/* *************************************************************************** * Copyright (C) 1999-2003 International Business Machines Corporation * * and others. All rights reserved. * *************************************************************************** */ // // file: rbbi.c Contains the implementation of the rule based break iterator // runtime engine and the API implementation for // class RuleBasedBreakIterator // #include "unicode/utypes.h" #if !UCONFIG_NO_BREAK_ITERATION #include "unicode/rbbi.h" #include "unicode/schriter.h" #include "unicode/udata.h" #include "unicode/uclean.h" #include "rbbidata.h" #include "rbbirb.h" #include "cmemory.h" #include "cstring.h" #include "uassert.h" U_NAMESPACE_BEGIN static const int16_t START_STATE = 1; // The state number of the starting state static const int16_t STOP_STATE = 0; // The state-transition value indicating "stop" UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator) //======================================================================= // constructors //======================================================================= /** * Constructs a RuleBasedBreakIterator that uses the already-created * tables object that is passed in as a parameter. */ RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status) { init(); fData = new RBBIDataWrapper(data, status); // status checked in constructor if (U_FAILURE(status)) {return;} if(fData == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } //------------------------------------------------------------------------------- // // Constructor from a UDataMemory handle to precompiled break rules // stored in an ICU data file. // //------------------------------------------------------------------------------- RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status) { init(); fData = new RBBIDataWrapper(udm, status); // status checked in constructor if (U_FAILURE(status)) {return;} if(fData == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } } //------------------------------------------------------------------------------- // // Constructor from a set of rules supplied as a string. // //------------------------------------------------------------------------------- RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules, UParseError &parseError, UErrorCode &status) { u_init(&status); // Just in case ICU is not yet initialized init(); if (U_FAILURE(status)) {return;} RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *) RBBIRuleBuilder::createRuleBasedBreakIterator(rules, parseError, status); // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that // creates and returns a complete RBBI. From here, in a constructor, we // can't just return the object created by the builder factory, hence // the assignment of the factory created object to "this". if (U_SUCCESS(status)) { *this = *bi; delete bi; } } //------------------------------------------------------------------------------- // // Default Constructor. Create an empty shell that can be set up later. // Used when creating a RuleBasedBreakIterator from a set // of rules. //------------------------------------------------------------------------------- RuleBasedBreakIterator::RuleBasedBreakIterator() { init(); } //------------------------------------------------------------------------------- // // Copy constructor. Will produce a break iterator with the same behavior, // and which iterates over the same text, as the one passed in. // //------------------------------------------------------------------------------- RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other) : BreakIterator(other) { this->init(); *this = other; } /** * Destructor */ RuleBasedBreakIterator::~RuleBasedBreakIterator() { delete fText; fText = NULL; if (fData != NULL) { fData->removeReference(); fData = NULL; } } /** * Assignment operator. Sets this iterator to have the same behavior, * and iterate over the same text, as the one passed in. */ RuleBasedBreakIterator& RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) { if (this == &that) { return *this; } delete fText; fText = NULL; if (that.fText != NULL) { fText = that.fText->clone(); } if (fData != NULL) { fData->removeReference(); fData = NULL; } if (that.fData != NULL) { fData = that.fData->addReference(); } fTrace = that.fTrace; return *this; } //----------------------------------------------------------------------------- // // init() Shared initialization routine. Used by all the constructors. // Initializes all fields, leaving the object in a consistent state. // //----------------------------------------------------------------------------- UBool RuleBasedBreakIterator::fTrace = FALSE; void RuleBasedBreakIterator::init() { fText = NULL; fData = NULL; fCharMappings = NULL; fLastBreakTag = 0; fLastBreakTagValid = TRUE; fDictionaryCharCount = 0; #ifdef RBBI_DEBUG static UBool debugInitDone = FALSE; if (debugInitDone == FALSE) { char *debugEnv = getenv("U_RBBIDEBUG"); if (debugEnv && uprv_strstr(debugEnv, "trace")) { fTrace = TRUE; } debugInitDone = TRUE; } #endif } //----------------------------------------------------------------------------- // // clone - Returns a newly-constructed RuleBasedBreakIterator with the same // behavior, and iterating over the same text, as this one. // Virtual function: does the right thing with subclasses. // //----------------------------------------------------------------------------- BreakIterator* RuleBasedBreakIterator::clone(void) const { return new RuleBasedBreakIterator(*this); } /** * Equality operator. Returns TRUE if both BreakIterators are of the * same class, have the same behavior, and iterate over the same text. */ UBool RuleBasedBreakIterator::operator==(const BreakIterator& that) const { UBool r = FALSE; if (that.getDynamicClassID() != getDynamicClassID()) { return r; } const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that; if (fText == that2.fText || (fText != NULL && that2.fText != NULL && *that2.fText == *fText)) { if (that2.fData == fData || (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) { r = TRUE; } } return r; } /** * Compute a hash code for this BreakIterator * @return A hash code */ int32_t RuleBasedBreakIterator::hashCode(void) const { int32_t hash = 0; if (fData != NULL) { hash = fData->hashCode(); } return hash; } /** * Returns the description used to create this iterator */ const UnicodeString& RuleBasedBreakIterator::getRules() const { if (fData != NULL) { return fData->getRuleSourceString(); } else { static const UnicodeString *s; if (s == NULL) { // TODO: something more elegant here. // perhaps API should return the string by value. // Note: thread unsafe init & leak are semi-ok, better than // what was before. Sould be cleaned up, though. s = new UnicodeString; } return *s; } } //======================================================================= // BreakIterator overrides //======================================================================= /** * Return a CharacterIterator over the text being analyzed. This version * of this method returns the actual CharacterIterator we're using internally. * Changing the state of this iterator can have undefined consequences. If * you need to change it, clone it first. * @return An iterator over the text being analyzed. */ const CharacterIterator& RuleBasedBreakIterator::getText() const { RuleBasedBreakIterator* nonConstThis = (RuleBasedBreakIterator*)this; // The iterator is initialized pointing to no text at all, so if this // function is called while we're in that state, we have to fudge an // an iterator to return. if (nonConstThis->fText == NULL) { // TODO: do this in a way that does not do a default conversion! nonConstThis->fText = new StringCharacterIterator(""); } return *nonConstThis->fText; } /** * Set the iterator to analyze a new piece of text. This function resets * the current iteration position to the beginning of the text. * @param newText An iterator over the text to analyze. */ void RuleBasedBreakIterator::adoptText(CharacterIterator* newText) { reset(); delete fText; fText = newText; this->first(); } /** * Set the iterator to analyze a new piece of text. This function resets * the current iteration position to the beginning of the text. * @param newText An iterator over the text to analyze. */ void RuleBasedBreakIterator::setText(const UnicodeString& newText) { reset(); if (fText != NULL && fText->getDynamicClassID() == StringCharacterIterator::getStaticClassID()) { ((StringCharacterIterator*)fText)->setText(newText); } else { delete fText; fText = new StringCharacterIterator(newText); } this->first(); } /** * Sets the current iteration position to the beginning of the text. * (i.e., the CharacterIterator's starting offset). * @return The offset of the beginning of the text. */ int32_t RuleBasedBreakIterator::first(void) { reset(); fLastBreakTag = 0; fLastBreakTagValid = TRUE; if (fText == NULL) return BreakIterator::DONE; fText->first(); return fText->getIndex(); } /** * Sets the current iteration position to the end of the text. * (i.e., the CharacterIterator's ending offset). * @return The text's past-the-end offset. */ int32_t RuleBasedBreakIterator::last(void) { reset(); if (fText == NULL) { fLastBreakTag = 0; fLastBreakTagValid = TRUE; return BreakIterator::DONE; } // I'm not sure why, but t.last() returns the offset of the last character, // rather than the past-the-end offset // // (It's so a loop like for(p=it.last(); p!=DONE; p=it.previous()) ... // will work correctly.) fLastBreakTagValid = FALSE; int32_t pos = fText->endIndex(); fText->setIndex(pos); return pos; } /** * Advances the iterator either forward or backward the specified number of steps. * Negative values move backward, and positive values move forward. This is * equivalent to repeatedly calling next() or previous(). * @param n The number of steps to move. The sign indicates the direction * (negative is backwards, and positive is forwards). * @return The character offset of the boundary position n boundaries away from * the current one. */ int32_t RuleBasedBreakIterator::next(int32_t n) { int32_t result = current(); while (n > 0) { result = handleNext(); --n; } while (n < 0) { result = previous(); ++n; } return result; } /** * Advances the iterator to the next boundary position. * @return The position of the first boundary after this one. */ int32_t RuleBasedBreakIterator::next(void) { return handleNext(); } /** * Advances the iterator backwards, to the last boundary preceding this one. * @return The position of the last boundary position preceding this one. */ int32_t RuleBasedBreakIterator::previous(void) { // if we're already sitting at the beginning of the text, return DONE if (fText == NULL || current() == fText->startIndex()) { fLastBreakTag = 0; fLastBreakTagValid = TRUE; return BreakIterator::DONE; } // set things up. handlePrevious() will back us up to some valid // break position before the current position (we back our internal // iterator up one step to prevent handlePrevious() from returning // the current position), but not necessarily the last one before // where we started int32_t start = current(); fText->previous32(); int32_t lastResult = handlePrevious(); int32_t result = lastResult; int32_t lastTag = 0; UBool breakTagValid = FALSE; // iterate forward from the known break position until we pass our // starting point. The last break position before the starting // point is our return value for (;;) { result = handleNext(); if (result == BreakIterator::DONE || result >= start) { break; } lastResult = result; lastTag = fLastBreakTag; breakTagValid = TRUE; } // fLastBreakTag wants to have the value for section of text preceding // the result position that we are to return (in lastResult.) If // the backwards rules overshot and the above loop had to do two or more // handleNext()s to move up to the desired return position, we will have a valid // tag value. But, if handlePrevious() took us to exactly the correct result positon, // we wont have a tag value for that position, which is only set by handleNext(). // set the current iteration position to be the last break position // before where we started, and then return that value fText->setIndex(lastResult); fLastBreakTag = lastTag; // for use by getRuleStatus() fLastBreakTagValid = breakTagValid; return lastResult; } /** * Sets the iterator to refer to the first boundary position following * the specified position. * @offset The position from which to begin searching for a break position. * @return The position of the first break after the current position. */ int32_t RuleBasedBreakIterator::following(int32_t offset) { // if the offset passed in is already past the end of the text, // just return DONE; if it's before the beginning, return the // text's starting offset fLastBreakTag = 0; fLastBreakTagValid = TRUE; if (fText == NULL || offset >= fText->endIndex()) { // fText->setToEnd(); // return BreakIterator::DONE; last(); return next(); } else if (offset < fText->startIndex()) { // fText->setToStart(); // return fText->startIndex(); return first(); } // otherwise, set our internal iteration position (temporarily) // to the position passed in. If this is the _beginning_ position, // then we can just use next() to get our return value fText->setIndex(offset); if (offset == fText->startIndex()) return handleNext(); // otherwise, we have to sync up first. Use handlePrevious() to back // us up to a known break position before the specified position (if // we can determine that the specified position is a break position, // we don't back up at all). This may or may not be the last break // position at or before our starting position. Advance forward // from here until we've passed the starting position. The position // we stop on will be the first break position after the specified one. int32_t result = previous(); while (result != BreakIterator::DONE && result <= offset) { result = next(); } return result; } /** * Sets the iterator to refer to the last boundary position before the * specified position. * @offset The position to begin searching for a break from. * @return The position of the last boundary before the starting position. */ int32_t RuleBasedBreakIterator::preceding(int32_t offset) { // if the offset passed in is already past the end of the text, // just return DONE; if it's before the beginning, return the // text's starting offset if (fText == NULL || offset > fText->endIndex()) { // return BreakIterator::DONE; return last(); } else if (offset < fText->startIndex()) { return first(); } // if we start by updating the current iteration position to the // position specified by the caller, we can just use previous() // to carry out this operation fText->setIndex(offset); return previous(); } /** * Returns true if the specfied position is a boundary position. As a side * effect, leaves the iterator pointing to the first boundary position at * or after "offset". * @param offset the offset to check. * @return True if "offset" is a boundary position. */ UBool RuleBasedBreakIterator::isBoundary(int32_t offset) { // the beginning index of the iterator is always a boundary position by definition if (fText == NULL || offset == fText->startIndex()) { first(); // For side effects on current position, tag values. return TRUE; } // out-of-range indexes are never boundary positions if (offset < fText->startIndex()) { first(); // For side effects on current position, tag values. return FALSE; } if (offset > fText->endIndex()) { last(); // For side effects on current position, tag values. return FALSE; } // otherwise, we can use following() on the position before the specified // one and return true if the position we get back is the one the user // specified return following(offset - 1) == offset; } /** * Returns the current iteration position. * @return The current iteration position. */ int32_t RuleBasedBreakIterator::current(void) const { return (fText != NULL) ? fText->getIndex() : BreakIterator::DONE; } //======================================================================= // implementation //======================================================================= //----------------------------------------------------------------------------------- // // handleNext() // This method is the actual implementation of the next() method. All iteration // vectors through here. This method initializes the state machine to state 1 // and advances through the text character by character until we reach the end // of the text or the state machine transitions to state 0. We update our return // value every time the state machine passes through a possible end state. // //----------------------------------------------------------------------------------- int32_t RuleBasedBreakIterator::handleNext(void) { if (fTrace) { RBBIDebugPrintf("Handle Next pos char state category \n"); } // No matter what, handleNext alway correctly sets the break tag value. fLastBreakTagValid = TRUE; // if we're already at the end of the text, return DONE. if (fText == NULL || fData == NULL || fText->getIndex() == fText->endIndex()) { fLastBreakTag = 0; return BreakIterator::DONE; } // no matter what, we always advance at least one character forward int32_t temp = fText->getIndex(); fText->next32(); int32_t result = fText->getIndex(); fText->setIndex(temp); int32_t lookaheadResult = 0; // Initialize the state machine. Begin in state 1 int32_t state = START_STATE; int16_t category; UChar32 c = fText->current32(); RBBIStateTableRow *row; int32_t lookaheadStatus = 0; int32_t lookaheadTag = 0; fLastBreakTag = 0; row = (RBBIStateTableRow *) // Point to starting row of state table. (fData->fForwardTable->fTableData + (fData->fForwardTable->fRowLen * state)); // Character Category fetch for starting character. // See comments on character category code within loop, below. UTRIE_GET16(&fData->fTrie, c, category); if ((category & 0x4000) != 0) { fDictionaryCharCount++; category &= ~0x4000; } // loop until we reach the end of the text or transition to state 0 for (;;) { if (c == CharacterIterator::DONE && fText->hasNext()==FALSE) { // Note: CharacterIterator::DONE is 0xffff, which is also a legal // character value. Check for DONE first, because it's quicker, // but also need to check fText->hasNext() to be certain. break; } // look up the current character's character category, which tells us // which column in the state table to look at. // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, // not the size of the character going in. // UTRIE_GET16(&fData->fTrie, c, category); // Check the dictionary bit in the character's category. // Counter is only used by dictionary based iterators (subclasses). // Chars that need to be handled by a dictionary have a flag bit set // in their category values. // if ((category & 0x4000) != 0) { fDictionaryCharCount++; // And off the dictionary flag bit. category &= ~0x4000; } if (fTrace) { RBBIDebugPrintf(" %4d ", fText->getIndex()); if (0x20<=c && c<0x7f) { RBBIDebugPrintf("\"%c\" ", c); } else { RBBIDebugPrintf("%5x ", c); } RBBIDebugPrintf("%3d %3d\n", state, category); } // look up a state transition in the state table state = row->fNextState[category]; row = (RBBIStateTableRow *) (fData->fForwardTable->fTableData + (fData->fForwardTable->fRowLen * state)); // Get the next character. Doing it here positions the iterator // to the correct position for recording matches in the code that // follows. // TODO: 16 bit next, and a 16 bit TRIE lookup, with escape code // for non-BMP chars, would be faster. c = fText->next32(); if (row->fAccepting == 0 && row->fLookAhead == 0) { // No match, nothing of interest happening, common case. goto continueOn; } if (row->fAccepting == -1) { // Match found, common case, no lookahead involved. // (It's possible that some lookahead rule matched here also, // but since there's an unconditional match, we'll favor that.) result = fText->getIndex(); lookaheadStatus = 0; // clear out any pending look-ahead matches. fLastBreakTag = row->fTag; // Remember the break status (tag) value. goto continueOn; } if (row->fAccepting == 0 && row->fLookAhead != 0) { // Lookahead match point. Remember it, but only if no other rule has // unconitionally matched up to this point. // TODO: handle case where there's a pending match from a different rule - // where lookaheadStatus != 0 && lookaheadStatus != row->fLookAhead. int32_t r = fText->getIndex(); if (r > result) { lookaheadResult = r; lookaheadStatus = row->fLookAhead; lookaheadTag = row->fTag; } goto continueOn; } if (row->fAccepting != 0 && row->fLookAhead != 0) { // Lookahead match is completed. Set the result accordingly, but only // if no other rule has matched further in the mean time. if (lookaheadResult > result) { U_ASSERT(row->fAccepting == lookaheadStatus); // TODO: handle this case // of overlapping lookahead matches. result = lookaheadResult; fLastBreakTag = lookaheadTag; lookaheadStatus = 0; } goto continueOn; } continueOn: if (state == STOP_STATE) { break; } // c = fText->next32(); } // if we've run off the end of the text, and the very last character took us into // a lookahead state, advance the break position to the lookahead position // (the theory here is that if there are no characters at all after the lookahead // position, that always matches the lookahead criteria) // TODO: is this really the right behavior? if (c == CharacterIterator::DONE && fText->hasNext()==FALSE && lookaheadResult == fText->endIndex()) { result = lookaheadResult; fLastBreakTag = lookaheadTag; } fText->setIndex(result); if (fTrace) { RBBIDebugPrintf("result = %d\n\n", result); } return result; } //----------------------------------------------------------------------------------- // // handlePrevious() // // This method backs the iterator back up to a "safe position" in the text. // This is a position that we know, without any context, must be a break position. // The various calling methods then iterate forward from this safe position to // the appropriate position to return. // // The logic of this function is very similar to handleNext(), above. // //----------------------------------------------------------------------------------- int32_t RuleBasedBreakIterator::handlePrevious(void) { if (fText == NULL || fData == NULL) { return 0; } if (fData->fReverseTable == NULL) { return fText->setToStart(); } int32_t state = START_STATE; int32_t category; int32_t lastCategory = 0; int32_t result = fText->getIndex(); int32_t lookaheadStatus = 0; int32_t lookaheadResult = 0; int32_t lookaheadTag = 0; UChar32 c = fText->current32(); RBBIStateTableRow *row; row = (RBBIStateTableRow *) (this->fData->fReverseTable->fTableData + (state * fData->fReverseTable->fRowLen)); UTRIE_GET16(&fData->fTrie, c, category); if ((category & 0x4000) != 0) { fDictionaryCharCount++; category &= ~0x4000; } if (fTrace) { RBBIDebugPrintf("Handle Prev pos char state category \n"); } // loop until we reach the beginning of the text or transition to state 0 for (;;) { if (c == CharacterIterator::DONE && fText->hasPrevious()==FALSE) { break; } // save the last character's category and look up the current // character's category lastCategory = category; UTRIE_GET16(&fData->fTrie, c, category); // Check the dictionary bit in the character's category. // Counter is only used by dictionary based iterators. // if ((category & 0x4000) != 0) { fDictionaryCharCount++; category &= ~0x4000; } if (fTrace) { RBBIDebugPrintf(" %4d ", fText->getIndex()); if (0x20<=c && c<0x7f) { RBBIDebugPrintf("\"%c\" ", c); } else { RBBIDebugPrintf("%5x ", c); } RBBIDebugPrintf("%3d %3d\n", state, category); } // look up a state transition in the backwards state table state = row->fNextState[category]; row = (RBBIStateTableRow *) (this->fData->fReverseTable->fTableData + (state * fData->fReverseTable->fRowLen)); if (row->fAccepting == 0 && row->fLookAhead == 0) { // No match, nothing of interest happening, common case. goto continueOn; } if (row->fAccepting == -1) { // Match found, common case, no lookahead involved. result = fText->getIndex(); lookaheadStatus = 0; // clear out any pending look-ahead matches. goto continueOn; } if (row->fAccepting == 0 && row->fLookAhead != 0) { // Lookahead match point. Remember it, but only if no other rule // has unconditionally matched to this point. // TODO: handle case where there's a pending match from a different rule // where lookaheadStatus != 0 && lookaheadStatus != row->fLookAhead. int32_t r = fText->getIndex(); if (r > result) { lookaheadResult = r; lookaheadStatus = row->fLookAhead; lookaheadTag = row->fTag; } goto continueOn; } if (row->fAccepting != 0 && row->fLookAhead != 0) { // Lookahead match is completed. Set the result accordingly, but only // if no other rule has matched further in the mean time. if (lookaheadResult > result) { U_ASSERT(row->fAccepting == lookaheadStatus); // TODO: handle this case // of overlapping lookahead matches. result = lookaheadResult; fLastBreakTag = lookaheadTag; lookaheadStatus = 0; } goto continueOn; } continueOn: if (state == STOP_STATE) { break; } // then advance one character backwards c = fText->previous32(); } // Note: the result postion isn't what is returned to the user by previous(), // but where the implementation of previous() turns around and // starts iterating forward again. if (c == CharacterIterator::DONE && fText->hasPrevious()==FALSE) { result = fText->startIndex(); } fText->setIndex(result); return result; } void RuleBasedBreakIterator::reset() { // Base-class version of this function is a no-op. // Subclasses may override with their own reset behavior. } //------------------------------------------------------------------------------- // // getRuleStatus() Return the break rule tag associated with the current // iterator position. If the iterator arrived at its current // position by iterating forwards, the value will have been // cached by the handleNext() function. // // If no cached status value is available, the status is // found by doing a previous() followed by a next(), which // leaves the iterator where it started, and computes the // status while doing the next(). // //------------------------------------------------------------------------------- int32_t RuleBasedBreakIterator::getRuleStatus() const { RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; if (fLastBreakTagValid == FALSE) { // No cached status is available. if (fText == NULL || current() == fText->startIndex()) { // At start of text, or there is no text. Status is always zero. nonConstThis->fLastBreakTag = 0; nonConstThis->fLastBreakTagValid = TRUE; } else { // Not at start of text. Find status the tedious way. int32_t pa = current(); nonConstThis->previous(); int32_t pb = nonConstThis->next(); U_ASSERT(pa == pb); } } return nonConstThis->fLastBreakTag; } //------------------------------------------------------------------------------- // // getBinaryRules Access to the compiled form of the rules, // for use by build system tools that save the data // for standard iterator types. // //------------------------------------------------------------------------------- const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) { const uint8_t *retPtr = NULL; length = 0; if (fData != NULL) { retPtr = (const uint8_t *)fData->fHeader; length = fData->fHeader->fLength; } return retPtr; } //------------------------------------------------------------------------------- // // BufferClone TODO: In my (Andy) opinion, this function should be deprecated. // Saving one heap allocation isn't worth the trouble. // Cloning shouldn't be done in tight loops, and // making the clone copy involves other heap operations anyway. // And the application code for correctly dealing with buffer // size problems and the eventual object destruction is ugly. // //------------------------------------------------------------------------------- BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer, int32_t &bufferSize, UErrorCode &status) { if (U_FAILURE(status)){ return NULL; } // // If user buffer size is zero this is a preflight operation to // obtain the needed buffer size, allowing for worst case misalignment. // if (bufferSize == 0) { bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0); return NULL; } // // Check the alignment and size of the user supplied buffer. // Allocate heap memory if the user supplied memory is insufficient. // char *buf = (char *)stackBuffer; uint32_t s = bufferSize; if (stackBuffer == NULL) { s = 0; // Ignore size, force allocation if user didn't give us a buffer. } if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf); s -= offsetUp; buf += offsetUp; } if (s < sizeof(RuleBasedBreakIterator)) { buf = (char *) new RuleBasedBreakIterator; if (buf == 0) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } status = U_SAFECLONE_ALLOCATED_WARNING; } // // Clone the object. // TODO: using an overloaded operator new to directly initialize the // copy in the user's buffer would be better, but it doesn't seem // to get along with namespaces. Investigate why. // // The memcpy is only safe with an empty (default constructed) // break iterator. Use on others can screw up reference counts // to data. memcpy-ing objects is not really a good idea... // RuleBasedBreakIterator localIter; // Empty break iterator, source for memcpy RuleBasedBreakIterator *clone = (RuleBasedBreakIterator *)buf; uprv_memcpy(clone, &localIter, sizeof(RuleBasedBreakIterator)); // clone = empty, but initialized, iterator. *clone = *this; // clone = the real one we want. if (status != U_SAFECLONE_ALLOCATED_WARNING) { clone->fBufferClone = TRUE; } return clone; } //------------------------------------------------------------------------------- // // isDictionaryChar Return true if the category lookup for this char // indicates that it is in the set of dictionary lookup // chars. // // This function is intended for use by dictionary based // break iterators. // //------------------------------------------------------------------------------- UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) { if (fData == NULL) { return FALSE; } uint16_t category; UTRIE_GET16(&fData->fTrie, c, category); return (category & 0x4000) != 0; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_BREAK_ITERATION */