticArray[2]=(uint16_t)(c>>16); fillSet->staticArray[3]=(uint16_t)c; } else /* c==0x10ffff */ { fillSet->bmpLength=0; fillSet->length=2; fillSet->staticArray[0]=0x10; fillSet->staticArray[1]=0xffff; } } U_CAPI UBool U_EXPORT2 uset_serializedContains(const USerializedSet *set, UChar32 c) { const uint16_t *array; if(set==NULL || (uint32_t)c>0x10ffff) { return FALSE; } array=set->array; if(c<=0xffff) { /* find c in the BMP part */ int32_t i, bmpLength=set->bmpLength; for(i=0; i=array[i]; ++i) {} return (UBool)(i&1); } else { /* find c in the supplementary part */ int32_t i, length=set->length; uint16_t high=(uint16_t)(c>>16), low=(uint16_t)c; for(i=set->bmpLength; iarray[i] || (high==array[i] && low>=array[i+1])); i+=2) {} /* count pairs of 16-bit units even per BMP and check if the number of pairs is odd */ return (UBool)(((i+set->bmpLength)&2)!=0); } } U_CAPI int32_t U_EXPORT2 uset_countSerializedRanges(const USerializedSet *set) { if(set==NULL) { return 0; } return (set->bmpLength+(set->length-set->bmpLength)/2+1)/2; } U_CAPI UBool U_EXPORT2 uset_getSerializedRange(const USerializedSet *set, int32_t rangeIndex, UChar32 *pStart, UChar32 *pEnd) { const uint16_t *array; int32_t bmpLength, length; if(set==NULL || rangeIndex<0 || pStart==NULL || pEnd==NULL) { return FALSE; } array=set->array; length=set->length; bmpLength=set->bmpLength; rangeIndex*=2; /* address start/limit pairs */ if(rangeIndex0) { // if(c>=array[length-1]) { // return length; // } // // /* do not check the last range limit again in the loop below */ // --length; // } // // for(i=0; i=array[i]; ++i) {} // return i; // } // // static UBool // addRemove(USet *set, UChar32 c, int32_t doRemove) { // int32_t i, length, more; // // if(set==NULL || (uint32_t)c>0x10ffff) { // return FALSE; // } // // length=set->length; // i=findChar(set->array, length, c); // if((i&1)^doRemove) { // /* c is already in the set */ // return TRUE; // } // // /* how many more array items do we need? */ // if(iarray[i]) { // /* c is just before the following range, extend that in-place by one */ // set->array[i]=c; // if(i>0) { // --i; // if(c==set->array[i]) { // /* the previous range collapsed, remove it */ // set->length=length-=2; // if(iarray+i, set->array+i+2, (length-i)*4); // } // } // } // return TRUE; // } else if(i>0 && c==set->array[i-1]) { // /* c is just after the previous range, extend that in-place by one */ // if(++c<=0x10ffff) { // set->array[i-1]=c; // if(iarray[i]) { // /* the following range collapsed, remove it */ // --i; // set->length=length-=2; // if(iarray+i, set->array+i+2, (length-i)*4); // } // } // } else { // /* extend the previous range (had limit 0x10ffff) to the end of Unicode */ // set->length=i-1; // } // return TRUE; // } else if(i==length && c==0x10ffff) { // /* insert one range limit c */ // more=1; // } else { // /* insert two range limits c, c+1 */ // more=2; // } // // /* insert range limits */ // if(length+more>set->capacity) { // /* reallocate */ // int32_t newCapacity=set->capacity+set->capacity/2+USET_GROW_DELTA; // UChar32 *newArray=(UChar32 *)uprv_malloc(newCapacity*4); // if(newArray==NULL) { // return FALSE; // } // set->capacity=newCapacity; // uprv_memcpy(newArray, set->array, length*4); // // if(set->array!=set->staticBuffer) { // uprv_free(set->array); // } // set->array=newArray; // } // // if(iarray+i+more, set->array+i, (length-i)*4); // } // set->array[i]=c; // if(more==2) { // set->array[i+1]=c+1; // } // set->length+=more; // // return TRUE; // } // // U_CAPI UBool U_EXPORT2 // uset_add(USet *set, UChar32 c) { // return addRemove(set, c, 0); // } // // U_CAPI void U_EXPORT2 // uset_remove(USet *set, UChar32 c) { // addRemove(set, c, 1); // }