// // file: repattrn.cpp // /* ********************************************************************** * Copyright (C) 2002 International Business Machines Corporation * * and others. All rights reserved. * ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_REGULAR_EXPRESSIONS #include "unicode/regex.h" #include "uassert.h" #include "uvector.h" #include "regexcmp.h" #include "regeximp.h" U_NAMESPACE_BEGIN //-------------------------------------------------------------------------- // // RegexPattern Default Constructor // //-------------------------------------------------------------------------- RegexPattern::RegexPattern() { init(); }; //-------------------------------------------------------------------------- // // Copy Constructor Note: This is a rather inefficient implementation, // but it probably doesn't matter. // //-------------------------------------------------------------------------- RegexPattern::RegexPattern(const RegexPattern &other) : UObject(other) { init(); *this = other; } //-------------------------------------------------------------------------- // // Assignmenet Operator // //-------------------------------------------------------------------------- RegexPattern &RegexPattern::operator = (const RegexPattern &other) { if (this == &other) { // Source and destination are the same. Don't do anything. return *this; } // Clean out any previous contents of object being assigned to. zap(); // Give target object a default initialization init(); // Copy simple fields fPattern = other.fPattern; fFlags = other.fFlags; fLiteralText = other.fLiteralText; fBadState = other.fBadState; fNumCaptureGroups = other.fNumCaptureGroups; fMaxCaptureDigits = other.fMaxCaptureDigits; fStaticSets = other.fStaticSets; if (fBadState) { return *this; } // Copy the pattern. It's just values, nothing deep to copy. int i; UErrorCode status = U_ZERO_ERROR; for (i=0; isize(); i++) { fCompiledPat->addElement(other.fCompiledPat->elementAti(i), status); } // Note: do not copy fMatcher. It'll be created on first use if the // destination needs one. // Copy the Unicode Sets. // Could be made more efficient if the sets were reference counted and shared, // but I doubt that pattern copying will be particularly common. // Note: init() already added an empty element zero to fSets for (i=1; isize(); i++) { UnicodeSet *sourceSet = (UnicodeSet *)other.fSets->elementAt(i); UnicodeSet *newSet = new UnicodeSet(*sourceSet); if (newSet == NULL) { fBadState = TRUE; break; } fSets->addElement(newSet, status); } if (U_FAILURE(status)) { fBadState = TRUE; } return *this; } //-------------------------------------------------------------------------- // // init Shared initialization for use by constructors. // Bring an uninitialized RegexPattern up to a default state. // //-------------------------------------------------------------------------- void RegexPattern::init() { fFlags = 0; fBadState = FALSE; fNumCaptureGroups = 0; fMaxCaptureDigits = 1; // TODO: calculate for real. fStaticSets = NULL; fMatcher = NULL; UErrorCode status=U_ZERO_ERROR; // Init of a completely new RegexPattern. fCompiledPat = new UVector(status); fSets = new UVector(status); if (U_FAILURE(status) || fCompiledPat == NULL || fSets == NULL) { fBadState = TRUE; return; } // Slot zero of the vector of sets is reserved. Fill it here. fSets->addElement((int32_t)0, status); } //-------------------------------------------------------------------------- // // zap Delete everything owned by this RegexPattern. // //-------------------------------------------------------------------------- void RegexPattern::zap() { delete fMatcher; fMatcher = NULL; delete fCompiledPat; fCompiledPat = NULL; int i; for (i=1; isize(); i++) { UnicodeSet *s; s = (UnicodeSet *)fSets->elementAt(i); if (s != NULL) { delete s; } } delete fSets; fSets = NULL; } //-------------------------------------------------------------------------- // // Destructor // //-------------------------------------------------------------------------- RegexPattern::~RegexPattern() { zap(); }; //-------------------------------------------------------------------------- // // Clone // //-------------------------------------------------------------------------- RegexPattern *RegexPattern::clone() const { RegexPattern *copy = new RegexPattern(*this); return copy; }; //-------------------------------------------------------------------------- // // operator == (comparison) Consider to patterns to be == if the // pattern strings and the flags are the same. // //-------------------------------------------------------------------------- UBool RegexPattern::operator ==(const RegexPattern &other) const { UBool r = this->fFlags == other.fFlags && this->fPattern == other.fPattern && this->fBadState == FALSE && other.fBadState == FALSE; return r; } //--------------------------------------------------------------------- // // compile // //--------------------------------------------------------------------- RegexPattern *RegexPattern::compile( const UnicodeString ®ex, uint32_t flags, UParseError &pe, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } if (flags != 0) { status = U_REGEX_UNIMPLEMENTED; return NULL; } RegexPattern *This = new RegexPattern; if (This == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } if (This->fBadState) { status = U_REGEX_INVALID_STATE; return NULL; } This->fFlags = flags; RegexCompile compiler(status); compiler.compile(*This, regex, pe, status); return This; }; // // compile with default flags. // RegexPattern *RegexPattern::compile( const UnicodeString ®ex, UParseError &pe, UErrorCode &err) { return compile(regex, 0, pe, err); } //--------------------------------------------------------------------- // // flags // //--------------------------------------------------------------------- uint32_t RegexPattern::flags() const { return fFlags; } //--------------------------------------------------------------------- // // matcher(UnicodeString, err) // //--------------------------------------------------------------------- RegexMatcher *RegexPattern::matcher(const UnicodeString &input, UErrorCode &err) const { RegexMatcher *retMatcher = NULL; if (U_FAILURE(err)) { return NULL; } if (fBadState) { U_FAILURE(U_REGEX_INVALID_STATE); return NULL; } retMatcher = new RegexMatcher(this); if (retMatcher == NULL) { err = U_MEMORY_ALLOCATION_ERROR; return NULL; } retMatcher->reset(input); return retMatcher; }; //--------------------------------------------------------------------- // // matches Convenience function to test for a match, starting // with a pattern string and a data string. // //--------------------------------------------------------------------- UBool RegexPattern::matches(const UnicodeString ®ex, const UnicodeString &input, UParseError &pe, UErrorCode &status) { if (U_FAILURE(status)) {return FALSE;} UBool retVal; RegexPattern *pat = NULL; RegexMatcher *matcher = NULL; pat = RegexPattern::compile(regex, 0, pe, status); matcher = pat->matcher(input, status); retVal = matcher->matches(status); delete matcher; delete pat; return retVal; } //--------------------------------------------------------------------- // // pattern // //--------------------------------------------------------------------- UnicodeString RegexPattern::pattern() const { return fPattern; } //--------------------------------------------------------------------- // // split // //--------------------------------------------------------------------- int32_t RegexPattern::split(const UnicodeString &input, UnicodeString dest[], int32_t destCapacity, UErrorCode &status) const { // // Check arguements for validity // if (U_FAILURE(status)) { return 0; }; if (destCapacity < 1) { status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } // // If we don't already have a cached matcher object from a previous call // to split(), create one now. // if (fMatcher == NULL) { RegexMatcher *m = matcher(input, status); if (U_FAILURE(status)) { return 0; } // Need to cast off const to cache the matcher RegexPattern *nonConstThis = (RegexPattern *)this; nonConstThis->fMatcher = m; } // // Set our input text into the matcher // fMatcher->reset(input); int32_t inputLen = input.length(); int32_t nextOutputStringStart = 0; if (inputLen == 0) { return 0; } // // Loop through the input text, searching for the delimiter pattern // int i; for (i=0; ; i++) { if (i==destCapacity-1) { // There is only one output string left. // Fill it with whatever is left from the input, then exit the loop. dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart); break; } if (fMatcher->find()) { // We found another delimiter. Move everything from where we started looking // up until the start of the delimiter into the next output string. int32_t fieldLen = fMatcher->fMatchStart - nextOutputStringStart; dest[i].setTo(input, nextOutputStringStart, fieldLen); nextOutputStringStart = fMatcher->fMatchEnd; // If the delimiter pattern has capturing parentheses, the captured // text goes out into the next n destination strings. int32_t groupNum; for (groupNum=1; groupNum<=this->fNumCaptureGroups; groupNum++) { if (i==destCapacity-1) { break; } i++; dest[i] = fMatcher->group(groupNum, status); } if (nextOutputStringStart == inputLen) { // The delimiter was at the end of the string. We're done. break; } if (i==destCapacity-1) { // We've filled up the last output string with capture group data. // Give back the last string, to be used for the remainder of the input. i--; } } else { // We ran off the end of the input while looking for the next delimiter. // All the remaining text goes into the current output string. dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart); break; } } return i+1; } //--------------------------------------------------------------------- // // dump Output the compiled form of the pattern. // Debugging function only. // //--------------------------------------------------------------------- static const char *opNames[] = {URX_OPCODE_NAMES}; void RegexPattern::dumpOp(int32_t index) const { int32_t op = fCompiledPat->elementAti(index); int32_t val = URX_VAL(op); int32_t type = URX_TYPE(op); int32_t pinnedType = type; if (pinnedType >= sizeof(opNames)/sizeof(char *)) { pinnedType = 0; } REGEX_DUMP_DEBUG_PRINTF("%4d %08x %-15s ", index, op, opNames[pinnedType]); switch (type) { case URX_NOP: case URX_DOTANY: case URX_FAIL: case URX_BACKSLASH_A: case URX_BACKSLASH_G: case URX_BACKSLASH_X: case URX_END: // Types with no operand field of interest. break; case URX_START_CAPTURE: case URX_END_CAPTURE: case URX_STATE_SAVE: case URX_JMP: case URX_BACKSLASH_B: case URX_BACKSLASH_D: case URX_BACKSLASH_W: case URX_BACKSLASH_Z: case URX_CARET: case URX_DOLLAR: case URX_STRING_LEN: // types with an integer operand field. REGEX_DUMP_DEBUG_PRINTF("%d", val); break; case URX_ONECHAR: REGEX_DUMP_DEBUG_PRINTF("%c", val<256?val:'?'); break; case URX_STRING: { int32_t lengthOp = fCompiledPat->elementAti(index+1); U_ASSERT(URX_TYPE(lengthOp) == URX_STRING_LEN); int32_t length = URX_VAL(lengthOp); int32_t i; for (i=val; i= 256) {c = '.';} REGEX_DUMP_DEBUG_PRINTF("%c", c); } } break; case URX_SETREF: { UnicodeString s; UnicodeSet *set = (UnicodeSet *)fSets->elementAt(val); set->toPattern(s, TRUE); for (int32_t i=0; itoPattern(s, TRUE); for (int32_t i=0; isize(); index++) { dumpOp(index); } REGEX_DUMP_DEBUG_PRINTF("\n\n"); }; const char RegexPattern::fgClassID = 0; //---------------------------------------------------------------------------------- // // regex_cleanup Memory cleanup function, free/delete all // cached memory. Called by ICU's u_cleanup() function. // //---------------------------------------------------------------------------------- U_CFUNC UBool regex_cleanup(void) { RegexCompile::cleanup(); return TRUE; }; U_NAMESPACE_END #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS