/* ******************************************************************************* * Copyright (C) 1997-2003, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* * * File TIMEZONE.CPP * * Modification History: * * Date Name Description * 12/05/96 clhuang Creation. * 04/21/97 aliu General clean-up and bug fixing. * 05/08/97 aliu Fixed Hashtable code per code review. * 07/09/97 helena Changed createInstance to createDefault. * 07/29/97 aliu Updated with all-new list of 96 UNIX-derived * TimeZones. Changed mechanism to load from static * array rather than resource bundle. * 07/07/1998 srl Bugfixes from the Java side: UTC GMT CAT NST * Added getDisplayName API * going to add custom parsing. * * ISSUES: * - should getDisplayName cache something? * - should custom time zones be cached? [probably] * 08/10/98 stephen Brought getDisplayName() API in-line w/ conventions * 08/19/98 stephen Changed createTimeZone() to never return 0 * 09/02/98 stephen Added getOffset(monthLen) and hasSameRules() * 09/15/98 stephen Added getStaticClassID() * 02/22/99 stephen Removed character literals for EBCDIC safety * 05/04/99 stephen Changed initDefault() for Mutex issues * 07/12/99 helena HPUX 11 CC Port. * 12/03/99 aliu Moved data out of static table into icudata.dll. * Substantial rewrite of zone lookup, default zone, and * available IDs code. Misc. cleanup. *********************************************************************************/ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "unicode/simpletz.h" #include "unicode/smpdtfmt.h" #include "unicode/calendar.h" #include "mutex.h" #include "unicode/udata.h" #include "tzdat.h" #include "ucln_in.h" #include "cstring.h" #include "cmemory.h" #include "unicode/strenum.h" #include "uassert.h" /** * udata callback to verify the zone data. */ U_CDECL_BEGIN static UBool U_CALLCONV isTimeZoneDataAcceptable(void * /*context*/, const char * /*type*/, const char * /*name*/, const UDataInfo *pInfo) { return pInfo->size >= sizeof(UDataInfo) && pInfo->isBigEndian == U_IS_BIG_ENDIAN && pInfo->charsetFamily == U_CHARSET_FAMILY && pInfo->dataFormat[0] == TZ_SIG_0 && pInfo->dataFormat[1] == TZ_SIG_1 && pInfo->dataFormat[2] == TZ_SIG_2 && pInfo->dataFormat[3] == TZ_SIG_3 && pInfo->formatVersion[0] == TZ_FORMAT_VERSION; } U_CDECL_END // Static data and constants static const UChar GMT_ID[] = {0x47, 0x4D, 0x54, 0x00}; /* "GMT" */ static const int32_t GMT_ID_LENGTH = 3; static const UChar CUSTOM_ID[] = { 0x43, 0x75, 0x73, 0x74, 0x6F, 0x6D, 0x00 /* "Custom" */ }; // See header file for documentation of the following static const TZHeader * DATA = NULL; // alias into UDATA_MEMORY static const uint32_t* INDEX_BY_ID = 0; // alias into UDATA_MEMORY static const OffsetIndex* INDEX_BY_OFFSET = 0; // alias into UDATA_MEMORY static const CountryIndex* INDEX_BY_COUNTRY = 0; // alias into UDATA_MEMORY static UDataMemory* UDATA_MEMORY = 0; static UMTX LOCK; static TimeZone* DEFAULT_ZONE = NULL; static TimeZone* _GMT = NULL; // cf. TimeZone::GMT static UnicodeString* ZONE_IDS = 0; const char TimeZone::fgClassID = 0; // Value is irrelevant UBool timeZone_cleanup() { // Aliases into UDATA_MEMORY; do NOT delete DATA = NULL; INDEX_BY_ID = NULL; INDEX_BY_OFFSET = NULL; INDEX_BY_COUNTRY = NULL; delete []ZONE_IDS; ZONE_IDS = NULL; delete DEFAULT_ZONE; DEFAULT_ZONE = NULL; delete _GMT; _GMT = NULL; if (UDATA_MEMORY) { udata_close(UDATA_MEMORY); UDATA_MEMORY = NULL; } if (LOCK) { umtx_destroy(&LOCK); LOCK = NULL; } return TRUE; } U_NAMESPACE_BEGIN /** * Load the system time zone data from icudata.dll (or its * equivalent). If this call succeeds, it will return TRUE and * UDATA_MEMORY will be non-null, and DATA and INDEX_BY_* will be set * to point into it. If this call fails, either because the data * could not be opened, or because the ID array could not be * allocated, then it will return FALSE. * * Must be called OUTSIDE mutex. */ static UBool loadZoneData() { // Open a data memory object, to be closed either later in this // function or in timeZone_cleanup(). Purify (etc.) may // mistakenly report this as a leak. UErrorCode status = U_ZERO_ERROR; UDataMemory* udata = udata_openChoice(0, TZ_DATA_TYPE, TZ_DATA_NAME, (UDataMemoryIsAcceptable*)isTimeZoneDataAcceptable, 0, &status); if (U_FAILURE(status)) { U_ASSERT(udata==0); return FALSE; } U_ASSERT(udata!=0); TZHeader* tzh = (TZHeader*)udata_getMemory(udata); U_ASSERT(tzh!=0); const uint32_t* index_by_id = (const uint32_t*)((int8_t*)tzh + tzh->nameIndexDelta); const OffsetIndex* index_by_offset = (const OffsetIndex*)((int8_t*)tzh + tzh->offsetIndexDelta); const CountryIndex* index_by_country = (const CountryIndex*)((int8_t*)tzh + tzh->countryIndexDelta); // Construct the available IDs array. The ordering // of this array conforms to the ordering of the // index by name table. UnicodeString* zone_ids = new UnicodeString[tzh->count ? tzh->count : 1]; if (zone_ids == 0) { udata_close(udata); return FALSE; } // Find start of name table, and walk through it // linearly. If you're wondering why we don't use // the INDEX_BY_ID, it's because that indexes the // zone objects, not the name table. The name // table is unindexed. const char* name = (const char*)tzh + tzh->nameTableDelta; int32_t length; for (uint32_t i=0; icount; ++i) { zone_ids[i] = UnicodeString(name, ""); // invariant converter length = zone_ids[i].length(); // add a NUL but don't count it so that zone_ids[i].append((UChar)0); // getBuffer() gets a terminated string zone_ids[i].truncate(length); name += uprv_strlen(name) + 1; } // Keep mutexed operations as short as possible by doing all // computations first, then doing pointer copies within the mutex. umtx_lock(&LOCK); if (UDATA_MEMORY == 0) { UDATA_MEMORY = udata; DATA = tzh; INDEX_BY_ID = index_by_id; INDEX_BY_OFFSET = index_by_offset; INDEX_BY_COUNTRY = index_by_country; ZONE_IDS = zone_ids; udata = NULL; zone_ids = NULL; } umtx_unlock(&LOCK); // If another thread initialized the statics first, then delete // our unused data. if (udata != NULL) { udata_close(udata); delete[] zone_ids; } // Cleanup handles both _GMT and the UDataMemory-based statics ucln_i18n_registerCleanup(); return TRUE; } /** * Inline function that returns TRUE if we have zone data, loading it * if necessary. The only time this function will return false is if * loadZoneData() fails, and UDATA_MEMORY and associated pointers are * NULL (rare). * * The difference between this function and loadZoneData() is that * this is an inline function that expands to code which avoids making * a function call in the case where the data is already loaded (the * common case). * * Must be called OUTSIDE mutex. */ static inline UBool haveZoneData() { umtx_init(&LOCK); /* This is here to prevent race conditions. */ umtx_lock(&LOCK); UBool f = (UDATA_MEMORY != 0); umtx_unlock(&LOCK); return f || loadZoneData(); } // ------------------------------------- const TimeZone* TimeZone::getGMT(void) { umtx_init(&LOCK); /* This is here to prevent race conditions. */ Mutex lock(&LOCK); // Initialize _GMT independently of other static data; it should // be valid even if we can't load the time zone UDataMemory. if (_GMT == 0) { _GMT = new SimpleTimeZone(0, UnicodeString(GMT_ID, GMT_ID_LENGTH)); } return _GMT; } // ***************************************************************************** // class TimeZone // ***************************************************************************** TimeZone::TimeZone() : UObject(), fID() { } // ------------------------------------- TimeZone::TimeZone(const UnicodeString &id) : UObject(), fID(id) { } // ------------------------------------- TimeZone::~TimeZone() { } // ------------------------------------- TimeZone::TimeZone(const TimeZone &source) : UObject(source), fID(source.fID) { } // ------------------------------------- TimeZone & TimeZone::operator=(const TimeZone &right) { if (this != &right) fID = right.fID; return *this; } // ------------------------------------- UBool TimeZone::operator==(const TimeZone& that) const { return getDynamicClassID() == that.getDynamicClassID() && fID == that.fID; } // ------------------------------------- TimeZone* TimeZone::createTimeZone(const UnicodeString& ID) { /* We first try to lookup the zone ID in our system list. If this * fails, we try to parse it as a custom string GMT[+-]hh:mm. If * all else fails, we return GMT, which is probably not what the * user wants, but at least is a functioning TimeZone object. */ TimeZone* result = 0; if (haveZoneData()) { result = createSystemTimeZone(ID); } if (result == 0) { result = createCustomTimeZone(ID); } if (result == 0) { result = getGMT()->clone(); } return result; } /** * Lookup the given ID in the system time zone equivalency group table. * Return a pointer to the equivalency group, or NULL if not found. * DATA MUST BE INITIALIZED AND NON-NULL. */ static const TZEquivalencyGroup* lookupEquivalencyGroup(const UnicodeString& id) { // Perform a binary search. Possible optimization: Unroll the // search. Not worth it given the small number of zones (416 in // 1999j). uint32_t low = 0; uint32_t high = DATA->count; while (high > low) { // Invariant: match, if present, must be in the range [low, // high). uint32_t i = (low + high) / 2; int8_t c = id.compare(ZONE_IDS[i]); if (c == 0) { return (TZEquivalencyGroup*) ((int8_t*)DATA + INDEX_BY_ID[i]); } else if (c < 0) { high = i; } else { low = i + 1; } } return 0; } /** * Lookup the given name in our system zone table. If found, * instantiate a new zone of that name and return it. If not * found, return 0. * * The caller must ensure that haveZoneData() returns TRUE before * calling. */ TimeZone* TimeZone::createSystemTimeZone(const UnicodeString& name) { U_ASSERT(UDATA_MEMORY != 0); const TZEquivalencyGroup *eg = lookupEquivalencyGroup(name); if (eg != NULL) { return eg->isDST ? new SimpleTimeZone(eg->u.d.zone, name) : new SimpleTimeZone(eg->u.s.zone, name); } return NULL; } // ------------------------------------- /** * Initialize DEFAULT_ZONE from the system default time zone. The * caller should confirm that DEFAULT_ZONE is NULL before calling. * Upon return, DEFAULT_ZONE will not be NULL, unless operator new() * returns NULL. * * Must be called OUTSIDE mutex. */ void TimeZone::initDefault() { // We access system timezone data through TPlatformUtilities, // including tzset(), timezone, and tzname[]. int32_t rawOffset = 0; const char *hostID; // First, try to create a system timezone, based // on the string ID in tzname[0]. { // NOTE: Global mutex here; TimeZone mutex above // mutexed to avoid threading issues in the platform fcns. // Some of the locale/timezone OS functions may not be thread safe, // so the intent is that any setting from anywhere within ICU // happens with the ICU global mutex held. Mutex lock; uprv_tzset(); // Initialize tz... system data // Get the timezone ID from the host. This function should do // any required host-specific remapping; e.g., on Windows this // function maps the Date and Time control panel setting to an // ICU timezone ID. hostID = uprv_tzname(0); // Invert sign because UNIX semantics are backwards rawOffset = uprv_timezone() * -U_MILLIS_PER_SECOND; } TimeZone* default_zone = NULL; if (haveZoneData()) { default_zone = createSystemTimeZone(hostID); // If we couldn't get the time zone ID from the host, use // the default host timezone offset. Further refinements // to this include querying the host to determine if DST // is in use or not and possibly using the host locale to // select from multiple zones at a the same offset. We // don't do any of this now, but we could easily add this. if (default_zone == NULL) { // Use the designated default in the time zone list that has the // appropriate GMT offset, if there is one. const OffsetIndex* index = INDEX_BY_OFFSET; for (;;) { if (index->gmtOffset > rawOffset) { // Went past our desired offset; no match found break; } if (index->gmtOffset == rawOffset) { // Found our desired offset default_zone = createSystemTimeZone(ZONE_IDS[index->defaultZone]); break; } // Compute the position of the next entry. If the delta value // in this entry is zero, then there is no next entry. uint16_t delta = index->nextEntryDelta; if (delta == 0) { break; } index = (const OffsetIndex*)((int8_t*)index + delta); } } } // If we _still_ don't have a time zone, use GMT. This // can only happen if the raw offset returned by // uprv_timezone() does not correspond to any system zone. if (default_zone == NULL) { default_zone = getGMT()->clone(); } // If DEFAULT_ZONE is still NULL, set it up. umtx_lock(&LOCK); if (DEFAULT_ZONE == NULL) { DEFAULT_ZONE = default_zone; default_zone = NULL; } umtx_unlock(&LOCK); delete default_zone; } // ------------------------------------- TimeZone* TimeZone::createDefault() { umtx_init(&LOCK); /* This is here to prevent race conditions. */ umtx_lock(&LOCK); UBool f = (DEFAULT_ZONE != 0); umtx_unlock(&LOCK); if (!f) { initDefault(); } Mutex lock(&LOCK); // In case adoptDefault is called return DEFAULT_ZONE->clone(); } // ------------------------------------- void TimeZone::adoptDefault(TimeZone* zone) { if (zone != NULL) { TimeZone* old = NULL; umtx_init(&LOCK); /* This is here to prevent race conditions. */ umtx_lock(&LOCK); old = DEFAULT_ZONE; DEFAULT_ZONE = zone; umtx_unlock(&LOCK); delete old; } } // ------------------------------------- void TimeZone::setDefault(const TimeZone& zone) { adoptDefault(zone.clone()); } // ------------------------------------- // New available IDs API as of ICU 2.4. Uses StringEnumeration API. class TZEnumeration : public StringEnumeration { // Map into to ZONE_IDS. Our results are ZONE_IDS[map[i]] for // i=0..len-1. If map==NULL then our results are ZONE_IDS[i] // for i=0..len-1. Len will be zero iff the zone data could // not be loaded. int32_t* map; int32_t len; int32_t pos; void* _bufp; int32_t _buflen; public: TZEnumeration() { map = NULL; _bufp = NULL; len = pos = _buflen = 0; if (haveZoneData()) { len = DATA->count; } } TZEnumeration(int32_t rawOffset) { map = NULL; _bufp = NULL; len = pos = _buflen = 0; if (!haveZoneData()) { return; } /* The offset index table is a table of variable-sized objects. * Each entry has an offset to the next entry; the last entry has * a next entry offset of zero. * * The entries are sorted in ascending numerical order of GMT * offset. Each entry lists all the system zones at that offset, * in lexicographic order of ID. Note that this ordering is * somewhat significant in that the _first_ zone in each list is * what will be chosen as the default under certain fallback * conditions. We currently just let that be the * lexicographically first zone, but we could also adjust the list * to pick which zone was first for this situation -- probably not * worth the trouble. * * The list of zones is actually just a list of integers, from * 0..n-1, where n is the total number of system zones. The * numbering corresponds exactly to the ordering of ZONE_IDS. */ const OffsetIndex* index = INDEX_BY_OFFSET; for (;;) { if (index->gmtOffset > rawOffset) { // Went past our desired offset; no match found break; } if (index->gmtOffset == rawOffset) { // Found our desired offset map = (int32_t*)uprv_malloc(sizeof(int32_t) * index->count); if (map != NULL) { len = index->count; const uint16_t* zoneNumberArray = &(index->zoneNumber); for (uint16_t i=0; inextEntryDelta; if (delta == 0) { break; } index = (const OffsetIndex*)((int8_t*)index + delta); } } TZEnumeration(const char* country) { map = NULL; _bufp = NULL; len = pos = _buflen = 0; if (!haveZoneData()) { return; } /* The country index table is a table of variable-sized objects. * Each entry has an offset to the next entry; the last entry has * a next entry offset of zero. * * The entries are sorted in ascending numerical order of intcode. * This is an integer representation of the 2-letter ISO 3166 * country code. It is computed as (c1-'A')*32 + (c0-'A'), where * the country code is c1 c0, with 'A' <= ci <= 'Z'. * * The list of zones is a list of integers, from 0..n-1, where n * is the total number of system zones. The numbering corresponds * exactly to the ordering of ZONE_IDS. */ const CountryIndex* index = INDEX_BY_COUNTRY; uint16_t intcode = 0; if (country != NULL && *country != 0) { intcode = (uint16_t)((U_UPPER_ORDINAL(country[0]) << 5) + U_UPPER_ORDINAL(country[1])); } for (;;) { if (index->intcode > intcode) { // Went past our desired country; no match found break; } if (index->intcode == intcode) { // Found our desired country map = (int32_t*)uprv_malloc(sizeof(int32_t) * index->count); if (map != NULL) { len = index->count; const uint16_t* zoneNumberArray = &(index->zoneNumber); for (uint16_t i=0; inextEntryDelta; if (delta == 0) { break; } index = (const CountryIndex*)((int8_t*)index + delta); } } virtual ~TZEnumeration() { uprv_free(map); uprv_free(_bufp); } int32_t count(UErrorCode& status) const { return U_FAILURE(status) ? 0 : len; } const char* next(int32_t* resultLength, UErrorCode& status) { // TODO: Later a subclass of StringEnumeration will be available // that implements next() and unext() in terms of snext(). // Inherit from that class when available and remove this method // (and its declaration). const UnicodeString* us = snext(status); int32_t newlen; if (us != NULL && ensureCapacity((newlen=us->length()) + 1)) { us->extract(0, INT32_MAX, (char*) _bufp, ""); if (resultLength) { resultLength[0] = newlen; } return (const char*)_bufp; } return NULL; } const UChar* unext(int32_t* resultLength, UErrorCode& status) { const UnicodeString* us = snext(status); if (us != NULL) { if (resultLength) { resultLength[0] = us->length(); } // TimeZone terminates the ID strings when it builds them return us->getBuffer(); } return NULL; } const UnicodeString* snext(UErrorCode& status) { if (U_SUCCESS(status) && pos < len) { return (map != NULL) ? &ZONE_IDS[map[pos++]] : &ZONE_IDS[pos++]; } return NULL; } void reset(UErrorCode& /*status*/) { pos = 0; } private: static const char fgClassID; public: static inline UClassID getStaticClassID(void) { return (UClassID)&fgClassID; } virtual UClassID getDynamicClassID(void) const { return getStaticClassID(); } private: /** * Guarantee that _bufp is allocated to include _buflen characters * where _buflen >= minlen. Return TRUE if successful, FALSE * otherwise. */ UBool ensureCapacity(int32_t minlen) { if (_bufp != NULL && _buflen >= minlen) { return TRUE; } _buflen = minlen + 8; // add 8 to prevent thrashing _bufp = (_bufp == NULL) ? uprv_malloc(_buflen) : uprv_realloc(_bufp, _buflen); return _bufp != NULL; } }; const char TZEnumeration::fgClassID = '\0'; StringEnumeration* TimeZone::createEnumeration() { return new TZEnumeration(); } StringEnumeration* TimeZone::createEnumeration(int32_t rawOffset) { return new TZEnumeration(rawOffset); } StringEnumeration* TimeZone::createEnumeration(const char* country) { return new TZEnumeration(country); } // ------------------------------------- // TODO: #ifdef out this code after 8-Nov-2003 // #ifdef ICU_TIMEZONE_USE_DEPRECATES const UnicodeString** TimeZone::createAvailableIDs(int32_t rawOffset, int32_t& numIDs) { // We are creating a new array to existing UnicodeString pointers. // The caller will delete the array when done, but not the pointers // in the array. if (!haveZoneData()) { numIDs = 0; return 0; } /* The offset index table is a table of variable-sized objects. * Each entry has an offset to the next entry; the last entry has * a next entry offset of zero. * * The entries are sorted in ascending numerical order of GMT * offset. Each entry lists all the system zones at that offset, * in lexicographic order of ID. Note that this ordering is * somewhat significant in that the _first_ zone in each list is * what will be chosen as the default under certain fallback * conditions. We currently just let that be the * lexicographically first zone, but we could also adjust the list * to pick which zone was first for this situation -- probably not * worth the trouble. * * The list of zones is actually just a list of integers, from * 0..n-1, where n is the total number of system zones. The * numbering corresponds exactly to the ordering of ZONE_IDS. */ const OffsetIndex* index = INDEX_BY_OFFSET; for (;;) { if (index->gmtOffset > rawOffset) { // Went past our desired offset; no match found break; } if (index->gmtOffset == rawOffset) { // Found our desired offset const UnicodeString** result = (const UnicodeString**)uprv_malloc(index->count * sizeof(UnicodeString *)); const uint16_t* zoneNumberArray = &(index->zoneNumber); for (uint16_t i=0; icount; ++i) { // Pointer assignment - use existing UnicodeString object! // Don't create a new UnicodeString on the heap here! result[i] = &ZONE_IDS[zoneNumberArray[i]]; } numIDs = index->count; return result; } // Compute the position of the next entry. If the delta value // in this entry is zero, then there is no next entry. uint16_t delta = index->nextEntryDelta; if (delta == 0) { break; } index = (const OffsetIndex*)((int8_t*)index + delta); } numIDs = 0; return 0; } // ------------------------------------- const UnicodeString** TimeZone::createAvailableIDs(const char* country, int32_t& numIDs) { // We are creating a new array to existing UnicodeString pointers. // The caller will delete the array when done, but not the pointers // in the array. if (!haveZoneData()) { numIDs = 0; return 0; } /* The country index table is a table of variable-sized objects. * Each entry has an offset to the next entry; the last entry has * a next entry offset of zero. * * The entries are sorted in ascending numerical order of intcode. * This is an integer representation of the 2-letter ISO 3166 * country code. It is computed as (c1-'A')*32 + (c0-'A'), where * the country code is c1 c0, with 'A' <= ci <= 'Z'. * * The list of zones is a list of integers, from 0..n-1, where n * is the total number of system zones. The numbering corresponds * exactly to the ordering of ZONE_IDS. */ const CountryIndex* index = INDEX_BY_COUNTRY; uint16_t intcode = 0; if (country != NULL && *country != 0) { intcode = (uint16_t)((U_UPPER_ORDINAL(country[0]) << 5) + U_UPPER_ORDINAL(country[1])); } for (;;) { if (index->intcode > intcode) { // Went past our desired country; no match found break; } if (index->intcode == intcode) { // Found our desired country const UnicodeString** result = (const UnicodeString**)uprv_malloc(index->count * sizeof(UnicodeString *)); const uint16_t* zoneNumberArray = &(index->zoneNumber); for (uint16_t i=0; icount; ++i) { // Pointer assignment - use existing UnicodeString object! // Don't create a new UnicodeString on the heap here! result[i] = &ZONE_IDS[zoneNumberArray[i]]; } numIDs = index->count; return result; } // Compute the position of the next entry. If the delta value // in this entry is zero, then there is no next entry. uint16_t delta = index->nextEntryDelta; if (delta == 0) { break; } index = (const CountryIndex*)((int8_t*)index + delta); } numIDs = 0; return 0; } // ------------------------------------- const UnicodeString** TimeZone::createAvailableIDs(int32_t& numIDs) { // We are creating a new array to existing UnicodeString pointers. // The caller will delete the array when done, but not the pointers // in the array. // // This is really unnecessary, given the fact that we have an // array of the IDs already constructed, and we could just return // that. However, that would be a breaking API change, and some // callers familiar with the original API might try to delete it. if (!haveZoneData()) { numIDs = 0; return 0; } const UnicodeString** result = (const UnicodeString** )uprv_malloc(DATA->count * sizeof(UnicodeString *)); // Create a list of pointers to each and every zone ID for (uint32_t i=0; icount; ++i) { // Pointer assignment - use existing UnicodeString object! // Don't create a new UnicodeString on the heap here! result[i] = &ZONE_IDS[i]; } numIDs = DATA->count; return result; } // ICU_TIMEZONE_USE_DEPRECATES // #endif // see above // --------------------------------------- int32_t TimeZone::countEquivalentIDs(const UnicodeString& id) { if (!haveZoneData()) { return 0; } const TZEquivalencyGroup *eg = lookupEquivalencyGroup(id); return (eg != 0) ? (eg->isDST ? eg->u.d.count : eg->u.s.count) : 0; } // --------------------------------------- const UnicodeString TimeZone::getEquivalentID(const UnicodeString& id, int32_t index) { if (haveZoneData()) { const TZEquivalencyGroup *eg = lookupEquivalencyGroup(id); if (eg != 0) { const uint16_t *p = eg->isDST ? &eg->u.d.count : &eg->u.s.count; if (index >= 0 && index < *p) { return ZONE_IDS[p[index+1]]; } } } return UnicodeString(); } // --------------------------------------- UnicodeString& TimeZone::getDisplayName(UnicodeString& result) const { return getDisplayName(FALSE,LONG,Locale::getDefault(), result); } UnicodeString& TimeZone::getDisplayName(const Locale& locale, UnicodeString& result) const { return getDisplayName(FALSE, LONG, locale, result); } UnicodeString& TimeZone::getDisplayName(UBool daylight, EDisplayType style, UnicodeString& result) const { return getDisplayName(daylight,style, Locale::getDefault(), result); } UnicodeString& TimeZone::getDisplayName(UBool daylight, EDisplayType style, const Locale& locale, UnicodeString& result) const { // SRL TODO: cache the SDF, just like java. UErrorCode status = U_ZERO_ERROR; SimpleDateFormat format(style == LONG ? "zzzz" : "z",locale,status); if(!U_SUCCESS(status)) { // *** SRL what do I do here?!! return result.remove(); } // Create a new SimpleTimeZone as a stand-in for this zone; the // stand-in will have no DST, or all DST, but the same ID and offset, // and hence the same display name. // We don't cache these because they're small and cheap to create. UnicodeString tempID; SimpleTimeZone *tz = daylight ? // For the pure-DST zone, we use JANUARY and DECEMBER new SimpleTimeZone(getRawOffset(), getID(tempID), UCAL_JANUARY , 1, 0, 0, UCAL_DECEMBER , 31, 0, U_MILLIS_PER_DAY, status) : new SimpleTimeZone(getRawOffset(), getID(tempID)); format.applyPattern(style == LONG ? "zzzz" : "z"); Calendar *myCalendar = (Calendar*)format.getCalendar(); myCalendar->setTimeZone(*tz); // copy delete tz; FieldPosition pos(FieldPosition::DONT_CARE); return format.format(UDate(196262345678.), result, pos); // Must use a valid date here. } /** * Parse a custom time zone identifier and return a corresponding zone. * @param id a string of the form GMT[+-]hh:mm, GMT[+-]hhmm, or * GMT[+-]hh. * @return a newly created SimpleTimeZone with the given offset and * no Daylight Savings Time, or null if the id cannot be parsed. */ TimeZone* TimeZone::createCustomTimeZone(const UnicodeString& id) { static const int32_t kParseFailed = -99999; NumberFormat* numberFormat = 0; UnicodeString idUppercase = id; idUppercase.toUpper(); if (id.length() > GMT_ID_LENGTH && idUppercase.startsWith(GMT_ID)) { ParsePosition pos(GMT_ID_LENGTH); UBool negative = FALSE; int32_t offset; if (id[pos.getIndex()] == 0x002D /*'-'*/) negative = TRUE; else if (id[pos.getIndex()] != 0x002B /*'+'*/) return 0; pos.setIndex(pos.getIndex() + 1); UErrorCode success = U_ZERO_ERROR; numberFormat = NumberFormat::createInstance(success); numberFormat->setParseIntegerOnly(TRUE); // Look for either hh:mm, hhmm, or hh int32_t start = pos.getIndex(); Formattable n(kParseFailed); numberFormat->parse(id, n, pos); if (pos.getIndex() == start) { delete numberFormat; return 0; } offset = n.getLong(); if (pos.getIndex() < id.length() && id[pos.getIndex()] == 0x003A /*':'*/) { // hh:mm offset *= 60; pos.setIndex(pos.getIndex() + 1); int32_t oldPos = pos.getIndex(); n.setLong(kParseFailed); numberFormat->parse(id, n, pos); if (pos.getIndex() == oldPos) { delete numberFormat; return 0; } offset += n.getLong(); } else { // hhmm or hh // Be strict about interpreting something as hh; it must be // an offset < 30, and it must be one or two digits. Thus // 0010 is interpreted as 00:10, but 10 is interpreted as // 10:00. if (offset < 30 && (pos.getIndex() - start) <= 2) offset *= 60; // hh, from 00 to 29; 30 is 00:30 else offset = offset % 100 + offset / 100 * 60; // hhmm } if(negative) offset = -offset; delete numberFormat; return new SimpleTimeZone(offset * 60000, CUSTOM_ID); } return 0; } UBool TimeZone::hasSameRules(const TimeZone& other) const { return (getRawOffset() == other.getRawOffset() && useDaylightTime() == other.useDaylightTime()); } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof