// // file: regexcmp.cpp // // Copyright (C) 2002-2004 International Business Machines Corporation and others. // All Rights Reserved. // // This file contains the ICU regular expression compiler, which is responsible // for processing a regular expression pattern into the compiled form that // is used by the match finding engine. // #include "unicode/utypes.h" #if !UCONFIG_NO_REGULAR_EXPRESSIONS #include "unicode/unistr.h" #include "unicode/uniset.h" #include "unicode/uchar.h" #include "unicode/uchriter.h" #include "unicode/parsepos.h" #include "unicode/parseerr.h" #include "unicode/regex.h" #include "util.h" #include "cmemory.h" #include "cstring.h" #include "uvectr32.h" #include "uassert.h" #include "ucln_in.h" #include "mutex.h" #include "regeximp.h" #include "regexcst.h" // Contains state table for the regex pattern parser. // generated by a Perl script. #include "regexcmp.h" #include "regexst.h" U_NAMESPACE_BEGIN //------------------------------------------------------------------------------ // // Constructor. // //------------------------------------------------------------------------------ RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) : fParenStack(status) { fStatus = &status; fRXPat = rxp; fScanIndex = 0; fNextIndex = 0; fPeekChar = -1; fLineNum = 1; fCharNum = 0; fQuoteMode = FALSE; fInBackslashQuote = FALSE; fModeFlags = fRXPat->fFlags; fEOLComments = TRUE; fMatchOpenParen = -1; fMatchCloseParen = -1; fStringOpStart = -1; if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) { status = rxp->fDeferredStatus; } } //------------------------------------------------------------------------------ // // Destructor // //------------------------------------------------------------------------------ RegexCompile::~RegexCompile() { } //------------------------------------------------------------------------------ // // Compile regex pattern. The state machine for rexexp pattern parsing is here. // The state tables are hand-written in the file regexcst.txt, // and converted to the form used here by a perl // script regexcst.pl // //------------------------------------------------------------------------------ void RegexCompile::compile( const UnicodeString &pat, // Source pat to be compiled. UParseError &pp, // Error position info UErrorCode &e) // Error Code { fStatus = &e; fParseErr = &pp; fStackPtr = 0; fStack[fStackPtr] = 0; if (U_FAILURE(*fStatus)) { return; } // There should be no pattern stuff in the RegexPattern object. They can not be reused. U_ASSERT(fRXPat->fPattern.length() == 0); // Prepare the RegexPattern object to receive the compiled pattern. // TODO: remove per-instance field, and just use globals directly. (But check perf) fRXPat->fPattern = pat; fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets; fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8; // Initialize the pattern scanning state machine fPatternLength = pat.length(); uint16_t state = 1; const RegexTableEl *tableEl; nextChar(fC); // Fetch the first char from the pattern string. // // Main loop for the regex pattern parsing state machine. // Runs once per state transition. // Each time through optionally performs, depending on the state table, // - an advance to the the next pattern char // - an action to be performed. // - pushing or popping a state to/from the local state return stack. // file regexcst.txt is the source for the state table. The logic behind // recongizing the pattern syntax is there, not here. // for (;;) { // Bail out if anything has gone wrong. // Regex pattern parsing stops on the first error encountered. if (U_FAILURE(*fStatus)) { break; } U_ASSERT(state != 0); // Find the state table element that matches the input char from the pattern, or the // class of the input character. Start with the first table row for this // state, then linearly scan forward until we find a row that matches the // character. The last row for each state always matches all characters, so // the search will stop there, if not before. // tableEl = &gRuleParseStateTable[state]; REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ", fC.fChar, fLineNum, fCharNum, RegexStateNames[state])); for (;;) { // loop through table rows belonging to this state, looking for one // that matches the current input char. REGEX_SCAN_DEBUG_PRINTF((".")); if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) { // Table row specified an individual character, not a set, and // the input character is not quoted, and // the input character matched it. break; } if (tableEl->fCharClass == 255) { // Table row specified default, match anything character class. break; } if (tableEl->fCharClass == 254 && fC.fQuoted) { // Table row specified "quoted" and the char was quoted. break; } if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) { // Table row specified eof and we hit eof on the input. break; } if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && fC.fQuoted == FALSE && // char is not escaped && fC.fChar != (UChar32)-1) { // char is not EOF UnicodeSet *uniset = RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128]; if (uniset->contains(fC.fChar)) { // Table row specified a character class, or set of characters, // and the current char matches it. break; } } // No match on this row, advance to the next row for this state, tableEl++; } REGEX_SCAN_DEBUG_PRINTF(("\n")); // // We've found the row of the state table that matches the current input // character from the rules string. // Perform any action specified by this row in the state table. if (doParseActions((EParseAction)tableEl->fAction) == FALSE) { // Break out of the state machine loop if the // the action signalled some kind of error, or // the action was to exit, occurs on normal end-of-rules-input. break; } if (tableEl->fPushState != 0) { fStackPtr++; if (fStackPtr >= kStackSize) { error(U_REGEX_INTERNAL_ERROR); REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n")); fStackPtr--; } fStack[fStackPtr] = tableEl->fPushState; } // // NextChar. This is where characters are actually fetched from the pattern. // Happens under control of the 'n' tag in the state table. // if (tableEl->fNextChar) { nextChar(fC); } // Get the next state from the table entry, or from the // state stack if the next state was specified as "pop". if (tableEl->fNextState != 255) { state = tableEl->fNextState; } else { state = fStack[fStackPtr]; fStackPtr--; if (fStackPtr < 0) { // state stack underflow // This will occur if the user pattern has mis-matched parentheses, // with extra close parens. // fStackPtr++; error(U_REGEX_MISMATCHED_PAREN); } } } // // The pattern has now been read and processed, and the compiled code generated. // // Back-reference fixup // int32_t loc; for (loc=0; locfCompiledPat->size(); loc++) { int32_t op = fRXPat->fCompiledPat->elementAti(loc); int32_t opType = URX_TYPE(op); if (opType == URX_BACKREF || opType == URX_BACKREF_I) { int32_t where = URX_VAL(op); if (where > fRXPat->fGroupMap->size()) { error(U_REGEX_INVALID_BACK_REF); break; } where = fRXPat->fGroupMap->elementAti(where-1); op = URX_BUILD(opType, where); fRXPat->fCompiledPat->setElementAt(op, loc); } } // // Compute the number of digits requried for the largest capture group number. // fRXPat->fMaxCaptureDigits = 1; int32_t n = 10; for (;;) { if (n > fRXPat->fGroupMap->size()) { break; } fRXPat->fMaxCaptureDigits++; n *= 10; } // // The pattern's fFrameSize so far has accumulated the requirements for // storage for capture parentheses, counters, etc. that are encountered // in the pattern. Add space for the two variables that are always // present in the saved state: the input string position and the // position in the compiled pattern. // fRXPat->fFrameSize+=2; // // Get bounds for the minimum and maximum length of a string that this // pattern can match. Used to avoid looking for matches in strings that // are too short. // fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1); // // Optimization passes // matchStartType(); OptDotStar(); stripNOPs(); // // Set up fast latin-1 range sets // int32_t numSets = fRXPat->fSets->size(); fRXPat->fSets8 = new Regex8BitSet[numSets]; int32_t i; for (i=0; ifSets->elementAt(i); fRXPat->fSets8[i].init(s); } } //------------------------------------------------------------------------------ // // doParseAction Do some action during regex pattern parsing. // Called by the parse state machine. // // Generation of the match engine PCode happens here, or // in functions called from the parse actions defined here. // // //------------------------------------------------------------------------------ UBool RegexCompile::doParseActions(EParseAction action) { UBool returnVal = TRUE; switch ((Regex_PatternParseAction)action) { case doPatStart: // Start of pattern compiles to: //0 SAVE 2 Fall back to position of FAIL //1 jmp 3 //2 FAIL Stop if we ever reach here. //3 NOP Dummy, so start of pattern looks the same as // the start of an ( grouping. //4 NOP Resreved, will be replaced by a save if there are // OR | operators at the top level fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); fParenStack.push(-1, *fStatus); // Begin a Paren Stack Frame fParenStack.push( 3, *fStatus); // Push location of first NOP break; case doPatFinish: // We've scanned to the end of the pattern // The end of pattern compiles to: // URX_END // which will stop the runtime match engine. // Encountering end of pattern also behaves like a close paren, // and forces fixups of the State Save at the beginning of the compiled pattern // and of any OR operations at the top level. // handleCloseParen(); if (fParenStack.size() > 0) { // Missing close paren in pattern. error(U_REGEX_MISMATCHED_PAREN); } // add the END operation to the compiled pattern. fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus); // Terminate the pattern compilation state machine. returnVal = FALSE; break; case doOrOperator: // Scanning a '|', as in (A|B) { // Insert a SAVE operation at the start of the pattern section preceding // this OR at this level. This SAVE will branch the match forward // to the right hand side of the OR in the event that the left hand // side fails to match and backtracks. Locate the position for the // save from the location on the top of the parentheses stack. int32_t savePosition = fParenStack.popi(); int32_t op = fRXPat->fCompiledPat->elementAti(savePosition); U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1); fRXPat->fCompiledPat->setElementAt(op, savePosition); // Append an JMP operation into the compiled pattern. The operand for // the JMP will eventually be the location following the ')' for the // group. This will be patched in later, when the ')' is encountered. op = URX_BUILD(URX_JMP, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); // Push the position of the newly added JMP op onto the parentheses stack. // This registers if for fixup when this block's close paren is encountered. fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // Append a NOP to the compiled pattern. This is the slot reserved // for a SAVE in the event that there is yet another '|' following // this one. fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); } break; case doOpenCaptureParen: // Open Paren. // Compile to a // - NOP, which later may be replaced by a save-state if the // parenthesized group gets a * quantifier, followed by // - START_CAPTURE n where n is stack frame offset to the capture group variables. // - NOP, which may later be replaced by a save-state if there // is an '|' alternation within the parens. // // Each capture group gets three slots in the save stack frame: // 0: Capture Group start position (in input string being matched.) // 1: Capture Group end positino. // 2: Start of Match-in-progress. // The first two locations are for a completed capture group, and are // referred to by back references and the like. // The third location stores the capture start position when an START_CAPTURE is // encountered. This will be promoted to a completed capture when (and if) the corresponding // END_CAPure is encountered. { fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame. fRXPat->fFrameSize += 3; int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc); fRXPat->fCompiledPat->addElement(cop, *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the two NOPs. Depending on what follows in the pattern, the // NOPs may be changed to SAVE_STATE or JMP ops, with a target // address of the end of the parenthesized group. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push(capturing, *fStatus); // Frame type. fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc // Save the mapping from group number to stack frame variable position. fRXPat->fGroupMap->addElement(varsLoc, *fStatus); } break; case doOpenNonCaptureParen: // Open non-caputuring (grouping only) Paren. // Compile to a // - NOP, which later may be replaced by a save-state if the // parenthesized group gets a * quantifier, followed by // - NOP, which may later be replaced by a save-state if there // is an '|' alternation within the parens. { fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the two NOPs. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push(plain, *fStatus); // Begin a new frame. fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc } break; case doOpenAtomicParen: // Open Atomic Paren. (?> // Compile to a // - NOP, which later may be replaced if the parenthesized group // has a quantifier, followed by // - STO_SP save state stack position, so it can be restored at the ")" // - NOP, which may later be replaced by a save-state if there // is an '|' alternation within the parens. { fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the fRXPat->fDataSize += 1; // state stack ptr. int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc); fRXPat->fCompiledPat->addElement(stoOp, *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the two NOPs. Depending on what follows in the pattern, the // NOPs may be changed to SAVE_STATE or JMP ops, with a target // address of the end of the parenthesized group. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push(atomic, *fStatus); // Frame type. fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP } break; case doOpenLookAhead: // Positive Look-ahead (?= stuff ) // Compiles to // 1 START_LA dataLoc // 2. NOP reserved for use by quantifiers on the block. // Look-ahead can't have quantifiers, but paren stack // compile time conventions require the slot anyhow. // 3. NOP may be replaced if there is are '|' ops in the block. // 4. code for parenthesized stuff. // 5. ENDLA // // Two data slots are reserved, for saving the stack ptr and the input position. { int32_t dataLoc = fRXPat->fDataSize; fRXPat->fDataSize += 2; int32_t op = URX_BUILD(URX_LA_START, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); op = URX_BUILD(URX_NOP, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); fRXPat->fCompiledPat->addElement(op, *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the NOPs. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push(lookAhead, *fStatus); // Frame type. fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location } break; case doOpenLookAheadNeg: // Negated Lookahead. (?! stuff ) // Compiles to // 1. START_LA dataloc // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state, // // which continues with the match. // 3. NOP // Std. Open Paren sequence, for possible '|' // 4. code for parenthesized stuff. // 5. END_LA // Cut back stack, remove saved state from step 2. // 6. FAIL // code in block succeeded, so neg. lookahead fails. // 7. ... { int32_t dataLoc = fRXPat->fDataSize; fRXPat->fDataSize += 2; int32_t op = URX_BUILD(URX_LA_START, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later. fRXPat->fCompiledPat->addElement(op, *fStatus); op = URX_BUILD(URX_NOP, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the StateSave and NOP. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push( negLookAhead, *fStatus); // Frame type fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location // Instructions #5 and #6 will be added when the ')' is encountered. } break; case doOpenLookBehind: { // Compile a (?<= look-behind open paren. // // Compiles to // 0 URX_LB_START dataLoc // 1 URX_LB_CONT dataLoc // 2 MinMatchLen // 3 MaxMatchLen // 4 URX_NOP Standard '(' boilerplate. // 5 URX_NOP Reserved slot for use with '|' ops within (block). // 6 // 7 URX_LB_END dataLoc # Check match len, restore input len // 8 URX_LA_END dataLoc # Restore stack, input pos // // Allocate a block of matcher data, to contain (when running a match) // 0: Stack ptr on entry // 1: Input Index on entry // 2: Start index of match current match attempt. // 3: Original Input String len. // Allocate data space int32_t dataLoc = fRXPat->fDataSize; fRXPat->fDataSize += 4; // Emit URX_LB_START int32_t op = URX_BUILD(URX_LB_START, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); // Emit URX_LB_CONT op = URX_BUILD(URX_LB_CONT, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. // Emit the NOP op = URX_BUILD(URX_NOP, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); fRXPat->fCompiledPat->addElement(op, *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the URX_LB_CONT and the NOP. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push(lookBehind, *fStatus); // Frame type fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location // The final two instructions will be added when the ')' is encountered. } break; case doOpenLookBehindNeg: { // Compile a (? // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL // 9 ... // // Allocate a block of matcher data, to contain (when running a match) // 0: Stack ptr on entry // 1: Input Index on entry // 2: Start index of match current match attempt. // 3: Original Input String len. // Allocate data space int32_t dataLoc = fRXPat->fDataSize; fRXPat->fDataSize += 4; // Emit URX_LB_START int32_t op = URX_BUILD(URX_LB_START, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); // Emit URX_LBN_CONT op = URX_BUILD(URX_LBN_CONT, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later. fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later. fRXPat->fCompiledPat->addElement(0, *fStatus); // Continue Loc. To be filled later. // Emit the NOP op = URX_BUILD(URX_NOP, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); fRXPat->fCompiledPat->addElement(op, *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the URX_LB_CONT and the NOP. fParenStack.push(fModeFlags, *fStatus); // Match mode state fParenStack.push(lookBehindN, *fStatus); // Frame type fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location // The final two instructions will be added when the ')' is encountered. } break; case doConditionalExpr: // Conditionals such as (?(1)a:b) case doPerlInline: // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them. error(U_REGEX_UNIMPLEMENTED); break; case doCloseParen: handleCloseParen(); if (fParenStack.size() <= 0) { // Extra close paren, or missing open paren. error(U_REGEX_MISMATCHED_PAREN); } break; case doNOP: break; case doBadOpenParenType: case doRuleError: error(U_REGEX_RULE_SYNTAX); break; case doMismatchedParenErr: error(U_REGEX_MISMATCHED_PAREN); break; case doPlus: // Normal '+' compiles to // 1. stuff to be repeated (already built) // 2. jmp-sav 1 // 3. ... // // Or, if the item to be repeated can match a zero length string, // 1. STO_INP_LOC data-loc // 2. body of stuff to be repeated // 3. JMP_SAV_X 2 // 4. ... // // Or, if the item to be repeated is simple // 1. Item to be repeated. // 2. LOOP_SR_I set number (assuming repeated item is a set ref) // 3. LOOP_C stack location { int32_t topLoc = blockTopLoc(FALSE); // location of item #1 int32_t frameLoc; // Check for simple constructs, which may get special optimized code. if (topLoc == fRXPat->fCompiledPat->size() - 1) { int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc); if (URX_TYPE(repeatedOp) == URX_SETREF) { // Emit optimized code for [char set]+ int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); frameLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); break; } if (URX_TYPE(repeatedOp) == URX_DOTANY || URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { // Emit Optimized code for .+ operations. int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. loopOpI |= 1; } fRXPat->fCompiledPat->addElement(loopOpI, *fStatus); frameLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc); fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); break; } } // General case. // Check for minimum match length of zero, which requires // extra loop-breaking code. if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) { // Zero length match is possible. // Emit the code sequence that can handle it. insertOp(topLoc); frameLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t op = URX_BUILD(URX_STO_INP_LOC, frameLoc); fRXPat->fCompiledPat->setElementAt(op, topLoc); op = URX_BUILD(URX_JMP_SAV_X, topLoc+1); fRXPat->fCompiledPat->addElement(op, *fStatus); } else { // Simpler code when the repeated body must match something non-empty int32_t jmpOp = URX_BUILD(URX_JMP_SAV, topLoc); fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); } } break; case doNGPlus: // Non-greedy '+?' compiles to // 1. stuff to be repeated (already built) // 2. state-save 1 // 3. ... { int32_t topLoc = blockTopLoc(FALSE); int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc); fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus); } break; case doOpt: // Normal (greedy) ? quantifier. // Compiles to // 1. state save 3 // 2. body of optional block // 3. ... // Insert the state save into the compiled pattern, and we're done. { int32_t saveStateLoc = blockTopLoc(TRUE); int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()); fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); } break; case doNGOpt: // Non-greedy ?? quantifier // compiles to // 1. jmp 4 // 2. body of optional block // 3 jmp 5 // 4. state save 2 // 5 ... // This code is less than ideal, with two jmps instead of one, because we can only // insert one instruction at the top of the block being iterated. { int32_t jmp1_loc = blockTopLoc(TRUE); int32_t jmp2_loc = fRXPat->fCompiledPat->size(); int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1); fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc); int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2); fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus); int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1); fRXPat->fCompiledPat->addElement(save_op, *fStatus); } break; case doStar: // Normal (greedy) * quantifier. // Compiles to // 1. STATE_SAVE 4 // 2. body of stuff being iterated over // 3. JMP_SAV 2 // 4. ... // // Or, if the body is a simple [Set], // 1. LOOP_SR_I set number // 2. LOOP_C stack location // ... // // Or if this is a .* // 1. LOOP_DOT_I (. matches all mode flag) // 2. LOOP_C stack location // // Or, if the body can match a zero-length string, to inhibit infinite loops, // 1. STATE_SAVE 5 // 2. STO_INP_LOC data-loc // 3. body of stuff // 4. JMP_SAV_X 2 // 5. ... { // location of item #1, the STATE_SAVE int32_t topLoc = blockTopLoc(FALSE); int32_t dataLoc = -1; // Check for simple *, where the construct being repeated // compiled to single opcode, and might be optimizable. if (topLoc == fRXPat->fCompiledPat->size() - 1) { int32_t repeatedOp = fRXPat->fCompiledPat->elementAti(topLoc); if (URX_TYPE(repeatedOp) == URX_SETREF) { // Emit optimized code for a [char set]* int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp)); fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); dataLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); break; } if (URX_TYPE(repeatedOp) == URX_DOTANY || URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { // Emit Optimized code for .* operations. int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0); if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. loopOpI |= 1; } fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); dataLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc); fRXPat->fCompiledPat->addElement(loopOpC, *fStatus); break; } } // Emit general case code for this * // The optimizations did not apply. int32_t saveStateLoc = blockTopLoc(TRUE); int32_t jmpOp = URX_BUILD(URX_JMP_SAV, saveStateLoc+1); // Check for minimum match length of zero, which requires // extra loop-breaking code. if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) { insertOp(saveStateLoc); dataLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc); fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1); jmpOp = URX_BUILD(URX_JMP_SAV_X, saveStateLoc+2); } // Locate the position in the compiled pattern where the match will continue // after completing the *. (4 or 5 in the comment above) int32_t continueLoc = fRXPat->fCompiledPat->size()+1; // Put together the save state op store it into the compiled code. int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc); fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern. fRXPat->fCompiledPat->addElement(jmpOp, *fStatus); } break; case doNGStar: // Non-greedy *? quantifier // compiles to // 1. JMP 3 // 2. body of stuff being iterated over // 3. STATE_SAVE 2 // 4 ... { int32_t jmpLoc = blockTopLoc(TRUE); // loc 1. int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3. int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc); int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1); fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc); fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus); } break; case doIntervalInit: // The '{' opening an interval quantifier was just scanned. // Init the counter varaiables that will accumulate the values as the digits // are scanned. fIntervalLow = 0; fIntervalUpper = -1; break; case doIntevalLowerDigit: // Scanned a digit from the lower value of an {lower,upper} interval { int32_t digitValue = u_charDigitValue(fC.fChar); U_ASSERT(digitValue >= 0); fIntervalLow = fIntervalLow*10 + digitValue; if (fIntervalLow < 0) { error(U_REGEX_NUMBER_TOO_BIG); } } break; case doIntervalUpperDigit: // Scanned a digit from the upper value of an {lower,upper} interval { if (fIntervalUpper < 0) { fIntervalUpper = 0; } int32_t digitValue = u_charDigitValue(fC.fChar); U_ASSERT(digitValue >= 0); fIntervalUpper = fIntervalUpper*10 + digitValue; if (fIntervalUpper < 0) { error(U_REGEX_NUMBER_TOO_BIG); } } break; case doIntervalSame: // Scanned a single value interval like {27}. Upper = Lower. fIntervalUpper = fIntervalLow; break; case doInterval: // Finished scanning a normal {lower,upper} interval. Generate the code for it. if (compileInlineInterval() == FALSE) { compileInterval(URX_CTR_INIT, URX_CTR_LOOP); } break; case doPossessiveInterval: // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it. { // Remember the loc for the top of the block being looped over. // (Can not reserve a slot in the compiled pattern at this time, becuase // compileInterval needs to reserve also, and blockTopLoc can only reserve // once per block.) int32_t topLoc = blockTopLoc(FALSE); // Produce normal looping code. compileInterval(URX_CTR_INIT, URX_CTR_LOOP); // Surround the just-emitted normal looping code with a STO_SP ... LD_SP // just as if the loop was inclosed in atomic parentheses. // First the STO_SP before the start of the loop insertOp(topLoc); int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the fRXPat->fDataSize += 1; // state stack ptr. int32_t op = URX_BUILD(URX_STO_SP, varLoc); fRXPat->fCompiledPat->setElementAt(op, topLoc); int32_t loopOp = fRXPat->fCompiledPat->popi(); U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc); loopOp++; // point LoopOp after the just-inserted STO_SP fRXPat->fCompiledPat->push(loopOp, *fStatus); // Then the LD_SP after the end of the loop op = URX_BUILD(URX_LD_SP, varLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case doNGInterval: // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it. compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG); break; case doIntervalError: error(U_REGEX_BAD_INTERVAL); break; case doLiteralChar: // We've just scanned a "normal" character from the pattern, literalChar(fC.fChar); break; case doDotAny: // scanned a ".", match any single character. { int32_t op; if (fModeFlags & UREGEX_DOTALL) { op = URX_BUILD(URX_DOTANY_ALL, 0); } else { op = URX_BUILD(URX_DOTANY, 0); } fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case doCaret: { int32_t op = (fModeFlags & UREGEX_MULTILINE)? URX_CARET_M : URX_CARET; fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); } break; case doDollar: { int32_t op = (fModeFlags & UREGEX_MULTILINE)? URX_DOLLAR_M : URX_DOLLAR; fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); } break; case doBackslashA: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus); break; case doBackslashB: { #if UCONFIG_NO_BREAK_ITERATION==1 if (fModeFlags & UREGEX_UWORD) { error(U_UNSUPPORTED_ERROR); } #endif int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; fRXPat->fCompiledPat->addElement(URX_BUILD(op, 1), *fStatus); } break; case doBackslashb: { #if UCONFIG_NO_BREAK_ITERATION==1 if (fModeFlags & UREGEX_UWORD) { error(U_UNSUPPORTED_ERROR); } #endif int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus); } break; case doBackslashD: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus); break; case doBackslashd: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus); break; case doBackslashG: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus); break; case doBackslashS: fRXPat->fCompiledPat->addElement( URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus); break; case doBackslashs: fRXPat->fCompiledPat->addElement( URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus); break; case doBackslashW: fRXPat->fCompiledPat->addElement( URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus); break; case doBackslashw: fRXPat->fCompiledPat->addElement( URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus); break; case doBackslashX: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus); break; case doBackslashZ: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus); break; case doBackslashz: fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus); break; case doEscapeError: error(U_REGEX_BAD_ESCAPE_SEQUENCE); break; case doExit: returnVal = FALSE; break; case doProperty: { UnicodeSet *theSet = scanProp(); compileSet(theSet); } break; case doScanUnicodeSet: { UnicodeSet *theSet = scanSet(); compileSet(theSet); } break; case doEnterQuoteMode: // Just scanned a \Q. Put character scanner into quote mode. fQuoteMode = TRUE; break; case doBackRef: // BackReference. Somewhat unusual in that the front-end can not completely parse // the regular expression, because the number of digits to be consumed // depends on the number of capture groups that have been defined. So // we have to do it here instead. { int32_t numCaptureGroups = fRXPat->fGroupMap->size(); int32_t groupNum = 0; UChar32 c = fC.fChar; for (;;) { // Loop once per digit, for max allowed number of digits in a back reference. int32_t digit = u_charDigitValue(c); groupNum = groupNum * 10 + digit; if (groupNum >= numCaptureGroups) { break; } c = peekCharLL(); if (RegexStaticSets::gStaticSets->fRuleDigits->contains(c) == FALSE) { break; } nextCharLL(); } // Scan of the back reference in the source regexp is complete. Now generate // the compiled code for it. // Because capture groups can be forward-referenced by back-references, // we fill the operand with the capture group number. At the end // of compilation, it will be changed to the variable's location. U_ASSERT(groupNum > 0); int32_t op; if (fModeFlags & UREGEX_CASE_INSENSITIVE) { op = URX_BUILD(URX_BACKREF_I, groupNum); } else { op = URX_BUILD(URX_BACKREF, groupNum); } fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case doPossessivePlus: // Possessive ++ quantifier. // Compiles to // 1. STO_SP // 2. body of stuff being iterated over // 3. STATE_SAVE 5 // 4. JMP 2 // 5. LD_SP // 6. ... // // Note: TODO: This is pretty inefficient. A mass of saved state is built up // then unconditionally discarded. Perhaps introduce a new opcode // { // Emit the STO_SP int32_t topLoc = blockTopLoc(TRUE); int32_t stoLoc = fRXPat->fDataSize; fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. int32_t op = URX_BUILD(URX_STO_SP, stoLoc); fRXPat->fCompiledPat->setElementAt(op, topLoc); // Emit the STATE_SAVE op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2); fRXPat->fCompiledPat->addElement(op, *fStatus); // Emit the JMP op = URX_BUILD(URX_JMP, topLoc+1); fRXPat->fCompiledPat->addElement(op, *fStatus); // Emit the LD_SP op = URX_BUILD(URX_LD_SP, stoLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case doPossessiveStar: // Possessive *+ quantifier. // Compiles to // 1. STO_SP loc // 2. STATE_SAVE 5 // 3. body of stuff being iterated over // 4. JMP 2 // 5. LD_SP loc // 6 ... // TODO: do something to cut back the state stack each time through the loop. { // Reserve two slots at the top of the block. int32_t topLoc = blockTopLoc(TRUE); insertOp(topLoc); // emit STO_SP loc int32_t stoLoc = fRXPat->fDataSize; fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. int32_t op = URX_BUILD(URX_STO_SP, stoLoc); fRXPat->fCompiledPat->setElementAt(op, topLoc); // Emit the SAVE_STATE 5 int32_t L7 = fRXPat->fCompiledPat->size()+1; op = URX_BUILD(URX_STATE_SAVE, L7); fRXPat->fCompiledPat->setElementAt(op, topLoc+1); // Append the JMP operation. op = URX_BUILD(URX_JMP, topLoc+1); fRXPat->fCompiledPat->addElement(op, *fStatus); // Emit the LD_SP loc op = URX_BUILD(URX_LD_SP, stoLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case doPossessiveOpt: // Possessive ?+ quantifier. // Compiles to // 1. STO_SP loc // 2. SAVE_STATE 5 // 3. body of optional block // 4. LD_SP loc // 5. ... // { // Reserve two slots at the top of the block. int32_t topLoc = blockTopLoc(TRUE); insertOp(topLoc); // Emit the STO_SP int32_t stoLoc = fRXPat->fDataSize; fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr. int32_t op = URX_BUILD(URX_STO_SP, stoLoc); fRXPat->fCompiledPat->setElementAt(op, topLoc); // Emit the SAVE_STATE int32_t continueLoc = fRXPat->fCompiledPat->size()+1; op = URX_BUILD(URX_STATE_SAVE, continueLoc); fRXPat->fCompiledPat->setElementAt(op, topLoc+1); // Emit the LD_SP op = URX_BUILD(URX_LD_SP, stoLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case doBeginMatchMode: fNewModeFlags = fModeFlags; fSetModeFlag = TRUE; break; case doMatchMode: // (?i) and similar { int32_t bit = 0; switch (fC.fChar) { case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break; case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break; case 0x73: /* 's' */ bit = UREGEX_DOTALL; break; case 0x77: /* 'w' */ bit = UREGEX_UWORD; break; case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break; case 0x2d: /* '-' */ fSetModeFlag = FALSE; break; default: U_ASSERT(FALSE); // Should never happen. Other chars are filtered out // by the scanner. } if (fSetModeFlag) { fNewModeFlags |= bit; } else { fNewModeFlags &= ~bit; } } break; case doSetMatchMode: // We've got a (?i) or similar. The match mode is being changed, but // the change is not scoped to a parenthesized block. fModeFlags = fNewModeFlags; // Prevent any string from spanning across the change of match mode. // Otherwise the pattern "abc(?i)def" would make a single string of "abcdef" fixLiterals(); break; case doMatchModeParen: // We've got a (?i: or similar. Begin a parenthesized block, save old // mode flags so they can be restored at the close of the block. // // Compile to a // - NOP, which later may be replaced by a save-state if the // parenthesized group gets a * quantifier, followed by // - NOP, which may later be replaced by a save-state if there // is an '|' alternation within the parens. { fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus); // On the Parentheses stack, start a new frame and add the postions // of the two NOPs (a normal non-capturing () frame, except for the // saving of the orignal mode flags.) fParenStack.push(fModeFlags, *fStatus); fParenStack.push(flags, *fStatus); // Frame Marker fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP // Set the current mode flags to the new values. fModeFlags = fNewModeFlags; } break; case doBadModeFlag: error(U_REGEX_INVALID_FLAG); break; case doSuppressComments: // We have just scanned a '(?'. We now need to prevent the character scanner from // treating a '#' as a to-the-end-of-line comment. // (This Perl compatibility just gets uglier and uglier to do...) fEOLComments = FALSE; break; default: U_ASSERT(FALSE); error(U_REGEX_INTERNAL_ERROR); break; } if (U_FAILURE(*fStatus)) { returnVal = FALSE; } return returnVal; } //------------------------------------------------------------------------------ // // literalChar We've encountered a literal character from the pattern, // or an escape sequence that reduces to a character. // Add it to the string containing all literal chars/strings from // the pattern. // If we are in a pattern string already, add the new char to it. // If we aren't in a pattern string, begin one now. // //------------------------------------------------------------------------------ void RegexCompile::literalChar(UChar32 c) { int32_t op; // An operation in the compiled pattern. int32_t opType; int32_t patternLoc; // A position in the compiled pattern. int32_t stringLen; // If the last thing compiled into the pattern was not a literal char, // force this new literal char to begin a new string, and not append to the previous. op = fRXPat->fCompiledPat->lastElementi(); opType = URX_TYPE(op); if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR || opType == URX_ONECHAR_I)) { fixLiterals(); } if (fStringOpStart == -1) { // First char of a string in the pattern. // Emit a OneChar op into the compiled pattern. emitONE_CHAR(c); // Also add it to the string pool, in case we get a second adjacent literal // and want to change form ONE_CHAR to STRING fStringOpStart = fRXPat->fLiteralText.length(); fRXPat->fLiteralText.append(c); return; } // We are adding onto an existing string fRXPat->fLiteralText.append(c); op = fRXPat->fCompiledPat->lastElementi(); opType = URX_TYPE(op); U_ASSERT(opType == URX_ONECHAR || opType == URX_ONECHAR_I || opType == URX_STRING_LEN); // If the most recently emitted op is a URX_ONECHAR, if (opType == URX_ONECHAR || opType == URX_ONECHAR_I) { if (U16_IS_TRAIL(c) && U16_IS_LEAD(URX_VAL(op))) { // The most recently emitted op is a ONECHAR that was the first half // of a surrogate pair. Update the ONECHAR's operand to be the // supplementary code point resulting from both halves of the pair. c = U16_GET_SUPPLEMENTARY(URX_VAL(op), c); op = URX_BUILD(opType, c); patternLoc = fRXPat->fCompiledPat->size() - 1; fRXPat->fCompiledPat->setElementAt(op, patternLoc); return; } // The most recently emitted op is a ONECHAR. // We've now received another adjacent char. Change the ONECHAR op // to a string op. if (fModeFlags & UREGEX_CASE_INSENSITIVE) { op = URX_BUILD(URX_STRING_I, fStringOpStart); } else { op = URX_BUILD(URX_STRING, fStringOpStart); } patternLoc = fRXPat->fCompiledPat->size() - 1; fRXPat->fCompiledPat->setElementAt(op, patternLoc); op = URX_BUILD(URX_STRING_LEN, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); } // The pattern contains a URX_SRING / URX_STRING_LEN. Update the // string length to reflect the new char we just added to the string. stringLen = fRXPat->fLiteralText.length() - fStringOpStart; op = URX_BUILD(URX_STRING_LEN, stringLen); patternLoc = fRXPat->fCompiledPat->size() - 1; fRXPat->fCompiledPat->setElementAt(op, patternLoc); } //------------------------------------------------------------------------------ // // emitONE_CHAR emit a ONE_CHAR op into the generated code. // Choose cased or uncased version, depending on the // match mode and whether the character itself is cased. // //------------------------------------------------------------------------------ void RegexCompile::emitONE_CHAR(UChar32 c) { int32_t op; if ((fModeFlags & UREGEX_CASE_INSENSITIVE) && u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { // We have a cased character, and are in case insensitive matching mode. c = u_foldCase(c, U_FOLD_CASE_DEFAULT); op = URX_BUILD(URX_ONECHAR_I, c); } else { // Uncased char, or case sensitive match mode. // Either way, just generate a literal compare of the char. op = URX_BUILD(URX_ONECHAR, c); } fRXPat->fCompiledPat->addElement(op, *fStatus); } //------------------------------------------------------------------------------ // // fixLiterals When compiling something that can follow a literal // string in a pattern, we need to "fix" any preceding // string, which will cause any subsequent literals to // begin a new string, rather than appending to the // old one. // // Optionally, split the last char of the string off into // a single "ONE_CHAR" operation, so that quantifiers can // apply to that char alone. Example: abc* // The * must apply to the 'c' only. // //------------------------------------------------------------------------------ void RegexCompile::fixLiterals(UBool split) { int32_t stringStart = fStringOpStart; // start index of the current literal string int32_t op; // An op from/for the compiled pattern. int32_t opType; // An opcode type from the compiled pattern. int32_t stringLastCharIdx; UChar32 lastChar; int32_t stringNextToLastCharIdx; UChar32 nextToLastChar; int32_t stringLen; fStringOpStart = -1; if (!split) { return; } // Split: We need to ensure that the last item in the compiled pattern does // not refer to a literal string of more than one char. If it does, // separate the last char from the rest of the string. // If the last operation from the compiled pattern is not a string, // nothing needs to be done op = fRXPat->fCompiledPat->lastElementi(); opType = URX_TYPE(op); if (opType != URX_STRING_LEN) { return; } stringLen = URX_VAL(op); // // Find the position of the last code point in the string (might be a surrogate pair) // stringLastCharIdx = fRXPat->fLiteralText.length(); stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1); lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx); // The string should always be at least two code points long, meaning that there // should be something before the last char position that we just found. U_ASSERT(stringLastCharIdx > stringStart); stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1); U_ASSERT(stringNextToLastCharIdx >= stringStart); nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx); if (stringNextToLastCharIdx > stringStart) { // The length of string remaining after removing one char is two or more. // Leave the string in the compiled pattern, shorten it by one char, // and append a URX_ONECHAR op for the last char. stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx); op = URX_BUILD(URX_STRING_LEN, stringLen); fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1); emitONE_CHAR(lastChar); } else { // The original string consisted of exactly two characters. Replace // the existing compiled URX_STRING/URX_STRING_LEN ops with a pair // of URX_ONECHARs. fRXPat->fCompiledPat->setSize(fRXPat->fCompiledPat->size() -2); emitONE_CHAR(nextToLastChar); emitONE_CHAR(lastChar); } } //------------------------------------------------------------------------------ // // insertOp() Insert a slot for a new opcode into the already // compiled pattern code. // // Fill the slot with a NOP. Our caller will replace it // with what they really wanted. // //------------------------------------------------------------------------------ void RegexCompile::insertOp(int32_t where) { UVector32 *code = fRXPat->fCompiledPat; U_ASSERT(where>0 && where < code->size()); int32_t nop = URX_BUILD(URX_NOP, 0); code->insertElementAt(nop, where, *fStatus); // Walk through the pattern, looking for any ops with targets that // were moved down by the insert. Fix them. int32_t loc; for (loc=0; locsize(); loc++) { int32_t op = code->elementAti(loc); int32_t opType = URX_TYPE(op); int32_t opValue = URX_VAL(op); if ((opType == URX_JMP || opType == URX_JMPX || opType == URX_STATE_SAVE || opType == URX_CTR_LOOP || opType == URX_CTR_LOOP_NG || opType == URX_JMP_SAV || opType == URX_RELOC_OPRND) && opValue > where) { // Target location for this opcode is after the insertion point and // needs to be incremented to adjust for the insertion. opValue++; op = URX_BUILD(opType, opValue); code->setElementAt(op, loc); } } // Now fix up the parentheses stack. All positive values in it are locations in // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.) for (loc=0; locwhere) { x++; fParenStack.setElementAt(x, loc); } } if (fMatchCloseParen > where) { fMatchCloseParen++; } if (fMatchOpenParen > where) { fMatchOpenParen++; } } //------------------------------------------------------------------------------ // // blockTopLoc() Find or create a location in the compiled pattern // at the start of the operation or block that has // just been compiled. Needed when a quantifier (* or // whatever) appears, and we need to add an operation // at the start of the thing being quantified. // // (Parenthesized Blocks) have a slot with a NOP that // is reserved for this purpose. .* or similar don't // and a slot needs to be added. // // parameter reserveLoc : TRUE - ensure that there is space to add an opcode // at the returned location. // FALSE - just return the address, // do not reserve a location there. // //------------------------------------------------------------------------------ int32_t RegexCompile::blockTopLoc(UBool reserveLoc) { int32_t theLoc; if (fRXPat->fCompiledPat->size() == fMatchCloseParen) { // The item just processed is a parenthesized block. theLoc = fMatchOpenParen; // A slot is already reserved for us. U_ASSERT(theLoc > 0); U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP); } else { // Item just compiled is a single thing, a ".", or a single char, or a set reference. // No slot for STATE_SAVE was pre-reserved in the compiled code. // We need to make space now. fixLiterals(TRUE); // If last item was a string, separate the last char. theLoc = fRXPat->fCompiledPat->size()-1; if (reserveLoc) { /*int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);*/ int32_t nop = URX_BUILD(URX_NOP, 0); fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus); } } return theLoc; } //------------------------------------------------------------------------------ // // handleCloseParen When compiling a close paren, we need to go back // and fix up any JMP or SAVE operations within the // parenthesized block that need to target the end // of the block. The locations of these are kept on // the paretheses stack. // // This function is called both when encountering a // real ) and at the end of the pattern. // //------------------------------------------------------------------------------ void RegexCompile::handleCloseParen() { int32_t patIdx; int32_t patOp; if (fParenStack.size() <= 0) { error(U_REGEX_MISMATCHED_PAREN); return; } // Force any literal chars that may follow the close paren to start a new string, // and not attach to any preceding it. fixLiterals(FALSE); // Fixup any operations within the just-closed parenthesized group // that need to reference the end of the (block). // (The first one popped from the stack is an unused slot for // alternation (OR) state save, but applying the fixup to it does no harm.) for (;;) { patIdx = fParenStack.popi(); if (patIdx < 0) { // value < 0 flags the start of the frame on the paren stack. break; } U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size()); patOp = fRXPat->fCompiledPat->elementAti(patIdx); U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set. patOp |= fRXPat->fCompiledPat->size(); // Set it now. fRXPat->fCompiledPat->setElementAt(patOp, patIdx); fMatchOpenParen = patIdx; } // At the close of any parenthesized block, restore the match mode flags to // the value they had at the open paren. Saved value is // at the top of the paren stack. fModeFlags = fParenStack.popi(); // DO any additional fixups, depending on the specific kind of // parentesized grouping this is switch (patIdx) { case plain: case flags: // No additional fixups required. // (Grouping-only parentheses) break; case capturing: // Capturing Parentheses. // Insert a End Capture op into the pattern. // The frame offset of the variables for this cg is obtained from the // start capture op and put it into the end-capture op. { int32_t captureOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE); int32_t frameVarLocation = URX_VAL(captureOp); int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation); fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus); } break; case atomic: // Atomic Parenthesis. // Insert a LD_SP operation to restore the state stack to the position // it was when the atomic parens were entered. { int32_t stoOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP); int32_t stoLoc = URX_VAL(stoOp); int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc); fRXPat->fCompiledPat->addElement(ldOp, *fStatus); } break; case lookAhead: { int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); U_ASSERT(URX_TYPE(startOp) == URX_LA_START); int32_t dataLoc = URX_VAL(startOp); int32_t op = URX_BUILD(URX_LA_END, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); } break; case negLookAhead: { // See comment at doOpenLookAheadNeg int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); U_ASSERT(URX_TYPE(startOp) == URX_LA_START); int32_t dataLoc = URX_VAL(startOp); int32_t op = URX_BUILD(URX_LA_END, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); op = URX_BUILD(URX_FAIL, 0); fRXPat->fCompiledPat->addElement(op, *fStatus); // Patch the URX_SAVE near the top of the block. int32_t saveOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen); U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE); int32_t dest = fRXPat->fCompiledPat->size(); saveOp = URX_BUILD(URX_STATE_SAVE, dest); fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen); } break; case lookBehind: { // See comment at doOpenLookBehind. // Append the URX_LB_END and URX_LA_END to the compiled pattern. int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4); U_ASSERT(URX_TYPE(startOp) == URX_LB_START); int32_t dataLoc = URX_VAL(startOp); int32_t op = URX_BUILD(URX_LB_END, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); op = URX_BUILD(URX_LA_END, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); // Determine the min and max bounds for the length of the // string that the pattern can match. // An unbounded upper limit is an error. int32_t patEnd = fRXPat->fCompiledPat->size() - 1; int32_t minML = minMatchLength(fMatchOpenParen, patEnd); int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); if (maxML == INT32_MAX) { error(U_REGEX_LOOK_BEHIND_LIMIT); break; } U_ASSERT(minML <= maxML); // Insert the min and max match len bounds into the URX_LB_CONT op that // appears at the top of the look-behind block, at location fMatchOpenParen+1 fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2); fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1); } break; case lookBehindN: { // See comment at doOpenLookBehindNeg. // Append the URX_LBN_END to the compiled pattern. int32_t startOp = fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); U_ASSERT(URX_TYPE(startOp) == URX_LB_START); int32_t dataLoc = URX_VAL(startOp); int32_t op = URX_BUILD(URX_LBN_END, dataLoc); fRXPat->fCompiledPat->addElement(op, *fStatus); // Determine the min and max bounds for the length of the // string that the pattern can match. // An unbounded upper limit is an error. int32_t patEnd = fRXPat->fCompiledPat->size() - 1; int32_t minML = minMatchLength(fMatchOpenParen, patEnd); int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); if (maxML == INT32_MAX) { error(U_REGEX_LOOK_BEHIND_LIMIT); break; } U_ASSERT(minML <= maxML); // Insert the min and max match len bounds into the URX_LB_CONT op that // appears at the top of the look-behind block, at location fMatchOpenParen+1 fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3); fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2); // Insert the pattern location to continue at after a successful match // as the last operand of the URX_LBN_CONT op = URX_BUILD(URX_RELOC_OPRND, fRXPat->fCompiledPat->size()); fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1); } break; default: U_ASSERT(FALSE); } // remember the next location in the compiled pattern. // The compilation of Quantifiers will look at this to see whether its looping // over a parenthesized block or a single item fMatchCloseParen = fRXPat->fCompiledPat->size(); } //------------------------------------------------------------------------------ // // compileSet Compile the pattern operations for a reference to a // UnicodeSet. // //------------------------------------------------------------------------------ void RegexCompile::compileSet(UnicodeSet *theSet) { if (theSet == NULL) { return; } int32_t setSize = theSet->size(); UChar32 firstSetChar = theSet->charAt(0); if (firstSetChar == -1) { // Sets that contain only strings, but no individual chars, // will end up here. error(U_REGEX_SET_CONTAINS_STRING); setSize = 0; } switch (setSize) { case 0: { // Set of no elements. Always fails to match. fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus); delete theSet; } break; case 1: { // The set contains only a single code point. Put it into // the compiled pattern as a single char operation rather // than a set, and discard the set itself. literalChar(firstSetChar); delete theSet; } break; default: { // The set contains two or more chars. (the normal case) // Put it into the compiled pattern as a set. int32_t setNumber = fRXPat->fSets->size(); fRXPat->fSets->addElement(theSet, *fStatus); int32_t setOp = URX_BUILD(URX_SETREF, setNumber); fRXPat->fCompiledPat->addElement(setOp, *fStatus); } } } //------------------------------------------------------------------------------ // // compileInterval Generate the code for a {min, max} style interval quantifier. // Except for the specific opcodes used, the code is the same // for all three types (greedy, non-greedy, possessive) of // intervals. The opcodes are supplied as parameters. // // The code for interval loops has this form: // 0 CTR_INIT counter loc (in stack frame) // 1 5 patt address of CTR_LOOP at bottom of block // 2 min count // 3 max count (-1 for unbounded) // 4 ... block to be iterated over // 5 CTR_LOOP // // In //------------------------------------------------------------------------------ void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp) { // The CTR_INIT op at the top of the block with the {n,m} quantifier takes // four slots in the compiled code. Reserve them. int32_t topOfBlock = blockTopLoc(TRUE); insertOp(topOfBlock); insertOp(topOfBlock); insertOp(topOfBlock); // The operands for the CTR_INIT opcode include the index in the matcher data // of the counter. Allocate it now. int32_t counterLoc = fRXPat->fFrameSize; fRXPat->fFrameSize++; int32_t op = URX_BUILD(InitOp, counterLoc); fRXPat->fCompiledPat->setElementAt(op, topOfBlock); // The second operand of CTR_INIT is the location following the end of the loop. // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the // compilation of something later on causes the code to grow and the target // position to move. int32_t loopEnd = fRXPat->fCompiledPat->size(); op = URX_BUILD(URX_RELOC_OPRND, loopEnd); fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1); // Followed by the min and max counts. fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2); fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3); // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op. // Goes at end of the block being looped over, so just append to the code so far. op = URX_BUILD(LoopOp, topOfBlock); fRXPat->fCompiledPat->addElement(op, *fStatus); if ((fIntervalLow & 0xff000000) != 0 || fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0) { error(U_REGEX_NUMBER_TOO_BIG); } if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) { error(U_REGEX_MAX_LT_MIN); } } UBool RegexCompile::compileInlineInterval() { if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) { // Too big to inline. Fail, which will cause looping code to be generated. // (Upper < Lower picks up unbounded upper and errors, both.) return FALSE; } int32_t topOfBlock = blockTopLoc(FALSE); if (fIntervalUpper == 0) { // Pathological case. Attempt no matches, as if the block doesn't exist. fRXPat->fCompiledPat->setSize(topOfBlock); return TRUE; } if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) { // The thing being repeated is not a single op, but some // more complex block. Do it as a loop, not inlines. // Note that things "repeated" a max of once are handled as inline, because // the one copy of the code already generated is just fine. return FALSE; } // Pick up the opcode that is to be repeated // int32_t op = fRXPat->fCompiledPat->elementAti(topOfBlock); // Compute the pattern location where the inline sequence // will end, and set up the state save op that will be needed. // int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1 + fIntervalUpper + (fIntervalUpper-fIntervalLow); int32_t saveOp = URX_BUILD(URX_STATE_SAVE, endOfSequenceLoc); if (fIntervalLow == 0) { insertOp(topOfBlock); fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock); } // Loop, emitting the op for the thing being repeated each time. // Loop starts at 1 because one instance of the op already exists in the pattern, // it was put there when it was originally encountered. int32_t i; for (i=1; ifCompiledPat->addElement(saveOp, *fStatus); } if (i > fIntervalLow) { fRXPat->fCompiledPat->addElement(saveOp, *fStatus); } fRXPat->fCompiledPat->addElement(op, *fStatus); } return TRUE; } //------------------------------------------------------------------------------ // // matchStartType Determine how a match can start. // Used to optimize find() operations. // // Operation is very similar to minMatchLength(). Walk the compiled // pattern, keeping an on-going minimum-match-length. For any // op where the min match coming in is zero, add that ops possible // starting matches to the possible starts for the overall pattern. // //------------------------------------------------------------------------------ void RegexCompile::matchStartType() { if (U_FAILURE(*fStatus)) { return; } int32_t loc; // Location in the pattern of the current op being processed. int32_t op; // The op being processed int32_t opType; // The opcode type of the op int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern int32_t numInitialStrings = 0; // Number of strings encountered that could match at start. UBool atStart = TRUE; // True if no part of the pattern yet encountered // could have advanced the position in a match. // (Maximum match length so far == 0) // forwardedLength is a vector holding minimum-match-length values that // are propagated forward in the pattern by JMP or STATE_SAVE operations. // It must be one longer than the pattern being checked because some ops // will jmp to a end-of-block+1 location from within a block, and we must // count those when checking the block. int32_t end = fRXPat->fCompiledPat->size(); UVector32 forwardedLength(end+1, *fStatus); forwardedLength.setSize(end+1); for (loc=3; locfCompiledPat->elementAti(loc); opType = URX_TYPE(op); // The loop is advancing linearly through the pattern. // If the op we are now at was the destination of a branch in the pattern, // and that path has a shorter minimum length than the current accumulated value, // replace the current accumulated value. U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); if (forwardedLength.elementAti(loc) < currentLen) { currentLen = forwardedLength.elementAti(loc); U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); } switch (opType) { // Ops that don't change the total length matched case URX_RESERVED_OP: case URX_END: case URX_STRING_LEN: case URX_NOP: case URX_START_CAPTURE: case URX_END_CAPTURE: case URX_BACKSLASH_B: case URX_BACKSLASH_BU: case URX_BACKSLASH_G: case URX_BACKSLASH_Z: case URX_DOLLAR: case URX_RELOC_OPRND: case URX_STO_INP_LOC: case URX_DOLLAR_M: case URX_BACKTRACK: case URX_BACKREF: // BackRef. Must assume that it might be a zero length match case URX_BACKREF_I: case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. case URX_LD_SP: break; case URX_CARET: if (atStart) { fRXPat->fStartType = START_START; } break; case URX_CARET_M: if (atStart) { fRXPat->fStartType = START_LINE; } break; case URX_ONECHAR: if (currentLen == 0) { // This character could appear at the start of a match. // Add it to the set of possible starting characters. fRXPat->fInitialChars->add(URX_VAL(op)); numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_SETREF: if (currentLen == 0) { int32_t sn = URX_VAL(op); U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); fRXPat->fInitialChars->addAll(*s); numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_LOOP_SR_I: // [Set]*, like a SETREF, above, in what it can match, // but may not match at all, so currentLen is not incremented. if (currentLen == 0) { int32_t sn = URX_VAL(op); U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); fRXPat->fInitialChars->addAll(*s); numInitialStrings += 2; } atStart = FALSE; break; case URX_LOOP_DOT_I: if (currentLen == 0) { // .* at the start of a pattern. // Any character can begin the match. fRXPat->fInitialChars->clear(); fRXPat->fInitialChars->complement(); numInitialStrings += 2; } atStart = FALSE; break; case URX_STATIC_SETREF: if (currentLen == 0) { int32_t sn = URX_VAL(op); U_ASSERT(sn>0 && snfStaticSets[sn]; fRXPat->fInitialChars->addAll(*s); numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_STAT_SETREF_N: if (currentLen == 0) { int32_t sn = URX_VAL(op); const UnicodeSet *s = fRXPat->fStaticSets[sn]; UnicodeSet sc(*s); sc.complement(); fRXPat->fInitialChars->addAll(sc); numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_BACKSLASH_D: // Digit Char if (currentLen == 0) { UnicodeSet s; s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); if (URX_VAL(op) != 0) { s.complement(); } fRXPat->fInitialChars->addAll(s); numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_ONECHAR_I: // Case Insensitive Single Character. if (currentLen == 0) { UChar32 c = URX_VAL(op); if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { // character may have distinct cased forms. Add all of them // to the set of possible starting match chars. UnicodeSet s(c, c); s.closeOver(USET_CASE); fRXPat->fInitialChars->addAll(s); } else { // Char has no case variants. Just add it as-is to the // set of possible starting chars. fRXPat->fInitialChars->add(c); } numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. case URX_DOTANY_ALL: // . matches one or two. case URX_DOTANY: case URX_DOTANY_ALL_PL: case URX_DOTANY_PL: if (currentLen == 0) { // These constructs are all bad news when they appear at the start // of a match. Any character can begin the match. fRXPat->fInitialChars->clear(); fRXPat->fInitialChars->complement(); numInitialStrings += 2; } currentLen++; atStart = FALSE; break; case URX_JMPX: loc++; // Except for extra operand on URX_JMPX, same as URX_JMP. case URX_JMP: { int32_t jmpDest = URX_VAL(op); if (jmpDest < loc) { // Loop of some kind. Can safely ignore, the worst that will happen // is that we understate the true minimum length currentLen = forwardedLength.elementAti(loc+1); } else { // Forward jump. Propagate the current min length to the target loc of the jump. U_ASSERT(jmpDest <= end+1); if (forwardedLength.elementAti(jmpDest) > currentLen) { forwardedLength.setElementAt(currentLen, jmpDest); } } } atStart = FALSE; break; case URX_JMP_SAV: case URX_JMP_SAV_X: // Combo of state save to the next loc, + jmp backwards. // Net effect on min. length computation is nothing. atStart = FALSE; break; case URX_FAIL: // Fails are kind of like a branch, except that the min length was // propagated already, by the state save. currentLen = forwardedLength.elementAti(loc+1); atStart = FALSE; break; case URX_STATE_SAVE: { // State Save, for forward jumps, propagate the current minimum. // of the state save. int32_t jmpDest = URX_VAL(op); if (jmpDest > loc) { if (currentLen < forwardedLength.elementAti(jmpDest)) { forwardedLength.setElementAt(currentLen, jmpDest); } } } atStart = FALSE; break; case URX_STRING: { loc++; int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); int32_t stringLen = URX_VAL(stringLenOp); U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); U_ASSERT(stringLenOp >= 2); if (currentLen == 0) { // Add the starting character of this string to the set of possible starting // characters for this pattern. int32_t stringStartIdx = URX_VAL(op); UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); fRXPat->fInitialChars->add(c); // Remember this string. After the entire pattern has been checked, // if nothing else is identified that can start a match, we'll use it. numInitialStrings++; fRXPat->fInitialStringIdx = stringStartIdx; fRXPat->fInitialStringLen = stringLen; } currentLen += stringLen; atStart = FALSE; } break; case URX_STRING_I: { // Case-insensitive string. Unlike exact-match strings, we won't // attempt a string search for possible match positions. But we // do update the set of possible starting characters. loc++; int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); int32_t stringLen = URX_VAL(stringLenOp); U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); U_ASSERT(stringLenOp >= 2); if (currentLen == 0) { // Add the starting character of this string to the set of possible starting // characters for this pattern. int32_t stringStartIdx = URX_VAL(op); UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); UnicodeSet s(c, c); s.closeOver(USET_CASE); fRXPat->fInitialChars->addAll(s); numInitialStrings += 2; // Matching on an initial string not possible. } currentLen += stringLen; atStart = FALSE; } break; case URX_CTR_INIT: case URX_CTR_INIT_NG: { // Loop Init Ops. These don't change the min length, but they are 4 word ops // so location must be updated accordingly. // Loop Init Ops. // If the min loop count == 0 // move loc forwards to the end of the loop, skipping over the body. // If the min count is > 0, // continue normal processing of the body of the loop. int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1); loopEndLoc = URX_VAL(loopEndLoc); int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2); if (minLoopCount == 0) { // Min Loop Count of 0, treat like a forward branch and // move the current minimum length up to the target // (end of loop) location. U_ASSERT(loopEndLoc <= end+1); if (forwardedLength.elementAti(loopEndLoc) > currentLen) { forwardedLength.setElementAt(currentLen, loopEndLoc); } } loc+=3; // Skips over operands of CTR_INIT } atStart = FALSE; break; case URX_CTR_LOOP: case URX_CTR_LOOP_NG: // Loop ops. // The jump is conditional, backwards only. atStart = FALSE; break; case URX_LOOP_C: // More loop ops. These state-save to themselves. // don't change the minimum match atStart = FALSE; break; case URX_LA_START: case URX_LB_START: { // Look-around. Scan forward until the matching look-ahead end, // without processing the look-around block. This is overly pessimistic. int32_t depth = 0; for (;;) { loc++; op = fRXPat->fCompiledPat->elementAti(loc); if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { depth++; } if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { if (depth == 0) { break; } depth--; } if (URX_TYPE(op) == URX_STATE_SAVE) { // Need this because neg lookahead blocks will FAIL to outside // of the block. int32_t jmpDest = URX_VAL(op); if (jmpDest > loc) { if (currentLen < forwardedLength.elementAti(jmpDest)) { forwardedLength.setElementAt(currentLen, jmpDest); } } } U_ASSERT(loc <= end); } } break; case URX_LA_END: case URX_LB_CONT: case URX_LB_END: case URX_LBN_CONT: case URX_LBN_END: U_ASSERT(FALSE); // Shouldn't get here. These ops should be // consumed by the scan in URX_LA_START and LB_START break; default: U_ASSERT(FALSE); } } // We have finished walking through the ops. Check whether some forward jump // propagated a shorter length to location end+1. if (forwardedLength.elementAti(end+1) < currentLen) { currentLen = forwardedLength.elementAti(end+1); } fRXPat->fInitialChars8->init(fRXPat->fInitialChars); // Sort out what we should check for when looking for candidate match start positions. // In order of preference, // 1. Start of input text buffer. // 2. A literal string. // 3. Start of line in multi-line mode. // 4. A single literal character. // 5. A character from a set of characters. // if (fRXPat->fStartType == START_START) { // Match only at the start of an input text string. // start type is already set. We're done. } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) { // Match beginning only with a literal string. UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx); U_ASSERT(fRXPat->fInitialChars->contains(c)); fRXPat->fStartType = START_STRING; fRXPat->fInitialChar = c; } else if (fRXPat->fStartType == START_LINE) { // Match at start of line in Multi-Line mode. // Nothing to do here; everything is already set. } else if (fRXPat->fMinMatchLen == 0) { // Zero length match possible. We could start anywhere. fRXPat->fStartType = START_NO_INFO; } else if (fRXPat->fInitialChars->size() == 1) { // All matches begin with the same char. fRXPat->fStartType = START_CHAR; fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0); U_ASSERT(fRXPat->fInitialChar != (UChar32)-1); } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE && fRXPat->fMinMatchLen > 0) { // Matches start with a set of character smaller than the set of all chars. fRXPat->fStartType = START_SET; } else { // Matches can start with anything fRXPat->fStartType = START_NO_INFO; } return; } //------------------------------------------------------------------------------ // // minMatchLength Calculate the length of the shortest string that could // match the specified pattern. // Length is in 16 bit code units, not code points. // // The calculated length may not be exact. The returned // value may be shorter than the actual minimum; it must // never be longer. // // start and end are the range of p-code operations to be // examined. The endpoints are included in the range. // //------------------------------------------------------------------------------ int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) { if (U_FAILURE(*fStatus)) { return 0; } U_ASSERT(start <= end); U_ASSERT(end < fRXPat->fCompiledPat->size()); int32_t loc; int32_t op; int32_t opType; int32_t currentLen = 0; // forwardedLength is a vector holding minimum-match-length values that // are propagated forward in the pattern by JMP or STATE_SAVE operations. // It must be one longer than the pattern being checked because some ops // will jmp to a end-of-block+1 location from within a block, and we must // count those when checking the block. UVector32 forwardedLength(end+2, *fStatus); forwardedLength.setSize(end+2); for (loc=start; loc<=end+1; loc++) { forwardedLength.setElementAt(INT32_MAX, loc); } for (loc = start; loc<=end; loc++) { op = fRXPat->fCompiledPat->elementAti(loc); opType = URX_TYPE(op); // The loop is advancing linearly through the pattern. // If the op we are now at was the destination of a branch in the pattern, // and that path has a shorter minimum length than the current accumulated value, // replace the current accumulated value. U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); if (forwardedLength.elementAti(loc) < currentLen) { currentLen = forwardedLength.elementAti(loc); U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); } switch (opType) { // Ops that don't change the total length matched case URX_RESERVED_OP: case URX_END: case URX_STRING_LEN: case URX_NOP: case URX_START_CAPTURE: case URX_END_CAPTURE: case URX_BACKSLASH_B: case URX_BACKSLASH_BU: case URX_BACKSLASH_G: case URX_BACKSLASH_Z: case URX_CARET: case URX_DOLLAR: case URX_RELOC_OPRND: case URX_STO_INP_LOC: case URX_DOLLAR_M: case URX_CARET_M: case URX_BACKTRACK: case URX_BACKREF: // BackRef. Must assume that it might be a zero length match case URX_BACKREF_I: case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. case URX_LD_SP: case URX_JMP_SAV: case URX_JMP_SAV_X: break; // Ops that match a minimum of one character (one or two 16 bit code units.) // case URX_ONECHAR: case URX_STATIC_SETREF: case URX_STAT_SETREF_N: case URX_SETREF: case URX_BACKSLASH_D: case URX_ONECHAR_I: case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. case URX_DOTANY_ALL: // . matches one or two. case URX_DOTANY: case URX_DOTANY_PL: case URX_DOTANY_ALL_PL: currentLen++; break; case URX_JMPX: loc++; // URX_JMPX has an extra operand, ignored here, // otherwise processed identically to URX_JMP. case URX_JMP: { int32_t jmpDest = URX_VAL(op); if (jmpDest < loc) { // Loop of some kind. Can safely ignore, the worst that will happen // is that we understate the true minimum length currentLen = forwardedLength.elementAti(loc+1); } else { // Forward jump. Propagate the current min length to the target loc of the jump. U_ASSERT(jmpDest <= end+1); if (forwardedLength.elementAti(jmpDest) > currentLen) { forwardedLength.setElementAt(currentLen, jmpDest); } } } break; case URX_FAIL: { // Fails are kind of like a branch, except that the min length was // propagated already, by the state save. currentLen = forwardedLength.elementAti(loc+1); U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); } break; case URX_STATE_SAVE: { // State Save, for forward jumps, propagate the current minimum. // of the state save. int32_t jmpDest = URX_VAL(op); if (jmpDest > loc) { if (currentLen < forwardedLength.elementAti(jmpDest)) { forwardedLength.setElementAt(currentLen, jmpDest); } } } break; case URX_STRING: case URX_STRING_I: { loc++; int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); currentLen += URX_VAL(stringLenOp); } break; case URX_CTR_INIT: case URX_CTR_INIT_NG: { // Loop Init Ops. // If the min loop count == 0 // move loc forwards to the end of the loop, skipping over the body. // If the min count is > 0, // continue normal processing of the body of the loop. int32_t loopEndLoc = fRXPat->fCompiledPat->elementAti(loc+1); loopEndLoc = URX_VAL(loopEndLoc); int32_t minLoopCount = fRXPat->fCompiledPat->elementAti(loc+2); if (minLoopCount == 0) { loc = loopEndLoc; } else { loc+=3; // Skips over operands of CTR_INIT } } break; case URX_CTR_LOOP: case URX_CTR_LOOP_NG: // Loop ops. // The jump is conditional, backwards only. break; case URX_LOOP_SR_I: case URX_LOOP_DOT_I: case URX_LOOP_C: // More loop ops. These state-save to themselves. // don't change the minimum match - could match nothing at all. break; case URX_LA_START: case URX_LB_START: { // Look-around. Scan forward until the matching look-ahead end, // without processing the look-around block. This is overly pessimistic. // TODO: Positive lookahead could recursively do the block, then continue // with the longer of the block or the value coming in. int32_t depth = 0; for (;;) { loc++; op = fRXPat->fCompiledPat->elementAti(loc); if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { depth++; } if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { if (depth == 0) { break; } depth--; } if (URX_TYPE(op) == URX_STATE_SAVE) { // Need this because neg lookahead blocks will FAIL to outside // of the block. int32_t jmpDest = URX_VAL(op); if (jmpDest > loc) { if (currentLen < forwardedLength.elementAti(jmpDest)) { forwardedLength.setElementAt(currentLen, jmpDest); } } } U_ASSERT(loc <= end); } } break; case URX_LA_END: case URX_LB_CONT: case URX_LB_END: case URX_LBN_CONT: case URX_LBN_END: // Only come here if the matching URX_LA_START or URX_LB_START was not in the // range being sized, which happens when measuring size of look-behind blocks. break; default: U_ASSERT(FALSE); } } // We have finished walking through the ops. Check whether some forward jump // propagated a shorter length to location end+1. if (forwardedLength.elementAti(end+1) < currentLen) { currentLen = forwardedLength.elementAti(end+1); U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); } return currentLen; } //------------------------------------------------------------------------------ // // maxMatchLength Calculate the length of the longest string that could // match the specified pattern. // Length is in 16 bit code units, not code points. // // The calculated length may not be exact. The returned // value may be longer than the actual maximum; it must // never be shorter. // //------------------------------------------------------------------------------ int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) { if (U_FAILURE(*fStatus)) { return 0; } U_ASSERT(start <= end); U_ASSERT(end < fRXPat->fCompiledPat->size()); int32_t loc; int32_t op; int32_t opType; int32_t currentLen = 0; UVector32 forwardedLength(end+1, *fStatus); forwardedLength.setSize(end+1); for (loc=start; loc<=end; loc++) { forwardedLength.setElementAt(0, loc); } for (loc = start; loc<=end; loc++) { op = fRXPat->fCompiledPat->elementAti(loc); opType = URX_TYPE(op); // The loop is advancing linearly through the pattern. // If the op we are now at was the destination of a branch in the pattern, // and that path has a longer maximum length than the current accumulated value, // replace the current accumulated value. if (forwardedLength.elementAti(loc) > currentLen) { currentLen = forwardedLength.elementAti(loc); } switch (opType) { // Ops that don't change the total length matched case URX_RESERVED_OP: case URX_END: case URX_STRING_LEN: case URX_NOP: case URX_START_CAPTURE: case URX_END_CAPTURE: case URX_BACKSLASH_B: case URX_BACKSLASH_BU: case URX_BACKSLASH_G: case URX_BACKSLASH_Z: case URX_CARET: case URX_DOLLAR: case URX_RELOC_OPRND: case URX_STO_INP_LOC: case URX_DOLLAR_M: case URX_CARET_M: case URX_BACKTRACK: case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. case URX_LD_SP: case URX_LB_END: case URX_LB_CONT: case URX_LBN_CONT: case URX_LBN_END: break; // Ops that increase that cause an unbounded increase in the length // of a matched string, or that increase it a hard to characterize way. // Call the max length unbounded, and stop further checking. case URX_BACKREF: // BackRef. Must assume that it might be a zero length match case URX_BACKREF_I: case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded. case URX_DOTANY_PL: case URX_DOTANY_ALL_PL: currentLen = INT32_MAX; break; // Ops that match a max of one character (possibly two 16 bit code units.) // case URX_STATIC_SETREF: case URX_STAT_SETREF_N: case URX_SETREF: case URX_BACKSLASH_D: case URX_ONECHAR_I: case URX_DOTANY_ALL: case URX_DOTANY: currentLen+=2; break; // Single literal character. Increase current max length by one or two, // depending on whether the char is in the supplementary range. case URX_ONECHAR: currentLen++; if (URX_VAL(op) > 0x10000) { currentLen++; } break; // Jumps. // case URX_JMP: case URX_JMPX: case URX_JMP_SAV: case URX_JMP_SAV_X: { int32_t jmpDest = URX_VAL(op); if (jmpDest < loc) { // Loop of some kind. Max match length is unbounded. currentLen = INT32_MAX; } else { // Forward jump. Propagate the current min length to the target loc of the jump. if (forwardedLength.elementAti(jmpDest) < currentLen) { forwardedLength.setElementAt(currentLen, jmpDest); } currentLen = 0; } } break; case URX_FAIL: // Fails are kind of like a branch, except that the max length was // propagated already, by the state save. currentLen = forwardedLength.elementAti(loc+1); break; case URX_STATE_SAVE: { // State Save, for forward jumps, propagate the current minimum. // of the state save. // For backwards jumps, they create a loop, maximum // match length is unbounded. int32_t jmpDest = URX_VAL(op); if (jmpDest > loc) { if (currentLen > forwardedLength.elementAti(jmpDest)) { forwardedLength.setElementAt(currentLen, jmpDest); } } else { currentLen = INT32_MAX; } } break; case URX_STRING: case URX_STRING_I: { loc++; int32_t stringLenOp = fRXPat->fCompiledPat->elementAti(loc); currentLen += URX_VAL(stringLenOp); } break; case URX_CTR_INIT: case URX_CTR_INIT_NG: case URX_CTR_LOOP: case URX_CTR_LOOP_NG: case URX_LOOP_SR_I: case URX_LOOP_DOT_I: case URX_LOOP_C: // For anything to do with loops, make the match length unbounded. // Note: INIT instructions are multi-word. Can ignore because // INT32_MAX length will stop the per-instruction loop. currentLen = INT32_MAX; break; case URX_LA_START: case URX_LA_END: // Look-ahead. Just ignore, treat the look-ahead block as if // it were normal pattern. Gives a too-long match length, // but good enough for now. break; // End of look-ahead ops should always be consumed by the processing at // the URX_LA_START op. U_ASSERT(FALSE); break; case URX_LB_START: { // Look-behind. Scan forward until the matching look-around end, // without processing the look-behind block. int32_t depth = 0; for (;;) { loc++; op = fRXPat->fCompiledPat->elementAti(loc); if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) { depth++; } if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { if (depth == 0) { break; } depth--; } U_ASSERT(loc < end); } } break; default: U_ASSERT(FALSE); } if (currentLen == INT32_MAX) { // The maximum length is unbounded. // Stop further processing of the pattern. break; } } return currentLen; } //------------------------------------------------------------------------------ // // stripNOPs Remove any NOP operations from the compiled pattern code. // Extra NOPs are inserted for some constructs during the initial // code generation to provide locations that may be patched later. // Many end up unneeded, and are removed by this function. // //------------------------------------------------------------------------------ void RegexCompile::stripNOPs() { if (U_FAILURE(*fStatus)) { return; } int32_t end = fRXPat->fCompiledPat->size(); UVector32 deltas(end, *fStatus); // Make a first pass over the code, computing the amount that things // will be offset at each location in the original code. int32_t loc; int32_t d = 0; for (loc=0; locfCompiledPat->elementAti(loc); if (URX_TYPE(op) == URX_NOP) { d++; } } // Make a second pass over the code, removing the NOPs by moving following // code up, and patching operands that refer to code locations that // are being moved. The array of offsets from the first step is used // to compute the new operand values. int32_t src; int32_t dst = 0; for (src=0; srcfCompiledPat->elementAti(src); int32_t opType = URX_TYPE(op); switch (opType) { case URX_NOP: break; case URX_STATE_SAVE: case URX_JMP: case URX_CTR_LOOP: case URX_CTR_LOOP_NG: case URX_RELOC_OPRND: case URX_JMPX: case URX_JMP_SAV: case URX_JMP_SAV_X: // These are instructions with operands that refer to code locations. { int32_t operandAddress = URX_VAL(op); U_ASSERT(operandAddress>=0 && operandAddressfCompiledPat->setElementAt(op, dst); dst++; break; } case URX_RESERVED_OP: case URX_RESERVED_OP_N: case URX_BACKTRACK: case URX_END: case URX_ONECHAR: case URX_STRING: case URX_STRING_LEN: case URX_START_CAPTURE: case URX_END_CAPTURE: case URX_STATIC_SETREF: case URX_STAT_SETREF_N: case URX_SETREF: case URX_DOTANY: case URX_FAIL: case URX_BACKSLASH_B: case URX_BACKSLASH_BU: case URX_BACKSLASH_G: case URX_BACKSLASH_X: case URX_BACKSLASH_Z: case URX_DOTANY_ALL: case URX_DOTANY_ALL_PL: case URX_DOTANY_PL: case URX_BACKSLASH_D: case URX_CARET: case URX_DOLLAR: case URX_CTR_INIT: case URX_CTR_INIT_NG: case URX_STO_SP: case URX_LD_SP: case URX_BACKREF: case URX_STO_INP_LOC: case URX_LA_START: case URX_LA_END: case URX_ONECHAR_I: case URX_STRING_I: case URX_BACKREF_I: case URX_DOLLAR_M: case URX_CARET_M: case URX_LB_START: case URX_LB_CONT: case URX_LB_END: case URX_LBN_CONT: case URX_LBN_END: case URX_LOOP_SR_I: case URX_LOOP_DOT_I: case URX_LOOP_C: // These instructions are unaltered by the relocation. fRXPat->fCompiledPat->setElementAt(op, dst); dst++; break; default: // Some op is unaccounted for. U_ASSERT(FALSE); error(U_REGEX_INTERNAL_ERROR); } } fRXPat->fCompiledPat->setSize(dst); } //------------------------------------------------------------------------------ // // OptDotStar Optimize patterns that end with a '.*' or '.+' to // just advance the input to the end. // // Transform this compiled sequence // [DOT_ANY | DOT_ANY_ALL] // JMP_SAV to previous instruction // [NOP | END_CAPTURE | DOLLAR | BACKSLASH_Z]* // END // // To // NOP // [DOT_ANY_PL | DOT_ANY_ALL_PL] // [NOP | END_CAPTURE | DOLLAR | BACKSLASH_Z]* // END // //------------------------------------------------------------------------------ void RegexCompile::OptDotStar() { // Scan backwards in the pattern, looking for a JMP_SAV near the end. int32_t jmpLoc; int32_t op = 0; int32_t opType; for (jmpLoc=fRXPat->fCompiledPat->size(); jmpLoc--;) { U_ASSERT(jmpLoc>0); op = fRXPat->fCompiledPat->elementAti(jmpLoc); opType = URX_TYPE(op); switch(opType) { case URX_END: case URX_NOP: case URX_END_CAPTURE: case URX_DOLLAR_M: case URX_DOLLAR: case URX_BACKSLASH_Z: // These ops may follow the JMP_SAV without preventing us from // doing this optimization. continue; case URX_JMP_SAV: // Got a trailing JMP_SAV that's a candidate for optimization. break; default: // This optimization not possible. return; } break; // from the for loop. } // We found in URX_JMP_SAV near the end that is a candidate for optimizing. // Is the target address the previous instruction? // Is the previous instruction a flavor of URX_DOTANY int32_t loopTopLoc = URX_VAL(op); if (loopTopLoc != jmpLoc-1) { return; } int32_t newOp; int32_t oldOp = fRXPat->fCompiledPat->elementAti(loopTopLoc); int32_t oldOpType = opType = URX_TYPE(oldOp); if (oldOpType == URX_DOTANY) { newOp = URX_BUILD(URX_DOTANY_PL, 0); } else if (oldOpType == URX_DOTANY_ALL) { newOp = URX_BUILD(URX_DOTANY_ALL_PL, 0); } else { return; // Sequence we were looking for isn't there. } // Substitute the new instructions into the pattern. // The NOP will be removed in a later optimization step. fRXPat->fCompiledPat->setElementAt(URX_BUILD(URX_NOP, 0), loopTopLoc); fRXPat->fCompiledPat->setElementAt(newOp, jmpLoc); } //------------------------------------------------------------------------------ // // Error Report a rule parse error. // Only report it if no previous error has been recorded. // //------------------------------------------------------------------------------ void RegexCompile::error(UErrorCode e) { if (U_SUCCESS(*fStatus)) { *fStatus = e; fParseErr->line = fLineNum; fParseErr->offset = fCharNum; // Fill in the context. // Note: extractBetween() pins supplied indicies to the string bounds. uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext)); uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext)); fRXPat->fPattern.extractBetween(fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, 0); fRXPat->fPattern.extractBetween(fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, 0); } } // // Assorted Unicode character constants. // Numeric because there is no portable way to enter them as literals. // (Think EBCDIC). // static const UChar chCR = 0x0d; // New lines, for terminating comments. static const UChar chLF = 0x0a; static const UChar chNEL = 0x85; // NEL newline variant static const UChar chLS = 0x2028; // Unicode Line Separator static const UChar chApos = 0x27; // single quote, for quoted chars. static const UChar chPound = 0x23; // '#', introduces a comment. static const UChar chE = 0x45; // 'E' static const UChar chBackSlash = 0x5c; // '\' introduces a char escape static const UChar chLParen = 0x28; static const UChar chRParen = 0x29; static const UChar chLBracket = 0x5b; static const UChar chRBracket = 0x5d; static const UChar chRBrace = 0x7d; static const UChar chUpperN = 0x4E; static const UChar chLowerP = 0x70; static const UChar chUpperP = 0x50; //------------------------------------------------------------------------------ // // nextCharLL Low Level Next Char from the regex pattern. // Get a char from the string, keep track of input position // for error reporting. // //------------------------------------------------------------------------------ UChar32 RegexCompile::nextCharLL() { UChar32 ch; UnicodeString &pattern = fRXPat->fPattern; if (fPeekChar != -1) { ch = fPeekChar; fPeekChar = -1; return ch; } if (fPatternLength==0 || fNextIndex >= fPatternLength) { return (UChar32)-1; } ch = pattern.char32At(fNextIndex); fNextIndex = pattern.moveIndex32(fNextIndex, 1); if (ch == chCR || ch == chNEL || ch == chLS || ch == chLF && fLastChar != chCR) { // Character is starting a new line. Bump up the line number, and // reset the column to 0. fLineNum++; fCharNum=0; if (fQuoteMode) { error(U_REGEX_RULE_SYNTAX); fQuoteMode = FALSE; } } else { // Character is not starting a new line. Except in the case of a // LF following a CR, increment the column position. if (ch != chLF) { fCharNum++; } } fLastChar = ch; return ch; } //------------------------------------------------------------------------------ // // peekCharLL Low Level Character Scanning, sneak a peek at the next // character without actually getting it. // //------------------------------------------------------------------------------ UChar32 RegexCompile::peekCharLL() { if (fPeekChar == -1) { fPeekChar = nextCharLL(); } return fPeekChar; } //------------------------------------------------------------------------------ // // nextChar for pattern scanning. At this level, we handle stripping // out comments and processing some backslash character escapes. // The rest of the pattern grammar is handled at the next level up. // //------------------------------------------------------------------------------ void RegexCompile::nextChar(RegexPatternChar &c) { fScanIndex = fNextIndex; c.fChar = nextCharLL(); c.fQuoted = FALSE; if (fQuoteMode) { c.fQuoted = TRUE; if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) { fQuoteMode = FALSE; // Exit quote mode, nextCharLL(); // discard the E nextChar(c); // recurse to get the real next char } } else if (fInBackslashQuote) { // The current character immediately follows a '\' // Don't check for any further escapes, just return it as-is. // Don't set c.fQuoted, because that would prevent the state machine from // dispatching on the character. fInBackslashQuote = FALSE; } else { // We are not in a \Q quoted region \E of the source. // if (fModeFlags & UREGEX_COMMENTS) { // // We are in free-spacing and comments mode. // Scan through any white space and comments, until we // reach a significant character or the end of inut. for (;;) { if (c.fChar == (UChar32)-1) { break; // End of Input } if (c.fChar == chPound && fEOLComments == TRUE) { // Start of a comment. Consume the rest of it, until EOF or a new line for (;;) { c.fChar = nextCharLL(); if (c.fChar == (UChar32)-1 || // EOF c.fChar == chCR || c.fChar == chLF || c.fChar == chNEL || c.fChar == chLS) { break; } } } if (uprv_isRuleWhiteSpace(c.fChar) == FALSE) { break; } c.fChar = nextCharLL(); } } // // check for backslash escaped characters. // int32_t startX = fNextIndex; // start and end positions of the int32_t endX = fNextIndex; // sequence following the '\' if (c.fChar == chBackSlash) { if (RegexStaticSets::gStaticSets->fUnescapeCharSet->contains(peekCharLL())) { // // A '\' sequence that is handled by ICU's standard unescapeAt function. // Includes \uxxxx, \n, \r, many others. // Return the single equivalent character. // nextCharLL(); // get & discard the peeked char. c.fQuoted = TRUE; c.fChar = fRXPat->fPattern.unescapeAt(endX); if (startX == endX) { error(U_REGEX_BAD_ESCAPE_SEQUENCE); } fCharNum += endX - startX; fNextIndex = endX; } else { // We are in a '\' escape that will be handled by the state table scanner. // Just return the backslash, but remember that the following char is to // be taken literally. TODO: this is awkward, think about alternatives. fInBackslashQuote = TRUE; } } } // re-enable # to end-of-line comments, in case they were disabled. // They are disabled by the parser upon seeing '(?', but this lasts for // the fetching of the next character only. fEOLComments = TRUE; // putc(c.fChar, stdout); } //------------------------------------------------------------------------------ // // scanSet Construct a UnicodeSet from the text at the current scan // position. Advance the scan position to the first character // after the set. // // The scan position is normally under the control of the state machine // that controls pattern parsing. UnicodeSets, however, are parsed by // the UnicodeSet constructor, not by the Regex pattern parser. // //------------------------------------------------------------------------------ UnicodeSet *RegexCompile::scanSet() { UnicodeSet *uset = NULL; ParsePosition pos; int startPos; int i; if (U_FAILURE(*fStatus)) { return NULL; } pos.setIndex(fScanIndex); startPos = fScanIndex; UErrorCode localStatus = U_ZERO_ERROR; uint32_t usetFlags = 0; if (fModeFlags & UREGEX_CASE_INSENSITIVE) { usetFlags |= USET_CASE_INSENSITIVE; } if (fModeFlags & UREGEX_COMMENTS) { usetFlags |= USET_IGNORE_SPACE; } uset = new UnicodeSet(fRXPat->fPattern, pos, usetFlags, NULL, localStatus); if (U_FAILURE(localStatus)) { // TODO: Get more accurate position of the error from UnicodeSet's return info. // UnicodeSet appears to not be reporting correctly at this time. REGEX_SCAN_DEBUG_PRINTF(("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex())); error(localStatus); delete uset; return NULL; } // Advance the current scan postion over the UnicodeSet. // Don't just set fScanIndex because the line/char positions maintained // for error reporting would be thrown off. i = pos.getIndex(); for (;;) { if (fNextIndex >= i) { break; } nextCharLL(); } return uset; } //------------------------------------------------------------------------------ // // scanProp Construct a UnicodeSet from the text at the current scan // position, which will be of the form \p{whaterver} // // The scan position will be at the 'p' or 'P'. On return // the scan position should be just after the '}' // // Return a UnicodeSet, constructed from the \P pattern, // or NULL if the pattern is invalid. // //------------------------------------------------------------------------------ UnicodeSet *RegexCompile::scanProp() { UnicodeSet *uset = NULL; if (U_FAILURE(*fStatus)) { return NULL; } U_ASSERT(fC.fChar == chLowerP || fC.fChar == chUpperP || fC.fChar == chUpperN); // enclose the \p{property} from the regex pattern source in [brackets] UnicodeString setPattern; setPattern.append(chLBracket); setPattern.append(chBackSlash); for (;;) { setPattern.append(fC.fChar); if (fC.fChar == chRBrace) { break; } nextChar(fC); if (fC.fChar == -1) { // Hit the end of the input string without finding the closing '}' error(U_REGEX_PROPERTY_SYNTAX); return NULL; } } setPattern.append(chRBracket); uint32_t usetFlags = 0; if (fModeFlags & UREGEX_CASE_INSENSITIVE) { usetFlags |= USET_CASE_INSENSITIVE; } if (fModeFlags & UREGEX_COMMENTS) { usetFlags |= USET_IGNORE_SPACE; } // Build the UnicodeSet from the set pattern we just built up in a string. uset = new UnicodeSet(setPattern, usetFlags, NULL, *fStatus); if (U_FAILURE(*fStatus)) { delete uset; uset = NULL; } nextChar(fC); // Continue overall regex pattern processing with char after the '}' return uset; } U_NAMESPACE_END #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS