/* ****************************************************************************** * Copyright (C) 1997-2005, International Business Machines * Corporation and others. All Rights Reserved. ****************************************************************************** * file name: nfrule.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * Modification history * Date Name Comments * 10/11/2001 Doug Ported from ICU4J */ #include "nfrule.h" #if U_HAVE_RBNF #include "unicode/rbnf.h" #include "unicode/tblcoll.h" #include "unicode/coleitr.h" #include "unicode/uchar.h" #include "nfrs.h" #include "nfrlist.h" #include "nfsubs.h" #include "util.h" U_NAMESPACE_BEGIN NFRule::NFRule(const RuleBasedNumberFormat* _rbnf) : baseValue((int32_t)0) , radix(0) , exponent(0) , ruleText() , sub1(NULL) , sub2(NULL) , formatter(_rbnf) { } NFRule::~NFRule() { delete sub1; delete sub2; } static const UChar gLeftBracket = 0x005b; static const UChar gRightBracket = 0x005d; static const UChar gColon = 0x003a; static const UChar gZero = 0x0030; static const UChar gNine = 0x0039; static const UChar gSpace = 0x0020; static const UChar gSlash = 0x002f; static const UChar gGreaterThan = 0x003e; static const UChar gLessThan = 0x003c; static const UChar gComma = 0x002c; static const UChar gDot = 0x002e; static const UChar gTick = 0x0027; static const UChar gMinus = 0x002d; static const UChar gSemicolon = 0x003b; static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */ static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */ static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */ static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ static const UChar gEmptyString[] = {0}; /* "" */ static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ static const UChar * const tokenStrings[] = { gLessLess, gLessPercent, gLessHash, gLessZero, gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, gEqualPercent, gEqualHash, gEqualZero, NULL }; void NFRule::makeRules(UnicodeString& description, const NFRuleSet *ruleSet, const NFRule *predecessor, const RuleBasedNumberFormat *rbnf, NFRuleList& rules, UErrorCode& status) { // we know we're making at least one rule, so go ahead and // new it up and initialize its basevalue and divisor // (this also strips the rule descriptor, if any, off the // descripton string) NFRule* rule1 = new NFRule(rbnf); /* test for NULL */ if (rule1 == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } rule1->parseRuleDescriptor(description, status); // check the description to see whether there's text enclosed // in brackets int32_t brack1 = description.indexOf(gLeftBracket); int32_t brack2 = description.indexOf(gRightBracket); // if the description doesn't contain a matched pair of brackets, // or if it's of a type that doesn't recognize bracketed text, // then leave the description alone, initialize the rule's // rule text and substitutions, and return that rule if (brack1 == -1 || brack2 == -1 || brack1 > brack2 || rule1->getType() == kProperFractionRule || rule1->getType() == kNegativeNumberRule) { rule1->ruleText = description; rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); rules.add(rule1); } else { // if the description does contain a matched pair of brackets, // then it's really shorthand for two rules (with one exception) NFRule* rule2 = NULL; UnicodeString sbuf; // we'll actually only split the rule into two rules if its // base value is an even multiple of its divisor (or it's one // of the special rules) if ((rule1->baseValue > 0 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0) || rule1->getType() == kImproperFractionRule || rule1->getType() == kMasterRule) { // if it passes that test, new up the second rule. If the // rule set both rules will belong to is a fraction rule // set, they both have the same base value; otherwise, // increment the original rule's base value ("rule1" actually // goes SECOND in the rule set's rule list) rule2 = new NFRule(rbnf); /* test for NULL */ if (rule2 == 0) { status = U_MEMORY_ALLOCATION_ERROR; return; } if (rule1->baseValue >= 0) { rule2->baseValue = rule1->baseValue; if (!ruleSet->isFractionRuleSet()) { ++rule1->baseValue; } } // if the description began with "x.x" and contains bracketed // text, it describes both the improper fraction rule and // the proper fraction rule else if (rule1->getType() == kImproperFractionRule) { rule2->setType(kProperFractionRule); } // if the description began with "x.0" and contains bracketed // text, it describes both the master rule and the // improper fraction rule else if (rule1->getType() == kMasterRule) { rule2->baseValue = rule1->baseValue; rule1->setType(kImproperFractionRule); } // both rules have the same radix and exponent (i.e., the // same divisor) rule2->radix = rule1->radix; rule2->exponent = rule1->exponent; // rule2's rule text omits the stuff in brackets: initalize // its rule text and substitutions accordingly sbuf.append(description, 0, brack1); if (brack2 + 1 < description.length()) { sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); } rule2->ruleText.setTo(sbuf); rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status); } // rule1's text includes the text in the brackets but omits // the brackets themselves: initialize _its_ rule text and // substitutions accordingly sbuf.setTo(description, 0, brack1); sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); if (brack2 + 1 < description.length()) { sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); } rule1->ruleText.setTo(sbuf); rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status); // if we only have one rule, return it; if we have two, return // a two-element array containing them (notice that rule2 goes // BEFORE rule1 in the list: in all cases, rule2 OMITS the // material in the brackets and rule1 INCLUDES the material // in the brackets) if (rule2 != NULL) { rules.add(rule2); } rules.add(rule1); } } /** * This function parses the rule's rule descriptor (i.e., the base * value and/or other tokens that precede the rule's rule text * in the description) and sets the rule's base value, radix, and * exponent according to the descriptor. (If the description doesn't * include a rule descriptor, then this function sets everything to * default values and the rule set sets the rule's real base value). * @param description The rule's description * @return If "description" included a rule descriptor, this is * "description" with the descriptor and any trailing whitespace * stripped off. Otherwise; it's "descriptor" unchangd. */ void NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) { // the description consists of a rule descriptor and a rule body, // separated by a colon. The rule descriptor is optional. If // it's omitted, just set the base value to 0. int32_t p = description.indexOf(gColon); if (p == -1) { setBaseValue((int32_t)0, status); } else { // copy the descriptor out into its own string and strip it, // along with any trailing whitespace, out of the original // description UnicodeString descriptor; descriptor.setTo(description, 0, p); ++p; while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) { ++p; } description.removeBetween(0, p); // check first to see if the rule descriptor matches the token // for one of the special rules. If it does, set the base // value to the correct identfier value if (descriptor == gMinusX) { setType(kNegativeNumberRule); } else if (descriptor == gXDotX) { setType(kImproperFractionRule); } else if (descriptor == gZeroDotX) { setType(kProperFractionRule); } else if (descriptor == gXDotZero) { setType(kMasterRule); } // if the rule descriptor begins with a digit, it's a descriptor // for a normal rule // since we don't have Long.parseLong, and this isn't much work anyway, // just build up the value as we encounter the digits. else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) { int64_t val = 0; p = 0; UChar c = gSpace; // begin parsing the descriptor: copy digits // into "tempValue", skip periods, commas, and spaces, // stop on a slash or > sign (or at the end of the string), // and throw an exception on any other character int64_t ll_10 = 10; while (p < descriptor.length()) { c = descriptor.charAt(p); if (c >= gZero && c <= gNine) { val = val * ll_10 + (int32_t)(c - gZero); } else if (c == gSlash || c == gGreaterThan) { break; } else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) { } else { // throw new IllegalArgumentException("Illegal character in rule descriptor"); status = U_PARSE_ERROR; return; } ++p; } // we have the base value, so set it setBaseValue(val, status); // if we stopped the previous loop on a slash, we're // now parsing the rule's radix. Again, accumulate digits // in tempValue, skip punctuation, stop on a > mark, and // throw an exception on anything else if (c == gSlash) { val = 0; ++p; int64_t ll_10 = 10; while (p < descriptor.length()) { c = descriptor.charAt(p); if (c >= gZero && c <= gNine) { val = val * ll_10 + (int32_t)(c - gZero); } else if (c == gGreaterThan) { break; } else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) { } else { // throw new IllegalArgumentException("Illegal character is rule descriptor"); status = U_PARSE_ERROR; return; } ++p; } // tempValue now contain's the rule's radix. Set it // accordingly, and recalculate the rule's exponent radix = (int32_t)val; if (radix == 0) { // throw new IllegalArgumentException("Rule can't have radix of 0"); status = U_PARSE_ERROR; } exponent = expectedExponent(); } // if we stopped the previous loop on a > sign, then continue // for as long as we still see > signs. For each one, // decrement the exponent (unless the exponent is already 0). // If we see another character before reaching the end of // the descriptor, that's also a syntax error. if (c == gGreaterThan) { while (p < descriptor.length()) { c = descriptor.charAt(p); if (c == gGreaterThan && exponent > 0) { --exponent; } else { // throw new IllegalArgumentException("Illegal character in rule descriptor"); status = U_PARSE_ERROR; return; } ++p; } } } } // finally, if the rule body begins with an apostrophe, strip it off // (this is generally used to put whitespace at the beginning of // a rule's rule text) if (description.length() > 0 && description.charAt(0) == gTick) { description.removeBetween(0, 1); } // return the description with all the stuff we've just waded through // stripped off the front. It now contains just the rule body. // return description; } /** * Searches the rule's rule text for the substitution tokens, * creates the substitutions, and removes the substitution tokens * from the rule's rule text. * @param owner The rule set containing this rule * @param predecessor The rule preseding this one in "owners" rule list * @param ownersOwner The RuleBasedFormat that owns this rule */ void NFRule::extractSubstitutions(const NFRuleSet* ruleSet, const NFRule* predecessor, const RuleBasedNumberFormat* rbnf, UErrorCode& status) { if (U_SUCCESS(status)) { sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status); sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status); } } /** * Searches the rule's rule text for the first substitution token, * creates a substitution based on it, and removes the token from * the rule's rule text. * @param owner The rule set containing this rule * @param predecessor The rule preceding this one in the rule set's * rule list * @param ownersOwner The RuleBasedNumberFormat that owns this rule * @return The newly-created substitution. This is never null; if * the rule text doesn't contain any substitution tokens, this will * be a NullSubstitution. */ NFSubstitution * NFRule::extractSubstitution(const NFRuleSet* ruleSet, const NFRule* predecessor, const RuleBasedNumberFormat* rbnf, UErrorCode& status) { NFSubstitution* result = NULL; // search the rule's rule text for the first two characters of // a substitution token int32_t subStart = indexOfAny(tokenStrings); int32_t subEnd = subStart; // if we didn't find one, create a null substitution positioned // at the end of the rule text if (subStart == -1) { return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, ruleSet, rbnf, gEmptyString, status); } // special-case the ">>>" token, since searching for the > at the // end will actually find the > in the middle if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) { subEnd = subStart + 2; // otherwise the substitution token ends with the same character // it began with } else { UChar c = ruleText.charAt(subStart); subEnd = ruleText.indexOf(c, subStart + 1); // special case for '<%foo<<' if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) { // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle // occurs because of the juxtaposition of two different rules. The check for '<' is a hack // to get around this. Having the duplicate at the front would cause problems with // rules like "<<%" to format, say, percents... ++subEnd; } } // if we don't find the end of the token (i.e., if we're on a single, // unmatched token character), create a null substitution positioned // at the end of the rule if (subEnd == -1) { return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor, ruleSet, rbnf, gEmptyString, status); } // if we get here, we have a real substitution token (or at least // some text bounded by substitution token characters). Use // makeSubstitution() to create the right kind of substitution UnicodeString subToken; subToken.setTo(ruleText, subStart, subEnd + 1 - subStart); result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet, rbnf, subToken, status); // remove the substitution from the rule text ruleText.removeBetween(subStart, subEnd+1); return result; } /** * Sets the rule's base value, and causes the radix and exponent * to be recalculated. This is used during construction when we * don't know the rule's base value until after it's been * constructed. It should be used at any other time. * @param The new base value for the rule. */ void NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) { // set the base value baseValue = newBaseValue; // if this isn't a special rule, recalculate the radix and exponent // (the radix always defaults to 10; if it's supposed to be something // else, it's cleaned up by the caller and the exponent is // recalculated again-- the only function that does this is // NFRule.parseRuleDescriptor() ) if (baseValue >= 1) { radix = 10; exponent = expectedExponent(); // this function gets called on a fully-constructed rule whose // description didn't specify a base value. This means it // has substitutions, and some substitutions hold on to copies // of the rule's divisor. Fix their copies of the divisor. if (sub1 != NULL) { sub1->setDivisor(radix, exponent, status); } if (sub2 != NULL) { sub2->setDivisor(radix, exponent, status); } // if this is a special rule, its radix and exponent are basically // ignored. Set them to "safe" default values } else { radix = 10; exponent = 0; } } /** * This calculates the rule's exponent based on its radix and base * value. This will be the highest power the radix can be raised to * and still produce a result less than or equal to the base value. */ int16_t NFRule::expectedExponent() const { // since the log of 0, or the log base 0 of something, causes an // error, declare the exponent in these cases to be 0 (we also // deal with the special-rule identifiers here) if (radix == 0 || baseValue < 1) { return 0; } // we get rounding error in some cases-- for example, log 1000 / log 10 // gives us 1.9999999996 instead of 2. The extra logic here is to take // that into account int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix)); int64_t temp = util64_pow(radix, tempResult + 1); if (temp <= baseValue) { tempResult += 1; } return tempResult; } /** * Searches the rule's rule text for any of the specified strings. * @param strings An array of strings to search the rule's rule * text for * @return The index of the first match in the rule's rule text * (i.e., the first substring in the rule's rule text that matches * _any_ of the strings in "strings"). If none of the strings in * "strings" is found in the rule's rule text, returns -1. */ int32_t NFRule::indexOfAny(const UChar* const strings[]) const { int result = -1; for (int i = 0; strings[i]; i++) { int32_t pos = ruleText.indexOf(*strings[i]); if (pos != -1 && (result == -1 || pos < result)) { result = pos; } } return result; } //----------------------------------------------------------------------- // boilerplate //----------------------------------------------------------------------- /** * Tests two rules for equality. * @param that The rule to compare this one against * @return True is the two rules are functionally equivalent */ UBool NFRule::operator==(const NFRule& rhs) const { return baseValue == rhs.baseValue && radix == rhs.radix && exponent == rhs.exponent && ruleText == rhs.ruleText && *sub1 == *rhs.sub1 && *sub2 == *rhs.sub2; } /** * Returns a textual representation of the rule. This won't * necessarily be the same as the description that this rule * was created with, but it will produce the same result. * @return A textual description of the rule */ static void util_append64(UnicodeString& result, int64_t n) { UChar buffer[256]; int32_t len = util64_tou(n, buffer, sizeof(buffer)); UnicodeString temp(buffer, len); result.append(temp); } void NFRule::_appendRuleText(UnicodeString& result) const { switch (getType()) { case kNegativeNumberRule: result.append(gMinusX); break; case kImproperFractionRule: result.append(gXDotX); break; case kProperFractionRule: result.append(gZeroDotX); break; case kMasterRule: result.append(gXDotZero); break; default: // for a normal rule, write out its base value, and if the radix is // something other than 10, write out the radix (with the preceding // slash, of course). Then calculate the expected exponent and if // if isn't the same as the actual exponent, write an appropriate // number of > signs. Finally, terminate the whole thing with // a colon. util_append64(result, baseValue); if (radix != 10) { result.append(gSlash); util_append64(result, radix); } int numCarets = expectedExponent() - exponent; for (int i = 0; i < numCarets; i++) { result.append(gGreaterThan); } break; } result.append(gColon); result.append(gSpace); // if the rule text begins with a space, write an apostrophe // (whitespace after the rule descriptor is ignored; the // apostrophe is used to make the whitespace significant) if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) { result.append(gTick); } // now, write the rule's rule text, inserting appropriate // substitution tokens in the appropriate places UnicodeString ruleTextCopy; ruleTextCopy.setTo(ruleText); UnicodeString temp; sub2->toString(temp); ruleTextCopy.insert(sub2->getPos(), temp); sub1->toString(temp); ruleTextCopy.insert(sub1->getPos(), temp); result.append(ruleTextCopy); // and finally, top the whole thing off with a semicolon and // return the result result.append(gSemicolon); } //----------------------------------------------------------------------- // formatting //----------------------------------------------------------------------- /** * Formats the number, and inserts the resulting text into * toInsertInto. * @param number The number being formatted * @param toInsertInto The string where the resultant text should * be inserted * @param pos The position in toInsertInto where the resultant text * should be inserted */ void NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const { // first, insert the rule's rule text into toInsertInto at the // specified position, then insert the results of the substitutions // into the right places in toInsertInto (notice we do the // substitutions in reverse order so that the offsets don't get // messed up) toInsertInto.insert(pos, ruleText); sub2->doSubstitution(number, toInsertInto, pos); sub1->doSubstitution(number, toInsertInto, pos); } /** * Formats the number, and inserts the resulting text into * toInsertInto. * @param number The number being formatted * @param toInsertInto The string where the resultant text should * be inserted * @param pos The position in toInsertInto where the resultant text * should be inserted */ void NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const { // first, insert the rule's rule text into toInsertInto at the // specified position, then insert the results of the substitutions // into the right places in toInsertInto // [again, we have two copies of this routine that do the same thing // so that we don't sacrifice precision in a long by casting it // to a double] toInsertInto.insert(pos, ruleText); sub2->doSubstitution(number, toInsertInto, pos); sub1->doSubstitution(number, toInsertInto, pos); } /** * Used by the owning rule set to determine whether to invoke the * rollback rule (i.e., whether this rule or the one that precedes * it in the rule set's list should be used to format the number) * @param The number being formatted * @return True if the rule set should use the rule that precedes * this one in its list; false if it should use this rule */ UBool NFRule::shouldRollBack(double number) const { // we roll back if the rule contains a modulus substitution, // the number being formatted is an even multiple of the rule's // divisor, and the rule's base value is NOT an even multiple // of its divisor // In other words, if the original description had // 100: << hundred[ >>]; // that expands into // 100: << hundred; // 101: << hundred >>; // internally. But when we're formatting 200, if we use the rule // at 101, which would normally apply, we get "two hundred zero". // To prevent this, we roll back and use the rule at 100 instead. // This is the logic that makes this happen: the rule at 101 has // a modulus substitution, its base value isn't an even multiple // of 100, and the value we're trying to format _is_ an even // multiple of 100. This is called the "rollback rule." if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) { int64_t re = util64_pow(radix, exponent); return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0; } return FALSE; } //----------------------------------------------------------------------- // parsing //----------------------------------------------------------------------- /** * Attempts to parse the string with this rule. * @param text The string being parsed * @param parsePosition On entry, the value is ignored and assumed to * be 0. On exit, this has been updated with the position of the first * character not consumed by matching the text against this rule * (if this rule doesn't match the text at all, the parse position * if left unchanged (presumably at 0) and the function returns * new Long(0)). * @param isFractionRule True if this rule is contained within a * fraction rule set. This is only used if the rule has no * substitutions. * @return If this rule matched the text, this is the rule's base value * combined appropriately with the results of parsing the substitutions. * If nothing matched, this is new Long(0) and the parse position is * left unchanged. The result will be an instance of Long if the * result is an integer and Double otherwise. The result is never null. */ #ifdef RBNF_DEBUG #include static void dumpUS(FILE* f, const UnicodeString& us) { int len = us.length(); char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; us.extract(0, len, buf); buf[len] = 0; fprintf(f, "%s", buf); uprv_free(buf); //delete[] buf; } #endif UBool NFRule::doParse(const UnicodeString& text, ParsePosition& parsePosition, UBool isFractionRule, double upperBound, Formattable& resVal) const { // internally we operate on a copy of the string being parsed // (because we're going to change it) and use our own ParsePosition ParsePosition pp; UnicodeString workText(text); // check to see whether the text before the first substitution // matches the text at the beginning of the string being // parsed. If it does, strip that off the front of workText; // otherwise, dump out with a mismatch UnicodeString prefix; prefix.setTo(ruleText, 0, sub1->getPos()); #ifdef RBNF_DEBUG fprintf(stderr, "doParse %x ", this); { UnicodeString rt; _appendRuleText(rt); dumpUS(stderr, rt); } fprintf(stderr, " text: '", this); dumpUS(stderr, text); fprintf(stderr, "' prefix: '"); dumpUS(stderr, prefix); #endif stripPrefix(workText, prefix, pp); int32_t prefixLength = text.length() - workText.length(); #ifdef RBNF_DEBUG fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos()); #endif if (pp.getIndex() == 0 && sub1->getPos() != 0) { // commented out because ParsePosition doesn't have error index in 1.1.x // restored for ICU4C port parsePosition.setErrorIndex(pp.getErrorIndex()); resVal.setLong(0); return TRUE; } // this is the fun part. The basic guts of the rule-matching // logic is matchToDelimiter(), which is called twice. The first // time it searches the input string for the rule text BETWEEN // the substitutions and tries to match the intervening text // in the input string with the first substitution. If that // succeeds, it then calls it again, this time to look for the // rule text after the second substitution and to match the // intervening input text against the second substitution. // // For example, say we have a rule that looks like this: // first << middle >> last; // and input text that looks like this: // first one middle two last // First we use stripPrefix() to match "first " in both places and // strip it off the front, leaving // one middle two last // Then we use matchToDelimiter() to match " middle " and try to // match "one" against a substitution. If it's successful, we now // have // two last // We use matchToDelimiter() a second time to match " last" and // try to match "two" against a substitution. If "two" matches // the substitution, we have a successful parse. // // Since it's possible in many cases to find multiple instances // of each of these pieces of rule text in the input string, // we need to try all the possible combinations of these // locations. This prevents us from prematurely declaring a mismatch, // and makes sure we match as much input text as we can. int highWaterMark = 0; double result = 0; int start = 0; double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue); UnicodeString temp; do { // our partial parse result starts out as this rule's base // value. If it finds a successful match, matchToDelimiter() // will compose this in some way with what it gets back from // the substitution, giving us a new partial parse result pp.setIndex(0); temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos()); double partialResult = matchToDelimiter(workText, start, tempBaseValue, temp, pp, sub1, upperBound); // if we got a successful match (or were trying to match a // null substitution), pp is now pointing at the first unmatched // character. Take note of that, and try matchToDelimiter() // on the input text again if (pp.getIndex() != 0 || sub1->isNullSubstitution()) { start = pp.getIndex(); UnicodeString workText2; workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); ParsePosition pp2; // the second matchToDelimiter() will compose our previous // partial result with whatever it gets back from its // substitution if there's a successful match, giving us // a real result temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos()); partialResult = matchToDelimiter(workText2, 0, partialResult, temp, pp2, sub2, upperBound); // if we got a successful match on this second // matchToDelimiter() call, update the high-water mark // and result (if necessary) if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) { if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); result = partialResult; } } // commented out because ParsePosition doesn't have error index in 1.1.x // restored for ICU4C port else { int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex(); if (temp> parsePosition.getErrorIndex()) { parsePosition.setErrorIndex(temp); } } } // commented out because ParsePosition doesn't have error index in 1.1.x // restored for ICU4C port else { int32_t temp = sub1->getPos() + pp.getErrorIndex(); if (temp > parsePosition.getErrorIndex()) { parsePosition.setErrorIndex(temp); } } // keep trying to match things until the outer matchToDelimiter() // call fails to make a match (each time, it picks up where it // left off the previous time) } while (sub1->getPos() != sub2->getPos() && pp.getIndex() > 0 && pp.getIndex() < workText.length() && pp.getIndex() != start); // update the caller's ParsePosition with our high-water mark // (i.e., it now points at the first character this function // didn't match-- the ParsePosition is therefore unchanged if // we didn't match anything) parsePosition.setIndex(highWaterMark); // commented out because ParsePosition doesn't have error index in 1.1.x // restored for ICU4C port if (highWaterMark > 0) { parsePosition.setErrorIndex(0); } // this is a hack for one unusual condition: Normally, whether this // rule belong to a fraction rule set or not is handled by its // substitutions. But if that rule HAS NO substitutions, then // we have to account for it here. By definition, if the matching // rule in a fraction rule set has no substitutions, its numerator // is 1, and so the result is the reciprocal of its base value. if (isFractionRule && highWaterMark > 0 && sub1->isNullSubstitution()) { result = 1 / result; } resVal.setDouble(result); return TRUE; // ??? do we need to worry if it is a long or a double? } /** * This function is used by parse() to match the text being parsed * against a possible prefix string. This function * matches characters from the beginning of the string being parsed * to characters from the prospective prefix. If they match, pp is * updated to the first character not matched, and the result is * the unparsed part of the string. If they don't match, the whole * string is returned, and pp is left unchanged. * @param text The string being parsed * @param prefix The text to match against * @param pp On entry, ignored and assumed to be 0. On exit, points * to the first unmatched character (assuming the whole prefix matched), * or is unchanged (if the whole prefix didn't match). * @return If things match, this is the unparsed part of "text"; * if they didn't match, this is "text". */ void NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const { // if the prefix text is empty, dump out without doing anything if (prefix.length() != 0) { // use prefixLength() to match the beginning of // "text" against "prefix". This function returns the // number of characters from "text" that matched (or 0 if // we didn't match the whole prefix) int32_t pfl = prefixLength(text, prefix); if (pfl != 0) { // if we got a successful match, update the parse position // and strip the prefix off of "text" pp.setIndex(pp.getIndex() + pfl); text.remove(0, pfl); } } } /** * Used by parse() to match a substitution and any following text. * "text" is searched for instances of "delimiter". For each instance * of delimiter, the intervening text is tested to see whether it * matches the substitution. The longest match wins. * @param text The string being parsed * @param startPos The position in "text" where we should start looking * for "delimiter". * @param baseValue A partial parse result (often the rule's base value), * which is combined with the result from matching the substitution * @param delimiter The string to search "text" for. * @param pp Ignored and presumed to be 0 on entry. If there's a match, * on exit this will point to the first unmatched character. * @param sub If we find "delimiter" in "text", this substitution is used * to match the text between the beginning of the string and the * position of "delimiter." (If "delimiter" is the empty string, then * this function just matches against this substitution and updates * everything accordingly.) * @param upperBound When matching the substitution, it will only * consider rules with base values lower than this value. * @return If there's a match, this is the result of composing * baseValue with the result of matching the substitution. Otherwise, * this is new Long(0). It's never null. If the result is an integer, * this will be an instance of Long; otherwise, it's an instance of * Double. * * !!! note {dlf} in point of fact, in the java code the caller always converts * the result to a double, so we might as well return one. */ double NFRule::matchToDelimiter(const UnicodeString& text, int32_t startPos, double _baseValue, const UnicodeString& delimiter, ParsePosition& pp, const NFSubstitution* sub, double upperBound) const { // if "delimiter" contains real (i.e., non-ignorable) text, search // it for "delimiter" beginning at "start". If that succeeds, then // use "sub"'s doParse() method to match the text before the // instance of "delimiter" we just found. if (!allIgnorable(delimiter)) { ParsePosition tempPP; Formattable result; // use findText() to search for "delimiter". It returns a two- // element array: element 0 is the position of the match, and // element 1 is the number of characters that matched // "delimiter". int32_t dLen; int32_t dPos = findText(text, delimiter, startPos, &dLen); // if findText() succeeded, isolate the text preceding the // match, and use "sub" to match that text while (dPos >= 0) { UnicodeString subText; subText.setTo(text, 0, dPos); if (subText.length() > 0) { UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, #if UCONFIG_NO_COLLATION FALSE, #else formatter->isLenient(), #endif result); // if the substitution could match all the text up to // where we found "delimiter", then this function has // a successful match. Bump the caller's parse position // to point to the first character after the text // that matches "delimiter", and return the result // we got from parsing the substitution. if (success && tempPP.getIndex() == dPos) { pp.setIndex(dPos + dLen); return result.getDouble(); } // commented out because ParsePosition doesn't have error index in 1.1.x // restored for ICU4C port else { if (tempPP.getErrorIndex() > 0) { pp.setErrorIndex(tempPP.getErrorIndex()); } else { pp.setErrorIndex(tempPP.getIndex()); } } } // if we didn't match the substitution, search for another // copy of "delimiter" in "text" and repeat the loop if // we find it tempPP.setIndex(0); dPos = findText(text, delimiter, dPos + dLen, &dLen); } // if we make it here, this was an unsuccessful match, and we // leave pp unchanged and return 0 pp.setIndex(0); return 0; // if "delimiter" is empty, or consists only of ignorable characters // (i.e., is semantically empty), thwe we obviously can't search // for "delimiter". Instead, just use "sub" to parse as much of // "text" as possible. } else { ParsePosition tempPP; Formattable result; // try to match the whole string against the substitution UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, #if UCONFIG_NO_COLLATION FALSE, #else formatter->isLenient(), #endif result); if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) { // if there's a successful match (or it's a null // substitution), update pp to point to the first // character we didn't match, and pass the result from // sub.doParse() on through to the caller pp.setIndex(tempPP.getIndex()); return result.getDouble(); } // commented out because ParsePosition doesn't have error index in 1.1.x // restored for ICU4C port else { pp.setErrorIndex(tempPP.getErrorIndex()); } // and if we get to here, then nothing matched, so we return // 0 and leave pp alone return 0; } } /** * Used by stripPrefix() to match characters. If lenient parse mode * is off, this just calls startsWith(). If lenient parse mode is on, * this function uses CollationElementIterators to match characters in * the strings (only primary-order differences are significant in * determining whether there's a match). * @param str The string being tested * @param prefix The text we're hoping to see at the beginning * of "str" * @return If "prefix" is found at the beginning of "str", this * is the number of characters in "str" that were matched (this * isn't necessarily the same as the length of "prefix" when matching * text with a collator). If there's no match, this is 0. */ int32_t NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix) const { // if we're looking for an empty prefix, it obviously matches // zero characters. Just go ahead and return 0. if (prefix.length() == 0) { return 0; } #if !UCONFIG_NO_COLLATION // go through all this grief if we're in lenient-parse mode if (formatter->isLenient()) { // get the formatter's collator and use it to create two // collation element iterators, one over the target string // and another over the prefix (right now, we'll throw an // exception if the collator we get back from the formatter // isn't a RuleBasedCollator, because RuleBasedCollator defines // the CollationElementIterator protocol. Hopefully, this // will change someday.) RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator(); CollationElementIterator* strIter = collator->createCollationElementIterator(str); CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix); UErrorCode err = U_ZERO_ERROR; // The original code was problematic. Consider this match: // prefix = "fifty-" // string = " fifty-7" // The intent is to match string up to the '7', by matching 'fifty-' at position 1 // in the string. Unfortunately, we were getting a match, and then computing where // the match terminated by rematching the string. The rematch code was using as an // initial guess the substring of string between 0 and prefix.length. Because of // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving // the position before the hyphen in the string. Recursing down, we then parsed the // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). // This was not pretty, especially since the string "fifty-7" parsed just fine. // // We have newer APIs now, so we can use calls on the iterator to determine what we // matched up to. If we terminate because we hit the last element in the string, // our match terminates at this length. If we terminate because we hit the last element // in the target, our match terminates at one before the element iterator position. // match collation elements between the strings int32_t oStr = strIter->next(err); int32_t oPrefix = prefixIter->next(err); while (oPrefix != CollationElementIterator::NULLORDER) { // skip over ignorable characters in the target string while (CollationElementIterator::primaryOrder(oStr) == 0 && oStr != CollationElementIterator::NULLORDER) { oStr = strIter->next(err); } // skip over ignorable characters in the prefix while (CollationElementIterator::primaryOrder(oPrefix) == 0 && oPrefix != CollationElementIterator::NULLORDER) { oPrefix = prefixIter->next(err); } // dlf: move this above following test, if we consume the // entire target, aren't we ok even if the source was also // entirely consumed? // if skipping over ignorables brought to the end of // the prefix, we DID match: drop out of the loop if (oPrefix == CollationElementIterator::NULLORDER) { break; } // if skipping over ignorables brought us to the end // of the target string, we didn't match and return 0 if (oStr == CollationElementIterator::NULLORDER) { delete prefixIter; delete strIter; return 0; } // match collation elements from the two strings // (considering only primary differences). If we // get a mismatch, dump out and return 0 if (CollationElementIterator::primaryOrder(oStr) != CollationElementIterator::primaryOrder(oPrefix)) { delete prefixIter; delete strIter; return 0; // otherwise, advance to the next character in each string // and loop (we drop out of the loop when we exhaust // collation elements in the prefix) } else { oStr = strIter->next(err); oPrefix = prefixIter->next(err); } } int32_t result = strIter->getOffset(); if (oStr != CollationElementIterator::NULLORDER) { --result; // back over character that we don't want to consume; } #ifdef RBNF_DEBUG fprintf(stderr, "prefix length: %d\n", result); #endif delete prefixIter; delete strIter; return result; #if 0 //---------------------------------------------------------------- // JDK 1.2-specific API call // return strIter.getOffset(); //---------------------------------------------------------------- // JDK 1.1 HACK (take out for 1.2-specific code) // if we make it to here, we have a successful match. Now we // have to find out HOW MANY characters from the target string // matched the prefix (there isn't necessarily a one-to-one // mapping between collation elements and characters). // In JDK 1.2, there's a simple getOffset() call we can use. // In JDK 1.1, on the other hand, we have to go through some // ugly contortions. First, use the collator to compare the // same number of characters from the prefix and target string. // If they're equal, we're done. collator->setStrength(Collator::PRIMARY); if (str.length() >= prefix.length()) { UnicodeString temp; temp.setTo(str, 0, prefix.length()); if (collator->equals(temp, prefix)) { #ifdef RBNF_DEBUG fprintf(stderr, "returning: %d\n", prefix.length()); #endif return prefix.length(); } } // if they're not equal, then we have to compare successively // larger and larger substrings of the target string until we // get to one that matches the prefix. At that point, we know // how many characters matched the prefix, and we can return. int32_t p = 1; while (p <= str.length()) { UnicodeString temp; temp.setTo(str, 0, p); if (collator->equals(temp, prefix)) { return p; } else { ++p; } } // SHOULD NEVER GET HERE!!! return 0; //---------------------------------------------------------------- #endif // If lenient parsing is turned off, forget all that crap above. // Just use String.startsWith() and be done with it. } else #endif { if (str.startsWith(prefix)) { return prefix.length(); } else { return 0; } } } /** * Searches a string for another string. If lenient parsing is off, * this just calls indexOf(). If lenient parsing is on, this function * uses CollationElementIterator to match characters, and only * primary-order differences are significant in determining whether * there's a match. * @param str The string to search * @param key The string to search "str" for * @param startingAt The index into "str" where the search is to * begin * @return A two-element array of ints. Element 0 is the position * of the match, or -1 if there was no match. Element 1 is the * number of characters in "str" that matched (which isn't necessarily * the same as the length of "key") */ int32_t NFRule::findText(const UnicodeString& str, const UnicodeString& key, int32_t startingAt, int32_t* length) const { #if !UCONFIG_NO_COLLATION // if lenient parsing is turned off, this is easy: just call // String.indexOf() and we're done if (!formatter->isLenient()) { *length = key.length(); return str.indexOf(key, startingAt); // but if lenient parsing is turned ON, we've got some work // ahead of us } else #endif { //---------------------------------------------------------------- // JDK 1.1 HACK (take out of 1.2-specific code) // in JDK 1.2, CollationElementIterator provides us with an // API to map between character offsets and collation elements // and we can do this by marching through the string comparing // collation elements. We can't do that in JDK 1.1. Insted, // we have to go through this horrible slow mess: int32_t p = startingAt; int32_t keyLen = 0; // basically just isolate smaller and smaller substrings of // the target string (each running to the end of the string, // and with the first one running from startingAt to the end) // and then use prefixLength() to see if the search key is at // the beginning of each substring. This is excruciatingly // slow, but it will locate the key and tell use how long the // matching text was. UnicodeString temp; while (p < str.length() && keyLen == 0) { temp.setTo(str, p, str.length() - p); keyLen = prefixLength(temp, key); if (keyLen != 0) { *length = keyLen; return p; } ++p; } // if we make it to here, we didn't find it. Return -1 for the // location. The length should be ignored, but set it to 0, // which should be "safe" *length = 0; return -1; //---------------------------------------------------------------- // JDK 1.2 version of this routine //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator(); // //CollationElementIterator strIter = collator.getCollationElementIterator(str); //CollationElementIterator keyIter = collator.getCollationElementIterator(key); // //int keyStart = -1; // //str.setOffset(startingAt); // //int oStr = strIter.next(); //int oKey = keyIter.next(); //while (oKey != CollationElementIterator.NULLORDER) { // while (oStr != CollationElementIterator.NULLORDER && // CollationElementIterator.primaryOrder(oStr) == 0) // oStr = strIter.next(); // // while (oKey != CollationElementIterator.NULLORDER && // CollationElementIterator.primaryOrder(oKey) == 0) // oKey = keyIter.next(); // // if (oStr == CollationElementIterator.NULLORDER) { // return new int[] { -1, 0 }; // } // // if (oKey == CollationElementIterator.NULLORDER) { // break; // } // // if (CollationElementIterator.primaryOrder(oStr) == // CollationElementIterator.primaryOrder(oKey)) { // keyStart = strIter.getOffset(); // oStr = strIter.next(); // oKey = keyIter.next(); // } else { // if (keyStart != -1) { // keyStart = -1; // keyIter.reset(); // } else { // oStr = strIter.next(); // } // } //} // //if (oKey == CollationElementIterator.NULLORDER) { // return new int[] { keyStart, strIter.getOffset() - keyStart }; //} else { // return new int[] { -1, 0 }; //} } } /** * Checks to see whether a string consists entirely of ignorable * characters. * @param str The string to test. * @return true if the string is empty of consists entirely of * characters that the number formatter's collator says are * ignorable at the primary-order level. false otherwise. */ UBool NFRule::allIgnorable(const UnicodeString& str) const { // if the string is empty, we can just return true if (str.length() == 0) { return TRUE; } #if !UCONFIG_NO_COLLATION // if lenient parsing is turned on, walk through the string with // a collation element iterator and make sure each collation // element is 0 (ignorable) at the primary level if (formatter->isLenient()) { RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator()); CollationElementIterator* iter = collator->createCollationElementIterator(str); UErrorCode err = U_ZERO_ERROR; int32_t o = iter->next(err); while (o != CollationElementIterator::NULLORDER && CollationElementIterator::primaryOrder(o) == 0) { o = iter->next(err); } delete iter; return o == CollationElementIterator::NULLORDER; } #endif // if lenient parsing is turned off, there is no such thing as // an ignorable character: return true only if the string is empty return FALSE; } U_NAMESPACE_END /* U_HAVE_RBNF */ #endif