/* ******************************************************************************* * * Copyright (C) 2001, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: ucol_bld.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created 02/22/2001 * created by: Vladimir Weinstein * * This module builds a collator based on the rule set. * */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/ucoleitr.h" #include "unicode/uchar.h" #include "ucol_bld.h" #include "ucln_in.h" #include "umutex.h" #include "unicode/uniset.h" static const InverseTableHeader* invUCA = NULL; static UDataMemory* invUCA_DATA_MEM = NULL; U_CDECL_BEGIN static UBool U_CALLCONV isAcceptableInvUCA(void * /*context*/, const char * /*type*/, const char * /*name*/, const UDataInfo *pInfo){ /* context, type & name are intentionally not used */ if( pInfo->size>=20 && pInfo->isBigEndian==U_IS_BIG_ENDIAN && pInfo->charsetFamily==U_CHARSET_FAMILY && pInfo->dataFormat[0]==invUcaDataInfo.dataFormat[0] && /* dataFormat="InvC" */ pInfo->dataFormat[1]==invUcaDataInfo.dataFormat[1] && pInfo->dataFormat[2]==invUcaDataInfo.dataFormat[2] && pInfo->dataFormat[3]==invUcaDataInfo.dataFormat[3] && pInfo->formatVersion[0]==invUcaDataInfo.formatVersion[0] && pInfo->formatVersion[1]>=invUcaDataInfo.formatVersion[1] && //pInfo->formatVersion[1]==invUcaDataInfo.formatVersion[1] && //pInfo->formatVersion[2]==invUcaDataInfo.formatVersion[2] && //pInfo->formatVersion[3]==invUcaDataInfo.formatVersion[3] && pInfo->dataVersion[0]==invUcaDataInfo.dataVersion[0] && pInfo->dataVersion[1]>=invUcaDataInfo.dataVersion[1]) { //pInfo->dataVersion[1]==invUcaDataInfo.dataVersion[1] && //pInfo->dataVersion[2]==invUcaDataInfo.dataVersion[2] && //pInfo->dataVersion[3]==invUcaDataInfo.dataVersion[3]) { return TRUE; } else { return FALSE; } } U_CDECL_END static int32_t ucol_inv_findCE(uint32_t CE, uint32_t SecondCE) { uint32_t bottom = 0, top = invUCA->tableSize; uint32_t i = 0; uint32_t first = 0, second = 0; uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table); while(bottom < top-1) { i = (top+bottom)/2; first = *(CETable+3*i); second = *(CETable+3*i+1); if(first > CE) { top = i; } else if(first < CE) { bottom = i; } else { if(second > SecondCE) { top = i; } else if(second < SecondCE) { bottom = i; } else { break; } } } /* weiv: */ /* in searching for elements, I have removed the failure */ /* The reason for this is that the builder does not rely */ /* on search mechanism telling it that it didn't find an */ /* element. However, indirect positioning relies on being */ /* able to find the elements around any CE, even if it is */ /* not defined in the UCA. */ return i; /* if((first == CE && second == SecondCE)) { return i; } else { return -1; } */ } static const uint32_t strengthMask[UCOL_CE_STRENGTH_LIMIT] = { 0xFFFF0000, 0xFFFFFF00, 0xFFFFFFFF }; U_CAPI int32_t U_EXPORT2 ucol_inv_getNextCE(uint32_t CE, uint32_t contCE, uint32_t *nextCE, uint32_t *nextContCE, uint32_t strength) { uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table); int32_t iCE; iCE = ucol_inv_findCE(CE, contCE); if(iCE<0) { *nextCE = UCOL_NOT_FOUND; return -1; } CE &= strengthMask[strength]; contCE &= strengthMask[strength]; *nextCE = CE; *nextContCE = contCE; while((*nextCE & strengthMask[strength]) == CE && (*nextContCE & strengthMask[strength]) == contCE) { *nextCE = (*(CETable+3*(++iCE))); *nextContCE = (*(CETable+3*(iCE)+1)); } return iCE; } U_CAPI int32_t U_EXPORT2 ucol_inv_getPrevCE(uint32_t CE, uint32_t contCE, uint32_t *prevCE, uint32_t *prevContCE, uint32_t strength) { uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table); int32_t iCE; iCE = ucol_inv_findCE(CE, contCE); if(iCE<0) { *prevCE = UCOL_NOT_FOUND; return -1; } CE &= strengthMask[strength]; contCE &= strengthMask[strength]; *prevCE = CE; *prevContCE = contCE; while((*prevCE & strengthMask[strength]) == CE && (*prevContCE & strengthMask[strength])== contCE && iCE > 0) { /* this condition should prevent falling off the edge of the world */ /* here, we end up in a singularity - zero */ *prevCE = (*(CETable+3*(--iCE))); *prevContCE = (*(CETable+3*(iCE)+1)); } return iCE; } static inline int32_t ucol_inv_getPrevious(UColTokListHeader *lh, uint32_t strength) { uint32_t CE = lh->baseCE; uint32_t SecondCE = lh->baseContCE; uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table); uint32_t previousCE, previousContCE; int32_t iCE; iCE = ucol_inv_findCE(CE, SecondCE); if(iCE<0) { return -1; } CE &= strengthMask[strength]; SecondCE &= strengthMask[strength]; previousCE = CE; previousContCE = SecondCE; while((previousCE & strengthMask[strength]) == CE && (previousContCE & strengthMask[strength])== SecondCE) { previousCE = (*(CETable+3*(--iCE))); previousContCE = (*(CETable+3*(iCE)+1)); } lh->previousCE = previousCE; lh->previousContCE = previousContCE; return iCE; } static inline int32_t ucol_inv_getNext(UColTokListHeader *lh, uint32_t strength) { uint32_t CE = lh->baseCE; uint32_t SecondCE = lh->baseContCE; uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table); uint32_t nextCE, nextContCE; int32_t iCE; iCE = ucol_inv_findCE(CE, SecondCE); if(iCE<0) { return -1; } CE &= strengthMask[strength]; SecondCE &= strengthMask[strength]; nextCE = CE; nextContCE = SecondCE; while((nextCE & strengthMask[strength]) == CE && (nextContCE & strengthMask[strength]) == SecondCE) { nextCE = (*(CETable+3*(++iCE))); nextContCE = (*(CETable+3*(iCE)+1)); } lh->nextCE = nextCE; lh->nextContCE = nextContCE; return iCE; } U_CFUNC void ucol_inv_getGapPositions(UColTokenParser *src, UColTokListHeader *lh, UErrorCode *status) { /* reset all the gaps */ int32_t i = 0; uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table); uint32_t st = 0; uint32_t t1, t2; int32_t pos; UColToken *tok = lh->first; uint32_t tokStrength = tok->strength; for(i = 0; i<3; i++) { lh->gapsHi[3*i] = 0; lh->gapsHi[3*i+1] = 0; lh->gapsHi[3*i+2] = 0; lh->gapsLo[3*i] = 0; lh->gapsLo[3*i+1] = 0; lh->gapsLo[3*i+2] = 0; lh->numStr[i] = 0; lh->fStrToken[i] = NULL; lh->lStrToken[i] = NULL; lh->pos[i] = -1; } UCAConstants *consts = (UCAConstants *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts); if(lh->baseCE >= (consts->UCA_PRIMARY_IMPLICIT_MIN<<24) && lh->baseCE < (consts->UCA_PRIMARY_IMPLICIT_MAX<<24) ) { /* implicits - */ //if(lh->baseCE >= PRIMARY_IMPLICIT_MIN && lh->baseCE < PRIMARY_IMPLICIT_MAX ) { /* implicits - */ lh->pos[0] = 0; t1 = lh->baseCE; t2 = lh->baseContCE; lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; if(lh->baseCE < 0xEF000000) { /* first implicits have three byte primaries, with a gap of one */ /* so we esentially need to add 2 to the top byte in lh->baseContCE */ t2 += 0x02000000; } else { /* second implicits have four byte primaries, with a gap of IMPLICIT_LAST2_MULTIPLIER_ */ /* Now, this guy is not really accessible here, so until we find a better way to pass it */ /* around, we'll assume that the gap is 1 */ t2 += 0x00020000; } lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; } else if(lh->indirect == TRUE && lh->nextCE != 0) { //} else if(lh->baseCE == UCOL_RESET_TOP_VALUE && lh->baseContCE == 0) { lh->pos[0] = 0; t1 = lh->baseCE; t2 = lh->baseContCE; lh->gapsLo[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; lh->gapsLo[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; lh->gapsLo[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; t1 = lh->nextCE; t2 = lh->nextContCE; lh->gapsHi[0] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; lh->gapsHi[1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; lh->gapsHi[2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; } else { for(;;) { if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { if((lh->pos[tokStrength] = ucol_inv_getNext(lh, tokStrength)) >= 0) { lh->fStrToken[tokStrength] = tok; } else { /* The CE must be implicit, since it's not in the table */ /* Error */ *status = U_INTERNAL_PROGRAM_ERROR; } } while(tok != NULL && tok->strength >= tokStrength) { if(tokStrength < UCOL_CE_STRENGTH_LIMIT) { lh->lStrToken[tokStrength] = tok; } tok = tok->next; } if(tokStrength < UCOL_CE_STRENGTH_LIMIT-1) { /* check if previous interval is the same and merge the intervals if it is so */ if(lh->pos[tokStrength] == lh->pos[tokStrength+1]) { lh->fStrToken[tokStrength] = lh->fStrToken[tokStrength+1]; lh->fStrToken[tokStrength+1] = NULL; lh->lStrToken[tokStrength+1] = NULL; lh->pos[tokStrength+1] = -1; } } if(tok != NULL) { tokStrength = tok->strength; } else { break; } } for(st = 0; st < 3; st++) { if((pos = lh->pos[st]) >= 0) { t1 = *(CETable+3*(pos)); t2 = *(CETable+3*(pos)+1); lh->gapsHi[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; lh->gapsHi[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; //lh->gapsHi[3*st+2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16; lh->gapsHi[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; pos--; t1 = *(CETable+3*(pos)); t2 = *(CETable+3*(pos)+1); lh->gapsLo[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16; lh->gapsLo[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8; lh->gapsLo[3*st+2] = (t1&0x3f) << 24 | (t2&0x3f) << 16; } } } } #define ucol_countBytes(value, noOfBytes) \ { \ uint32_t mask = 0xFFFFFFFF; \ (noOfBytes) = 0; \ while(mask != 0) { \ if(((value) & mask) != 0) { \ (noOfBytes)++; \ } \ mask >>= 8; \ } \ } U_CFUNC uint32_t ucol_getNextGenerated(ucolCEGenerator *g, UErrorCode *status) { if(U_SUCCESS(*status)) { g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); } return g->current; } U_CFUNC uint32_t ucol_getSimpleCEGenerator(ucolCEGenerator *g, UColToken *tok, uint32_t strength, UErrorCode *status) { /* TODO: rename to enum names */ uint32_t high, low, count=1; uint32_t maxByte = (strength == UCOL_TERTIARY)?0x3F:0xFF; if(strength == UCOL_SECONDARY) { low = UCOL_COMMON_TOP2<<24; high = 0xFFFFFFFF; count = 0xFF - UCOL_COMMON_TOP2; } else { low = UCOL_BYTE_COMMON << 24; //0x05000000; high = 0x40000000; count = 0x40 - UCOL_BYTE_COMMON; } if(tok->next != NULL && tok->next->strength == strength) { count = tok->next->toInsert; } g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); g->current = UCOL_BYTE_COMMON<<24; if(g->noOfRanges == 0) { *status = U_INTERNAL_PROGRAM_ERROR; } return g->current; } U_CFUNC uint32_t ucol_getCEGenerator(ucolCEGenerator *g, uint32_t* lows, uint32_t* highs, UColToken *tok, uint32_t fStrength, UErrorCode *status) { uint32_t strength = tok->strength; uint32_t low = lows[fStrength*3+strength]; uint32_t high = highs[fStrength*3+strength]; uint32_t maxByte = (strength == UCOL_TERTIARY)?0x3F:0xFF; uint32_t count = tok->toInsert; if(low >= high && strength > UCOL_PRIMARY) { int32_t s = strength; for(;;) { s--; if(lows[fStrength*3+s] != highs[fStrength*3+s]) { if(strength == UCOL_SECONDARY) { low = UCOL_COMMON_TOP2<<24; high = 0xFFFFFFFF; } else { //low = 0x02000000; // This needs to be checked - what if low is // not good... high = 0x40000000; } break; } if(s<0) { *status = U_INTERNAL_PROGRAM_ERROR; return 0; } } } if(low == 0) { low = 0x01000000; } if(strength == UCOL_SECONDARY) { /* similar as simple */ if(low >= (UCOL_COMMON_BOT2<<24) && low < (uint32_t)(UCOL_COMMON_TOP2<<24)) { low = UCOL_COMMON_TOP2<<24; } if(high > (UCOL_COMMON_BOT2<<24) && high < (uint32_t)(UCOL_COMMON_TOP2<<24)) { high = UCOL_COMMON_TOP2<<24; } if(low < UCOL_COMMON_BOT2<<24) { g->noOfRanges = ucol_allocWeights(UCOL_COMMON_TOP2<<24, high, count, maxByte, g->ranges); g->current = UCOL_COMMON_BOT2; return g->current; } } g->noOfRanges = ucol_allocWeights(low, high, count, maxByte, g->ranges); if(g->noOfRanges == 0) { *status = U_INTERNAL_PROGRAM_ERROR; } g->current = ucol_nextWeight(g->ranges, &g->noOfRanges); return g->current; } U_CFUNC void ucol_doCE(uint32_t *CEparts, UColToken *tok) { /* this one makes the table and stuff */ uint32_t noOfBytes[3]; uint32_t i; for(i = 0; i<3; i++) { ucol_countBytes(CEparts[i], noOfBytes[i]); } /* Here we have to pack CEs from parts */ uint32_t CEi = 0; uint32_t value = 0; while(2*CEi 0) { value = UCOL_CONTINUATION_MARKER; /* Continuation marker */ } else { value = 0; } if(2*CEi>(32-16*(CEi+1))) & 0xFFFF) << 16; } if(CEi>(32-8*(CEi+1))) & 0xFF) << 8; } if(CEi>(32-8*(CEi+1))) & 0x3F); } tok->CEs[CEi] = value; CEi++; } if(CEi == 0) { /* totally ignorable */ tok->noOfCEs = 1; tok->CEs[0] = 0; } else { /* there is at least something */ tok->noOfCEs = CEi; } #if UCOL_DEBUG==2 fprintf(stderr, "%04X str: %i, [%08X, %08X, %08X]: tok: ", tok->debugSource, tok->strength, CEparts[0] >> (32-8*noOfBytes[0]), CEparts[1] >> (32-8*noOfBytes[1]), CEparts[2]>> (32-8*noOfBytes[2])); for(i = 0; inoOfCEs; i++) { fprintf(stderr, "%08X ", tok->CEs[i]); } fprintf(stderr, "\n"); #endif } U_CFUNC void ucol_initBuffers(UColTokenParser *src, UColTokListHeader *lh, UErrorCode *status) { ucolCEGenerator Gens[UCOL_CE_STRENGTH_LIMIT]; uint32_t CEparts[UCOL_CE_STRENGTH_LIMIT]; UColToken *tok = lh->last; uint32_t t[UCOL_STRENGTH_LIMIT]; uprv_memset(t, 0, UCOL_STRENGTH_LIMIT*sizeof(uint32_t)); tok->toInsert = 1; t[tok->strength] = 1; while(tok->previous != NULL) { if(tok->previous->strength < tok->strength) { /* going up */ t[tok->strength] = 0; t[tok->previous->strength]++; } else if(tok->previous->strength > tok->strength) { /* going down */ t[tok->previous->strength] = 1; } else { t[tok->strength]++; } tok=tok->previous; tok->toInsert = t[tok->strength]; } tok->toInsert = t[tok->strength]; ucol_inv_getGapPositions(src, lh, status); #if UCOL_DEBUG fprintf(stderr, "BaseCE: %08X %08X\n", lh->baseCE, lh->baseContCE); int32_t j = 2; for(j = 2; j >= 0; j--) { fprintf(stderr, "gapsLo[%i] [%08X %08X %08X]\n", j, lh->gapsLo[j*3], lh->gapsLo[j*3+1], lh->gapsLo[j*3+2]); fprintf(stderr, "gapsHi[%i] [%08X %08X %08X]\n", j, lh->gapsHi[j*3], lh->gapsHi[j*3+1], lh->gapsHi[j*3+2]); } tok=lh->first[UCOL_TOK_POLARITY_POSITIVE]; do { fprintf(stderr,"%i", tok->strength); tok = tok->next; } while(tok != NULL); fprintf(stderr, "\n"); tok=lh->first[UCOL_TOK_POLARITY_POSITIVE]; do { fprintf(stderr,"%i", tok->toInsert); tok = tok->next; } while(tok != NULL); #endif tok = lh->first; uint32_t fStrength = UCOL_IDENTICAL; uint32_t initStrength = UCOL_IDENTICAL; CEparts[UCOL_PRIMARY] = (lh->baseCE & UCOL_PRIMARYMASK) | (lh->baseContCE & UCOL_PRIMARYMASK) >> 16; CEparts[UCOL_SECONDARY] = (lh->baseCE & UCOL_SECONDARYMASK) << 16 | (lh->baseContCE & UCOL_SECONDARYMASK) << 8; CEparts[UCOL_TERTIARY] = (UCOL_TERTIARYORDER(lh->baseCE)) << 24 | (UCOL_TERTIARYORDER(lh->baseContCE)) << 16; while (tok != NULL && U_SUCCESS(*status)) { fStrength = tok->strength; if(fStrength < initStrength) { initStrength = fStrength; if(lh->pos[fStrength] == -1) { while(lh->pos[fStrength] == -1 && fStrength > 0) { fStrength--; } if(lh->pos[fStrength] == -1) { *status = U_INTERNAL_PROGRAM_ERROR; return; } } if(initStrength == UCOL_TERTIARY) { /* starting with tertiary */ CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; CEparts[UCOL_SECONDARY] = lh->gapsLo[fStrength*3+1]; /*CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], lh->gapsLo[fStrength*3+2], lh->gapsHi[fStrength*3+2], tok, UCOL_TERTIARY); */ CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[UCOL_TERTIARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); } else if(initStrength == UCOL_SECONDARY) { /* secondaries */ CEparts[UCOL_PRIMARY] = lh->gapsLo[fStrength*3]; /*CEparts[1] = ucol_getCEGenerator(&Gens[1], lh->gapsLo[fStrength*3+1], lh->gapsHi[fStrength*3+1], tok, 1);*/ CEparts[UCOL_SECONDARY] = ucol_getCEGenerator(&Gens[UCOL_SECONDARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); } else { /* primaries */ /*CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[0], lh->gapsLo[0], lh->gapsHi[0], tok, UCOL_PRIMARY);*/ CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[UCOL_PRIMARY], lh->gapsLo, lh->gapsHi, tok, fStrength, status); CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_SECONDARY], tok, UCOL_SECONDARY, status); CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); } } else { if(tok->strength == UCOL_TERTIARY) { CEparts[UCOL_TERTIARY] = ucol_getNextGenerated(&Gens[UCOL_TERTIARY], status); } else if(tok->strength == UCOL_SECONDARY) { CEparts[UCOL_SECONDARY] = ucol_getNextGenerated(&Gens[UCOL_SECONDARY], status); CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); } else if(tok->strength == UCOL_PRIMARY) { CEparts[UCOL_PRIMARY] = ucol_getNextGenerated(&Gens[UCOL_PRIMARY], status); CEparts[UCOL_SECONDARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_SECONDARY], tok, UCOL_SECONDARY, status); CEparts[UCOL_TERTIARY] = ucol_getSimpleCEGenerator(&Gens[UCOL_TERTIARY], tok, UCOL_TERTIARY, status); } } ucol_doCE(CEparts, tok); tok = tok->next; } } static uint32_t u_toLargeKana(const UChar *source, const uint32_t sourceLen, UChar *resBuf, const uint32_t resLen, UErrorCode *status) { uint32_t i = 0; UChar c; if(U_FAILURE(*status)) { return 0; } if(sourceLen > resLen) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } for(i = 0; i < sourceLen; i++) { c = source[i]; if(0x3042 < c && c < 0x30ef) { /* Kana range */ switch(c - 0x3000) { case 0x41: case 0x43: case 0x45: case 0x47: case 0x49: case 0x63: case 0x83: case 0x85: case 0x8E: case 0xA1: case 0xA3: case 0xA5: case 0xA7: case 0xA9: case 0xC3: case 0xE3: case 0xE5: case 0xEE: c++; break; case 0xF5: c = 0x30AB; break; case 0xF6: c = 0x30B1; break; } } resBuf[i] = c; } return sourceLen; } static uint32_t u_toSmallKana(const UChar *source, const uint32_t sourceLen, UChar *resBuf, const uint32_t resLen, UErrorCode *status) { uint32_t i = 0; UChar c; if(U_FAILURE(*status)) { return 0; } if(sourceLen > resLen) { *status = U_MEMORY_ALLOCATION_ERROR; return 0; } for(i = 0; i < sourceLen; i++) { c = source[i]; if(0x3042 < c && c < 0x30ef) { /* Kana range */ switch(c - 0x3000) { case 0x42: case 0x44: case 0x46: case 0x48: case 0x4A: case 0x64: case 0x84: case 0x86: case 0x8F: case 0xA2: case 0xA4: case 0xA6: case 0xA8: case 0xAA: case 0xC4: case 0xE4: case 0xE6: case 0xEF: c--; break; case 0xAB: c = 0x30F5; break; case 0xB1: c = 0x30F6; break; } } resBuf[i] = c; } return sourceLen; } static uint8_t ucol_uprv_getCaseBits(const UCollator *UCA, const UChar *src, uint32_t len, UErrorCode *status) { uint32_t i = 0; UChar n[128]; uint32_t nLen = 0; uint32_t uCount = 0, lCount = 0; collIterate s; uint32_t order = 0; if(U_FAILURE(*status)) { return UCOL_LOWER_CASE; } nLen = unorm_normalize(src, len, UNORM_NFKD, 0, n, 128, status); if(U_SUCCESS(*status)) { for(i = 0; i < nLen; i++) { uprv_init_collIterate(UCA, &n[i], 1, &s); order = ucol_getNextCE(UCA, &s, status); if(isContinuation(order)) { *status = U_INTERNAL_PROGRAM_ERROR; return UCOL_LOWER_CASE; } if((order&UCOL_CASE_BIT_MASK)== UCOL_UPPER_CASE) { uCount++; } else { if(u_islower(n[i])) { lCount++; } else { UChar sk[1], lk[1]; u_toSmallKana(&n[i], 1, sk, 1, status); u_toLargeKana(&n[i], 1, lk, 1, status); if(sk[0] == n[i] && lk[0] != n[i]) { lCount++; } } } } } if(uCount != 0 && lCount != 0) { return UCOL_MIXED_CASE; } else if(uCount != 0) { return UCOL_UPPER_CASE; } else { return UCOL_LOWER_CASE; } } U_CFUNC void ucol_createElements(UColTokenParser *src, tempUCATable *t, UColTokListHeader *lh, UErrorCode *status) { UCAElements el; UColToken *tok = lh->first; UColToken *expt = NULL; uint32_t i = 0, j = 0; while(tok != NULL && U_SUCCESS(*status)) { /* first, check if there are any expansions */ /* if there are expansions, we need to do a little bit more processing */ /* since parts of expansion can be tailored, while others are not */ if(tok->expansion != 0) { uint32_t len = tok->expansion >> 24; uint32_t currentSequenceLen = len; uint32_t expOffset = tok->expansion & 0x00FFFFFF; //uint32_t exp = currentSequenceLen | expOffset; UColToken exp; exp.source = currentSequenceLen | expOffset; exp.rulesToParse = src->source; while(len > 0) { currentSequenceLen = len; while(currentSequenceLen > 0) { exp.source = (currentSequenceLen << 24) | expOffset; if((expt = (UColToken *)uhash_get(src->tailored, &exp)) != NULL && expt->strength != UCOL_TOK_RESET) { /* expansion is tailored */ uint32_t noOfCEsToCopy = expt->noOfCEs; for(j = 0; jexpCEs[tok->noOfExpCEs + j] = expt->CEs[j]; } tok->noOfExpCEs += noOfCEsToCopy; // Smart people never try to add codepoints and CEs. // For some odd reason, it won't work. expOffset += currentSequenceLen; //noOfCEsToCopy; len -= currentSequenceLen; //noOfCEsToCopy; break; } else { currentSequenceLen--; } } if(currentSequenceLen == 0) { /* couldn't find any tailored subsequence */ /* will have to get one from UCA */ /* first, get the UChars from the rules */ /* then pick CEs out until there is no more and stuff them into expansion */ collIterate s; uint32_t order = 0; uprv_init_collIterate(src->UCA, expOffset + src->source, 1, &s); for(;;) { order = ucol_getNextCE(src->UCA, &s, status); if(order == UCOL_NO_MORE_CES) { break; } tok->expCEs[tok->noOfExpCEs++] = order; } expOffset++; len--; } } } else { tok->noOfExpCEs = 0; } /* set the ucaelement with obtained values */ el.noOfCEs = tok->noOfCEs + tok->noOfExpCEs; /* copy CEs */ for(i = 0; inoOfCEs; i++) { el.CEs[i] = tok->CEs[i]; } for(i = 0; inoOfExpCEs; i++) { el.CEs[i+tok->noOfCEs] = tok->expCEs[i]; } /* copy UChars */ // We kept prefix and source kind of together, as it is a kind of a contraction. // However, now we have to slice the prefix off the main thing - el.prefix = el.prefixChars; el.cPoints = el.uchars; if(tok->prefix != 0) { // we will just copy the prefix here, and adjust accordingly in the // addPrefix function in ucol_elm. The reason is that we need to add both composed AND // decomposed elements to the unsaf table. el.prefixSize = tok->prefix>>24; uprv_memcpy(el.prefix, src->source + (tok->prefix & 0x00FFFFFF), el.prefixSize*sizeof(UChar)); el.cSize = (tok->source >> 24)-(tok->prefix>>24); uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF)+(tok->prefix>>24) + src->source, el.cSize*sizeof(UChar)); } else { el.prefixSize = 0; *el.prefix = 0; el.cSize = (tok->source >> 24); uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, el.cSize*sizeof(UChar)); } if(UCOL_ISTHAIPREVOWEL(el.cPoints[0])) { el.isThai = TRUE; } else { el.isThai = FALSE; } if(src->UCA != NULL) { for(i = 0; iimage->jamoSpecial = TRUE; } } } // Case bits handling el.CEs[0] &= 0xFFFFFF3F; // Clean the case bits field if(el.cSize > 1) { // Do it manually el.CEs[0] |= ucol_uprv_getCaseBits(src->UCA, el.cPoints, el.cSize, status); } else { // Copy it from the UCA uint32_t caseCE = ucol_getFirstCE(src->UCA, el.cPoints[0], status); el.CEs[0] |= (caseCE & 0xC0); } /* and then, add it */ #if UCOL_DEBUG==2 fprintf(stderr, "Adding: %04X with %08X\n", el.cPoints[0], el.CEs[0]); #endif uprv_uca_addAnElement(t, &el, status); #if 0 if(el.cSize > 1) { // this is a contraction, we should check whether a composed form should also be included UChar composed[256]; uint32_t compLen = unorm_normalize(el.cPoints, el.cSize, UNORM_NFC, 0, composed, 256, status);; if(compLen != el.cSize || uprv_memcmp(composed, el.cPoints, el.cSize*sizeof(UChar))) { // composed form of a contraction is different than the decomposed form! // do it! #ifdef UCOL_DEBUG fprintf(stderr, "Adding composed for %04X->%04X\n", *element->cPoints, *composed); #endif el.cSize = compLen; uprv_memcpy(el.cPoints, composed, el.cSize*sizeof(UChar)); uprv_uca_addAnElement(t, &el, status); } } #endif #if UCOL_DEBUG_DUPLICATES if(*status != U_ZERO_ERROR) { fprintf(stderr, "replaced CE for %04X with CE for %04X\n", el.cPoints[0], tok->debugSource); *status = U_ZERO_ERROR; } #endif tok = tok->next; } } U_CDECL_BEGIN static UBool U_CALLCONV _processUCACompleteIgnorables(const void *context, UChar32 start, UChar32 limit, uint32_t value) { UErrorCode status = U_ZERO_ERROR; tempUCATable *t = (tempUCATable *)context; if(value == 0) { while(start < limit) { uint32_t CE = utrie_get32(t->mapping, start, NULL); if(CE == UCOL_NOT_FOUND) { UCAElements el; el.isThai = FALSE; el.prefixSize = 0; el.prefixChars[0] = 0; el.prefix = el.prefixChars; el.cPoints = el.uchars; el.cSize = 0; UTF_APPEND_CHAR(el.uchars, el.cSize, 1024, start); el.noOfCEs = 1; el.CEs[0] = 0; uprv_uca_addAnElement(t, &el, &status); } start++; } } if(U_FAILURE(status)) { return FALSE; } else { return TRUE; } } U_CDECL_END static void ucol_uprv_bld_copyRangeFromUCA(UColTokenParser *src, tempUCATable *t, UChar32 start, UChar32 end, UErrorCode *status) { //UChar decomp[256]; uint32_t CE = UCOL_NOT_FOUND; UChar32 u = 0; UCAElements el; el.isThai = FALSE; el.prefixSize = 0; el.prefixChars[0] = 0; collIterate colIt; if(U_SUCCESS(*status)) { for(u = start; u<=end; u++) { if((CE = utrie_get32(t->mapping, u, NULL)) == UCOL_NOT_FOUND /* this test is for contractions that are missing the starting element. */ || ((isCntTableElement(CE)) && (uprv_cnttab_getCE(t->contractions, CE, 0, status) == UCOL_NOT_FOUND)) ) { el.cSize = 0; U16_APPEND_UNSAFE(el.uchars, el.cSize, u); //decomp[0] = (UChar)u; //el.uchars[0] = (UChar)u; el.cPoints = el.uchars; //el.cSize = 1; el.noOfCEs = 0; el.prefix = el.prefixChars; el.prefixSize = 0; //uprv_init_collIterate(src->UCA, decomp, 1, &colIt); // We actually want to check whether this element is a special // If it is an implicit element (hangul, CJK - we want to copy the // special, not the resolved CEs) - for hangul, copying resolved // would just make things the same (there is an expansion and it // takes approximately the same amount of time to resolve as // falling back to the UCA). /* UTRIE_GET32(src->UCA->mapping, u, CE); tag = getCETag(CE); if(tag == HANGUL_SYLLABLE_TAG || tag == CJK_IMPLICIT_TAG || tag == IMPLICIT_TAG || tag == TRAIL_SURROGATE_TAG || tag == LEAD_SURROGATE_TAG) { el.CEs[el.noOfCEs++] = CE; } else { */ // It turns out that it does not make sense to keep implicits // unresolved. The cost of resolving them is big enough so that // it doesn't make any difference whether we have to go to the UCA // or not. { uprv_init_collIterate(src->UCA, el.uchars, el.cSize, &colIt); while(CE != UCOL_NO_MORE_CES) { CE = ucol_getNextCE(src->UCA, &colIt, status); if(CE != UCOL_NO_MORE_CES) { el.CEs[el.noOfCEs++] = CE; } } } uprv_uca_addAnElement(t, &el, status); } } } } UCATableHeader *ucol_assembleTailoringTable(UColTokenParser *src, UErrorCode *status) { uint32_t i = 0; if(U_FAILURE(*status)) { return NULL; } /* 2. Eliminate the negative lists by doing the following for each non-null negative list: o if previousCE(baseCE, strongestN) != some ListHeader X's baseCE, create new ListHeader X o reverse the list, add to the end of X's positive list. Reset the strength of the first item you add, based on the stronger strength levels of the two lists. */ /* 3. For each ListHeader with a non-null positive list: */ /* o Find all character strings with CEs between the baseCE and the next/previous CE, at the strength of the first token. Add these to the tailoring. ? That is, if UCA has ... x <<< X << x' <<< X' < y ..., and the tailoring has & x < z... ? Then we change the tailoring to & x <<< X << x' <<< X' < z ... */ /* It is possible that this part should be done even while constructing list */ /* The problem is that it is unknown what is going to be the strongest weight */ /* So we might as well do it here */ /* o Allocate CEs for each token in the list, based on the total number N of the largest level difference, and the gap G between baseCE and nextCE at that level. The relation * between the last item and nextCE is the same as the strongest strength. o Example: baseCE < a << b <<< q << c < d < e * nextCE(X,1) ? There are 3 primary items: a, d, e. Fit them into the primary gap. Then fit b and c into the secondary gap between a and d, then fit q into the tertiary gap between b and c. o Example: baseCE << b <<< q << c * nextCE(X,2) ? There are 2 secondary items: b, c. Fit them into the secondary gap. Then fit q into the tertiary gap between b and c. o When incrementing primary values, we will not cross high byte boundaries except where there is only a single-byte primary. That is to ensure that the script reordering will continue to work. */ UCATableHeader *image = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader)); /* test for NULL */ if (image == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memcpy(image, src->UCA->image, sizeof(UCATableHeader)); for(i = 0; iresultLen; i++) { /* now we need to generate the CEs */ /* We stuff the initial value in the buffers, and increase the appropriate buffer */ /* According to strength */ if(U_SUCCESS(*status)) { ucol_initBuffers(src, &src->lh[i], status); } if(U_FAILURE(*status)) { return NULL; } } if(src->varTop != NULL) { /* stuff the variable top value */ src->opts->variableTopValue = (*(src->varTop->CEs))>>16; /* remove it from the list */ if(src->varTop->listHeader->first == src->varTop) { /* first in list */ src->varTop->listHeader->first = src->varTop->next; } if(src->varTop->listHeader->last == src->varTop) { /* first in list */ src->varTop->listHeader->last = src->varTop->previous; } if(src->varTop->next != NULL) { src->varTop->next->previous = src->varTop->previous; } if(src->varTop->previous != NULL) { src->varTop->previous->next = src->varTop->next; } } tempUCATable *t = uprv_uca_initTempTable(image, src->opts, src->UCA, NOT_FOUND_TAG, status); /* After this, we have assigned CE values to all regular CEs */ /* now we will go through list once more and resolve expansions, */ /* make UCAElements structs and add them to table */ for(i = 0; iresultLen; i++) { /* now we need to generate the CEs */ /* We stuff the initial value in the buffers, and increase the appropriate buffer */ /* According to strength */ if(U_SUCCESS(*status)) { ucol_createElements(src, t, &src->lh[i], status); } } UCAElements el; el.isThai = FALSE; el.prefixSize = 0; el.prefixChars[0] = 0; /* add latin-1 stuff */ ucol_uprv_bld_copyRangeFromUCA(src, t, 0, 0xFF, status); /* add stuff for copying */ if(src->copySet != NULL) { int32_t i = 0; UnicodeSet *set = (UnicodeSet *)src->copySet; for(i = 0; i < set->getRangeCount(); i++) { ucol_uprv_bld_copyRangeFromUCA(src, t, set->getRangeStart(i), set->getRangeEnd(i), status); } } if(U_SUCCESS(*status)) { /* copy contractions from the UCA - this is felt mostly for cyrillic*/ uint32_t tailoredCE = UCOL_NOT_FOUND; //UChar *conts = (UChar *)((uint8_t *)src->UCA->image + src->UCA->image->UCAConsts+sizeof(UCAConstants)); UChar *conts = (UChar *)((uint8_t *)src->UCA->image + src->UCA->image->contractionUCACombos); UCollationElements *ucaEl = ucol_openElements(src->UCA, NULL, 0, status); while(*conts != 0) { /*tailoredCE = ucmpe32_get(t->mapping, *conts);*/ tailoredCE = utrie_get32(t->mapping, *conts, NULL); if(tailoredCE != UCOL_NOT_FOUND) { UBool needToAdd = TRUE; if(isCntTableElement(tailoredCE)) { if(uprv_cnttab_isTailored(t->contractions, tailoredCE, conts+1, status) == TRUE) { needToAdd = FALSE; } } if(src->removeSet != NULL && uset_contains(src->removeSet, *conts)) { needToAdd = FALSE; } if(needToAdd == TRUE) { // we need to add if this contraction is not tailored. el.prefix = el.prefixChars; el.prefixSize = 0; el.cPoints = el.uchars; el.noOfCEs = 0; el.uchars[0] = *conts; el.uchars[1] = *(conts+1); if(*(conts+2)!=0) { el.uchars[2] = *(conts+2); el.cSize = 3; } else { el.cSize = 2; } ucol_setText(ucaEl, el.uchars, el.cSize, status); while ((el.CEs[el.noOfCEs] = ucol_next(ucaEl, status)) != UCOL_NULLORDER) { el.noOfCEs++; } uprv_uca_addAnElement(t, &el, status); } } else if(src->removeSet != NULL && uset_contains(src->removeSet, *conts)) { ucol_uprv_bld_copyRangeFromUCA(src, t, *conts, *conts, status); } conts+=3; } ucol_closeElements(ucaEl); } // Add completely ignorable elements utrie_enum(t->UCA->mapping, NULL, _processUCACompleteIgnorables, t); // canonical closure uprv_uca_canonicalClosure(t, status); /* still need to produce compatibility closure */ UCATableHeader *myData = uprv_uca_assembleTable(t, status); uprv_uca_closeTempTable(t); uprv_free(image); return myData; } UBool ucol_bld_cleanup(void) { udata_close(invUCA_DATA_MEM); invUCA_DATA_MEM = NULL; invUCA = NULL; return TRUE; } U_CAPI const InverseTableHeader * U_EXPORT2 ucol_initInverseUCA(UErrorCode *status) { if(U_FAILURE(*status)) return NULL; if(invUCA == NULL) { InverseTableHeader *newInvUCA = NULL; UDataMemory *result = udata_openChoice(NULL, INVC_DATA_TYPE, INVC_DATA_NAME, isAcceptableInvUCA, NULL, status); if(U_FAILURE(*status)) { if (result) { udata_close(result); } uprv_free(newInvUCA); } if(result != NULL) { /* It looks like sometimes we can fail to find the data file */ newInvUCA = (InverseTableHeader *)udata_getMemory(result); umtx_lock(NULL); if(invUCA == NULL) { invUCA = newInvUCA; invUCA_DATA_MEM = result; result = NULL; newInvUCA = NULL; } umtx_unlock(NULL); if(newInvUCA != NULL) { udata_close(result); uprv_free(newInvUCA); } else { ucln_i18n_registerCleanup(); } } } return invUCA; } #endif /* #if !UCONFIG_NO_COLLATION */