/* ******************************************************************************** * Copyright (C) 1997-1999, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************** * * File DECIMFMT.H * * Modification History: * * Date Name Description * 02/19/97 aliu Converted from java. * 03/20/97 clhuang Updated per C++ implementation. * 04/03/97 aliu Rewrote parsing and formatting completely, and * cleaned up and debugged. Actually works now. * 04/17/97 aliu Changed DigitCount to int per code review. * 07/10/97 helena Made ParsePosition a class and get rid of the function * hiding problems. * 09/09/97 aliu Ported over support for exponential formats. * 07/20/98 stephen Changed documentation ******************************************************************************** */ #ifndef DECIMFMT_H #define DECIMFMT_H #include "unicode/utypes.h" #include "unicode/numfmt.h" #include "unicode/locid.h" class DecimalFormatSymbols; class DigitList; /** * Concrete class for formatting decimal numbers, allowing a variety * of parameters, and localization to Western, Arabic, or Indic numbers. *
* Normally, you get the proper NumberFormat for a specific locale * (including the default locale) using the NumberFormat factory methods, * rather than constructing a DecimalNumberFormat directly. *
* Either the prefixes or the suffixes must be different for the parse * to distinguish positive from negative. Parsing will be unreliable * if the digits, thousands or decimal separators are the same, or if * any of them occur in the prefixes or suffixes. *
* [Special cases:] *
* NaN is formatted as a single character, typically \\uFFFD. *
* +/-Infinity is formatted as a single character, typically \\u221E, * plus the positive and negative pre/suffixes. *
* Note: this class is designed for common users; for very large or small * numbers, use a format that can express exponential values. *
* [Example:] *
* . // normally we would have a GUI with a menu for this * . int32_t locCount; * . const Locale* locales = NumberFormat::getAvailableLocales(locCount); * . if (locCount > 12) locCount = 12; //limit output * . * . double myNumber = -1234.56; * . UErrorCode success = U_ZERO_ERROR; * . NumberFormat* form; //= NumberFormat::createInstance(success); * . * . // just for fun, we print out a number with the locale number, currency * . // and percent format for each locale we can. * . UnicodeString countryName; * . UnicodeString displayName; * . UnicodeString str; * . UnicodeString pattern; * . Formattable fmtable; * . for (int32_t j = 0; j < 3; ++j) { * . cout << endl << "FORMAT " << j << endl; * . for (int32_t i = 0; i < locCount; ++i) { * . if (locales[i].getCountry(countryName).size() == 0) { * . // skip language-only * . continue; * . } * . switch (j) { * . default: * . form = NumberFormat::createInstance(locales[i], success ); break; * . case 1: * . form = NumberFormat::createCurrencyInstance(locales[i], success ); break; * . case 0: * . form = NumberFormat::createPercentInstance(locales[i], success ); break; * . } * . if (form) { * . str.remove(); * . pattern = ((DecimalFormat*)form)->toPattern(pattern); * . cout << locales[i].getDisplayName(displayName) << ": " << pattern; * . cout << " -> " << form->format(myNumber,str) << endl; * . form->parse(form->format(myNumber,str), fmtable, success); * . //cout << " parsed: " << fmtable << endl; * . delete form; * . } * . } * . } ** [The following shows the structure of the pattern.] *
* . pattern := subpattern{;subpattern} * . subpattern := {prefix}integer{.fraction}{suffix} * . * . prefix := '\\u0000'..'\\uFFFD' - specialCharacters * . suffix := '\\u0000'..'\\uFFFD' - specialCharacters * . integer := '#'* '0'* '0' * . fraction := '0'* '#'* * * Notation: * . X* 0 or more instances of X * . (X | Y) either X or Y. * . X..Y any character from X up to Y, inclusive. * . S - T characters in S, except those in T ** The first subpattern is for positive numbers. The second (optional) * subpattern is used for negative numbers. (In both cases, ',' can * occur inside the integer portion--it is just too messy to indicate * in BNF.) For the second subpattern, only the PREFIX and SUFFIX are * noted; other attributes are taken only from the first subpattern. *
* Here are the special characters used in the parts of the * subpattern, with notes on their usage. *
* . Symbol Meaning * . 0 a digit, showing up a zero if it is zero * . # a digit, supressed if zero * . . placeholder for decimal separator * . , placeholder for grouping separator. * . E separates mantissa and exponent for exponential formats. * . ; separates formats. * . - default negative prefix. * . % multiply by 100 and show as percentage * . \u2030 multiply by 1000 and show as per mille * . \u00A4 currency sign; replaced by currency symbol; if * . doubled, replaced by international currency symbol. * . If present in a pattern, the monetary decimal separator * . is used instead of the decimal separator. * . X any other characters can be used in the prefix or suffix * . ' used to quote special characters in a prefix or suffix. ** [Notes] *
* If there is no explicit negative subpattern, - is prefixed to the * positive form. That is, "0.00" alone is equivalent to "0.00;-0.00". *
* Illegal formats, such as "#.#.#" in the same format, will cause a * failing UErrorCode to be returned. *
* The grouping separator is commonly used for thousands, but in some * countries for ten-thousands. The interval is a constant number of * digits between the grouping characters, such as 100,000,000 or 1,0000,0000. * If you supply a pattern with multiple grouping characters, the interval * between the last one and the end of the integer determines the primary * grouping size, and the interval between the last two determines * the secondary grouping size (see below); all others are ignored. * So "#,##,###,####" == "###,###,####" == "##,#,###,####". *
* Some locales have two different grouping intervals: One used for the * least significant integer digits (the primary grouping size), and * one used for all others (the secondary grouping size). For example, * if the primary grouping interval is 3, and the secondary is 2, then * this corresponds to the pattern "#,##,##0", and the number 123456789 * is formatted as "12,34,56,789". *
* This class only handles localized digits where the 10 digits are * contiguous in Unicode, from 0 to 9. Other digits sets (such as * superscripts) would need a different subclass. */ class U_I18N_API DecimalFormat: public NumberFormat { public: enum ERoundingMode { kRoundCeiling, kRoundFloor, kRoundDown, kRoundUp, kRoundHalfEven, kRoundHalfDown, kRoundHalfUp // We don't support ROUND_UNNECESSARY }; enum EPadPosition { kPadBeforePrefix, kPadAfterPrefix, kPadBeforeSuffix, kPadAfterSuffix }; /** * Create a DecimalFormat using the default pattern and symbols * for the default locale. This is a convenient way to obtain a * DecimalFormat when internationalization is not the main concern. *
* To obtain standard formats for a given locale, use the factory methods * on NumberFormat such as getNumberInstance. These factories will * return the most appropriate sub-class of NumberFormat for a given * locale. * @param status Output param set to success/failure code. If the * pattern is invalid this will be set to a failure code. * @stable */ DecimalFormat(UErrorCode& status); /** * Create a DecimalFormat from the given pattern and the symbols * for the default locale. This is a convenient way to obtain a * DecimalFormat when internationalization is not the main concern. *
* To obtain standard formats for a given locale, use the factory methods * on NumberFormat such as getNumberInstance. These factories will * return the most appropriate sub-class of NumberFormat for a given * locale. * @param pattern A non-localized pattern string. * @param status Output param set to success/failure code. If the * pattern is invalid this will be set to a failure code. * @stable */ DecimalFormat(const UnicodeString& pattern, UErrorCode& status); /** * Create a DecimalFormat from the given pattern and symbols. * Use this constructor when you need to completely customize the * behavior of the format. *
* To obtain standard formats for a given * locale, use the factory methods on NumberFormat such as * getInstance or getCurrencyInstance. If you need only minor adjustments * to a standard format, you can modify the format returned by * a NumberFormat factory method. * * @param pattern a non-localized pattern string * @param symbolsToAdopt the set of symbols to be used. The caller should not * delete this object after making this call. * @param status Output param set to success/failure code. If the * pattern is invalid this will be set to a failure code. * @stable */ DecimalFormat( const UnicodeString& pattern, DecimalFormatSymbols* symbolsToAdopt, UErrorCode& status); /** * Create a DecimalFormat from the given pattern and symbols. * Use this constructor when you need to completely customize the * behavior of the format. *
* To obtain standard formats for a given
* locale, use the factory methods on NumberFormat such as
* getInstance or getCurrencyInstance. If you need only minor adjustments
* to a standard format, you can modify the format returned by
* a NumberFormat factory method.
*
* @param pattern a non-localized pattern string
* @param symbols the set of symbols to be used
* @param status Output param set to success/failure code. If the
* pattern is invalid this will be set to a failure code.
* @stable
*/
DecimalFormat( const UnicodeString& pattern,
const DecimalFormatSymbols& symbols,
UErrorCode& status);
/**
* Copy constructor.
* @stable
*/
DecimalFormat(const DecimalFormat& source);
/**
* Assignment operator.
* @stable
*/
DecimalFormat& operator=(const DecimalFormat& rhs);
/**
* Destructor.
* @stable
*/
virtual ~DecimalFormat();
/**
* Clone this Format object polymorphically. The caller owns the
* result and should delete it when done.
* @stable
*/
virtual Format* clone(void) const;
/**
* Return true if the given Format objects are semantically equal.
* Objects of different subclasses are considered unequal.
* @stable
*/
virtual UBool operator==(const Format& other) const;
/**
* Format a double or long number using base-10 representation.
*
* @param number The value to be formatted.
* @param toAppendTo The string to append the formatted string to.
* This is an output parameter.
* @param pos On input: an alignment field, if desired.
* On output: the offsets of the alignment field.
* @return A reference to 'toAppendTo'.
* @stable
*/
virtual UnicodeString& format(double number,
UnicodeString& toAppendTo,
FieldPosition& pos) const;
virtual UnicodeString& format(int32_t number,
UnicodeString& toAppendTo,
FieldPosition& pos) const;
virtual UnicodeString& format(const Formattable& obj,
UnicodeString& toAppendTo,
FieldPosition& pos,
UErrorCode& status) const;
/**
* Redeclared NumberFormat method.
* @stable
*/
UnicodeString& format(const Formattable& obj,
UnicodeString& result,
UErrorCode& status) const;
/**
* Redeclared NumberFormat method.
* @stable
*/
UnicodeString& format(double number,
UnicodeString& output) const;
/**
* Redeclared NumberFormat method.
* @stable
*/
UnicodeString& format(int32_t number,
UnicodeString& output) const;
/**
* Parse the given string using this object's choices. The method
* does string comparisons to try to find an optimal match.
* If no object can be parsed, index is unchanged, and NULL is
* returned. The result is returned as the most parsimonious
* type of Formattable
that will accomodate all of the
* necessary precision. For example, if the result is exactly 12,
* it will be returned as a long. However, if it is 1.5, it will
* be returned as a double.
*
* @param text The text to be parsed.
* @param result Formattable to be set to the parse result.
* If parse fails, return contents are undefined.
* @param parsePosition The position to start parsing at on input.
* On output, moved to after the last successfully
* parse character. On parse failure, does not change.
* @see Formattable
* @stable
*/
virtual void parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition) const;
// Declare here again to get rid of function hiding problems.
virtual void parse(const UnicodeString& text,
Formattable& result,
UErrorCode& error) const;
/**
* Returns the decimal format symbols, which is generally not changed
* by the programmer or user.
* @return desired DecimalFormatSymbols
* @see DecimalFormatSymbols
* @stable
*/
virtual const DecimalFormatSymbols* getDecimalFormatSymbols(void) const;
/**
* Sets the decimal format symbols, which is generally not changed
* by the programmer or user.
* @param symbolsToAdopt DecimalFormatSymbols to be adopted.
* @stable
*/
virtual void adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt);
/**
* Sets the decimal format symbols, which is generally not changed
* by the programmer or user.
* @param symbols DecimalFormatSymbols.
* @stable
*/
virtual void setDecimalFormatSymbols(const DecimalFormatSymbols& symbols);
/**
* Get the positive prefix.
*
* Examples: +123, $123, sFr123
* @stable
*/
UnicodeString& getPositivePrefix(UnicodeString& result) const;
/**
* Set the positive prefix.
*
* Examples: +123, $123, sFr123
* @stable
*/
virtual void setPositivePrefix(const UnicodeString& newValue);
/**
* Get the negative prefix.
*
* Examples: -123, ($123) (with negative suffix), sFr-123
* @stable
*/
UnicodeString& getNegativePrefix(UnicodeString& result) const;
/**
* Set the negative prefix.
*
* Examples: -123, ($123) (with negative suffix), sFr-123
* @stable
*/
virtual void setNegativePrefix(const UnicodeString& newValue);
/**
* Get the positive suffix.
*
* Example: 123%
* @stable
*/
UnicodeString& getPositiveSuffix(UnicodeString& result) const;
/**
* Set the positive suffix.
*
* Example: 123%
* @stable
*/
virtual void setPositiveSuffix(const UnicodeString& newValue);
/**
* Get the negative suffix.
*
* Examples: -123%, ($123) (with positive suffixes)
* @stable
*/
UnicodeString& getNegativeSuffix(UnicodeString& result) const;
/**
* Set the positive suffix.
*
* Examples: 123%
* @stable
*/
virtual void setNegativeSuffix(const UnicodeString& newValue);
/**
* Get the multiplier for use in percent, permill, etc.
* For a percentage, set the suffixes to have "%" and the multiplier to be 100.
* (For Arabic, use arabic percent symbol).
* For a permill, set the suffixes to have "\u2031" and the multiplier to be 1000.
*
* Examples: with 100, 1.23 -> "123", and "123" -> 1.23
* @stable
*/
int32_t getMultiplier(void) const;
/**
* Set the multiplier for use in percent, permill, etc.
* For a percentage, set the suffixes to have "%" and the multiplier to be 100.
* (For Arabic, use arabic percent symbol).
* For a permill, set the suffixes to have "\u2031" and the multiplier to be 1000.
*
* Examples: with 100, 1.23 -> "123", and "123" -> 1.23
*/
virtual void setMultiplier(int32_t newValue);
/**
* Get the rounding increment.
* @return A positive rounding increment, or 0.0 if rounding
* is not in effect.
* @see #setRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
* @stable
*/
virtual double getRoundingIncrement(void);
/**
* Set the rounding increment. This method also controls whether
* rounding is enabled.
* @param newValue A positive rounding increment, or 0.0 to disable rounding.
* Negative increments are equivalent to 0.0.
* @see #getRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
* @stable
*/
virtual void setRoundingIncrement(double newValue);
/**
* Get the rounding mode.
* @return A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #setRoundingMode
* @stable
*/
virtual ERoundingMode getRoundingMode(void);
/**
* Set the rounding mode. This has no effect unless the rounding
* increment is greater than zero.
* @param roundingMode A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #getRoundingMode
* @stable
*/
virtual void setRoundingMode(ERoundingMode roundingMode);
/**
* Get the width to which the output of format()
is padded.
* @return the format width, or zero if no padding is in effect
* @see #setFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
* @stable
*/
virtual int32_t getFormatWidth(void);
/**
* Set the width to which the output of format()
is padded.
* This method also controls whether padding is enabled.
* @param width the width to which to pad the result of
* format()
, or zero to disable padding. A negative
* width is equivalent to 0.
* @see #getFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
* @stable
*/
virtual void setFormatWidth(int32_t width);
/**
* Get the first code unit of the string used to pad to the format width. The default is ' '.
* @return the first code unit of the pad string
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
* @deprecated remove after 2000-dec-31. See the other getPadCharacter() function
*/
inline UChar getPadCharacter(void);
/**
* Get the grapheme string (a character, possibly with modifier letters)
* used to pad to the format width. The default is " ".
* Note: The current implementation only stores the first code unit of the
* pad string.
* @return the pad grapheme string
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
* @draft
*/
virtual UnicodeString getPadCharacterString();
/**
* Set a one-code unit string used to pad to the format width. This has no effect
* unless padding is enabled.
* @param padChar the pad character that is used to construct the pad string
* @see #setFormatWidth
* @see #getFormatWidth
* @see #getPadCharacter
* @see #getPadPosition
* @see #setPadPosition
* @deprecated remove after 2000-dec-31. See the other setPadCharacter() function
*/
inline void setPadCharacter(UChar padChar);
/**
* Set the grapheme string (a character, possibly with modifier letters)
* used to pad to the format width. This has no effect
* unless padding is enabled.
* Note: The current implementation only stores the first code unit of the
* pad string.
* @param padChar the pad grapheme
* @see #setFormatWidth
* @see #getFormatWidth
* @see #getPadCharacter
* @see #getPadPosition
* @see #setPadPosition
* @draft
*/
virtual void setPadCharacter(UnicodeString padChar);
/**
* Get the position at which padding will take place. This is the location
* at which padding will be inserted if the result of format()
* is shorter than the format width.
* @return the pad position, one of kPadBeforePrefix
,
* kPadAfterPrefix
, kPadBeforeSuffix
, or
* kPadAfterSuffix
.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #setPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
* @stable
*/
virtual EPadPosition getPadPosition(void);
/**
* NEW
* Set the position at which padding will take place. This is the location
* at which padding will be inserted if the result of format()
* is shorter than the format width. This has no effect unless padding is
* enabled.
* @param padPos the pad position, one of kPadBeforePrefix
,
* kPadAfterPrefix
, kPadBeforeSuffix
, or
* kPadAfterSuffix
.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #getPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
* @stable
*/
virtual void setPadPosition(EPadPosition padPos);
/**
* Return whether or not scientific notation is used.
* @return TRUE if this object formats and parses scientific notation
* @see #setScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
* @stable
*/
virtual UBool isScientificNotation(void);
/**
* Set whether or not scientific notation is used.
* @param useScientific TRUE if this object formats and parses scientific
* notation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
* @stable
*/
virtual void setScientificNotation(UBool useScientific);
/**
* Return the minimum exponent digits that will be shown.
* @return the minimum exponent digits that will be shown
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
* @stable
*/
virtual int8_t getMinimumExponentDigits(void);
/**
* Set the minimum exponent digits that will be shown. This has no
* effect unless scientific notation is in use.
* @param minExpDig a value >= 1 indicating the fewest exponent digits
* that will be shown. Values less than 1 will be treated as 1.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
* @stable
*/
virtual void setMinimumExponentDigits(int8_t minExpDig);
/**
* Return whether the exponent sign is always shown.
* @return TRUE if the exponent is always prefixed with either the
* localized minus sign or the localized plus sign, false if only negative
* exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #setExponentSignAlwaysShown
* @stable
*/
virtual UBool isExponentSignAlwaysShown(void);
/**
* Set whether the exponent sign is always shown. This has no effect
* unless scientific notation is in use.
* @param expSignAlways TRUE if the exponent is always prefixed with either
* the localized minus sign or the localized plus sign, false if only
* negative exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @stable
*/
virtual void setExponentSignAlwaysShown(UBool expSignAlways);
/**
* Return the grouping size. Grouping size is the number of digits between
* grouping separators in the integer portion of a number. For example,
* in the number "123,456.78", the grouping size is 3.
* @see setGroupingSize
* @see NumberFormat::isGroupingUsed
* @see DecimalFormatSymbols::getGroupingSeparator
* @stable
*/
int32_t getGroupingSize(void) const;
/**
* Set the grouping size. Grouping size is the number of digits between
* grouping separators in the integer portion of a number. For example,
* in the number "123,456.78", the grouping size is 3.
* @see getGroupingSize
* @see NumberFormat::setGroupingUsed
* @see DecimalFormatSymbols::setGroupingSeparator
* @stable
*/
virtual void setGroupingSize(int32_t newValue);
/**
* Return the secondary grouping size. In some locales one
* grouping interval is used for the least significant integer
* digits (the primary grouping size), and another is used for all
* others (the secondary grouping size). A formatter supporting a
* secondary grouping size will return a positive integer unequal
* to the primary grouping size returned by
* getGroupingSize()
. For example, if the primary
* grouping size is 4, and the secondary grouping size is 2, then
* the number 123456789 formats as "1,23,45,6789", and the pattern
* appears as "#,##,###0".
* @return the secondary grouping size, or a value less than
* one if there is none
* @see setSecondaryGroupingSize
* @see NumberFormat::isGroupingUsed
* @see DecimalFormatSymbols::getGroupingSeparator
*/
int32_t getSecondaryGroupingSize(void) const;
/**
* Set the secondary grouping size. If set to a value less than 1,
* then secondary grouping is turned off, and the primary grouping
* size is used for all intervals, not just the least significant.
* @see getSecondaryGroupingSize
* @see NumberFormat#setGroupingUsed
* @see DecimalFormatSymbols::setGroupingSeparator
*/
virtual void setSecondaryGroupingSize(int32_t newValue);
/**
* Allows you to get the behavior of the decimal separator with integers.
* (The decimal separator will always appear with decimals.)
*
* Example: Decimal ON: 12345 -> 12345.; OFF: 12345 -> 12345
* @stable
*/
UBool isDecimalSeparatorAlwaysShown(void) const;
/**
* Allows you to set the behavior of the decimal separator with integers.
* (The decimal separator will always appear with decimals.)
*
* Example: Decimal ON: 12345 -> 12345.; OFF: 12345 -> 12345
* @stable
*/
virtual void setDecimalSeparatorAlwaysShown(UBool newValue);
/**
* Synthesizes a pattern string that represents the current state
* of this Format object.
* @see applyPattern
* @stable
*/
virtual UnicodeString& toPattern(UnicodeString& result) const;
/**
* Synthesizes a localized pattern string that represents the current
* state of this Format object.
*
* @see applyPattern
* @stable
*/
virtual UnicodeString& toLocalizedPattern(UnicodeString& result) const;
/**
* Apply the given pattern to this Format object. A pattern is a
* short-hand specification for the various formatting properties.
* These properties can also be changed individually through the
* various setter methods.
*
* There is no limit to integer digits are set * by this routine, since that is the typical end-user desire; * use setMaximumInteger if you want to set a real value. * For negative numbers, use a second pattern, separated by a semicolon *
* . Example "#,#00.0#" -> 1,234.56 ** This means a minimum of 2 integer digits, 1 fraction digit, and * a maximum of 2 fraction digits. *
* . Example: "#,#00.0#;(#,#00.0#)" for negatives in parantheses. ** In negative patterns, the minimum and maximum counts are ignored; * these are presumed to be set in the positive pattern. * * @param pattern The pattern to be applied. * @param status Output param set to success/failure code on * exit. If the pattern is invalid, this will be * set to a failure result. * @stable */ virtual void applyPattern(const UnicodeString& pattern, UErrorCode& status); /** * Apply the given pattern to this Format object. The pattern * is assumed to be in a localized notation. A pattern is a * short-hand specification for the various formatting properties. * These properties can also be changed individually through the * various setter methods. *
* There is no limit to integer digits are set * by this routine, since that is the typical end-user desire; * use setMaximumInteger if you want to set a real value. * For negative numbers, use a second pattern, separated by a semicolon *
* . Example "#,#00.0#" -> 1,234.56 ** This means a minimum of 2 integer digits, 1 fraction digit, and * a maximum of 2 fraction digits. * * Example: "#,#00.0#;(#,#00.0#)" for negatives in parantheses. * * In negative patterns, the minimum and maximum counts are ignored; * these are presumed to be set in the positive pattern. * * @param pattern The localized pattern to be applied. * @param status Output param set to success/failure code on * exit. If the pattern is invalid, this will be * set to a failure result. * @stable */ virtual void applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status); /** * Sets the maximum number of digits allowed in the integer portion of a * number. This override limits the integer digit count to 309. * @see NumberFormat#setMaximumIntegerDigits * @stable */ virtual void setMaximumIntegerDigits(int32_t newValue); /** * Sets the minimum number of digits allowed in the integer portion of a * number. This override limits the integer digit count to 309. * @see NumberFormat#setMinimumIntegerDigits * @stable */ virtual void setMinimumIntegerDigits(int32_t newValue); /** * Sets the maximum number of digits allowed in the fraction portion of a * number. This override limits the fraction digit count to 340. * @see NumberFormat#setMaximumFractionDigits * @stable */ virtual void setMaximumFractionDigits(int32_t newValue); /** * Sets the minimum number of digits allowed in the fraction portion of a * number. This override limits the fraction digit count to 340. * @see NumberFormat#setMinimumFractionDigits * @stable */ virtual void setMinimumFractionDigits(int32_t newValue); /** * The resource tags we use to retrieve decimal format data from * locale resource bundles. * @stable */ static const char *fgNumberPatterns; public: /** * Return the class ID for this class. This is useful only for * comparing to a return value from getDynamicClassID(). For example: *
* . Base* polymorphic_pointer = createPolymorphicObject(); * . if (polymorphic_pointer->getDynamicClassID() == * . Derived::getStaticClassID()) ... ** @return The class ID for all objects of this class. * @stable */ static UClassID getStaticClassID(void) { return (UClassID)&fgClassID; } /** * Returns a unique class ID POLYMORPHICALLY. Pure virtual override. * This method is to implement a simple version of RTTI, since not all * C++ compilers support genuine RTTI. Polymorphic operator==() and * clone() methods call this method. * * @return The class ID for this object. All objects of a * given class have the same class ID. Objects of * other classes have different class IDs. * @stable */ virtual UClassID getDynamicClassID(void) const { return getStaticClassID(); } private: static char fgClassID; /** * Do real work of constructing a new DecimalFormat. */ void construct(UErrorCode& status, const UnicodeString* pattern = 0, DecimalFormatSymbols* symbolsToAdopt = 0, const Locale& locale = Locale::getDefault()); /** * Does the real work of generating a pattern. */ UnicodeString& toPattern(UnicodeString& result, UBool localized) const; /** * Does the real work of applying a pattern. * @param pattern The pattern to be applied. * @param localized If true, the pattern is localized; else false. * @param status Output param set to success/failure code on * exit. If the pattern is invalid, this will be * set to a failure result. */ void applyPattern(const UnicodeString& pattern, UBool localized, UErrorCode& status); /** * Do the work of formatting a number, either a double or a long. */ UnicodeString& subformat(UnicodeString& result, FieldPosition& fieldPosition, DigitList& digits, UBool isInteger) const; enum { fgStatusInfinite, fgStatusLength // Leave last in list. } StatusFlags; /** * Parse the given text into a number. The text is parsed beginning at * parsePosition, until an unparseable character is seen. * @param text The string to parse. * @param parsePosition The position at which to being parsing. Upon * return, the first unparseable character. * @param digits The DigitList to set to the parsed value. * @param isExponent If true, parse an exponent. This means no * infinite values and integer only. * @param status Upon return contains boolean status flags indicating * whether the value was infinite and whether it was positive. */ UBool subparse(const UnicodeString& text, ParsePosition& parsePosition, DigitList& digits, UBool* status) const; /** * Append an affix to the given StringBuffer, using quotes if * there are special characters. Single quotes themselves must be * escaped in either case. */ void appendAffix(UnicodeString& buffer, const UnicodeString& affix, UBool localized) const; void appendAffix(UnicodeString& buffer, const UnicodeString* affixPattern, const UnicodeString& expAffix, UBool localized) const; void expandAffix(const UnicodeString& pattern, UnicodeString& affix) const; void expandAffixes(void); static double round(double a, ERoundingMode mode, UBool isNegative); void addPadding(UnicodeString& result, UBool hasAffixes, UBool isNegative) const; UBool isGroupingPosition(int32_t pos) const; /** * Constants. */ //static const int8_t fgMaxDigit; // The largest digit, in this case 9 /*transient*/ //DigitList* fDigitList; UnicodeString fPositivePrefix; UnicodeString fPositiveSuffix; UnicodeString fNegativePrefix; UnicodeString fNegativeSuffix; UnicodeString* fPosPrefixPattern; UnicodeString* fPosSuffixPattern; UnicodeString* fNegPrefixPattern; UnicodeString* fNegSuffixPattern; int32_t fMultiplier; int32_t fGroupingSize; int32_t fGroupingSize2; UBool fDecimalSeparatorAlwaysShown; /*transient*/ UBool fIsCurrencyFormat; /* @deprecated */ DecimalFormatSymbols* fSymbols; UBool fUseExponentialNotation; int8_t fMinExponentDigits; UBool fExponentSignAlwaysShown; /* If fRoundingIncrement is NULL, there is no rounding. Otherwise, round to * fRoundingIncrement.getDouble(). Since this operation may be expensive, * we cache the result in fRoundingDouble. All methods that update * fRoundingIncrement also update fRoundingDouble. */ DigitList* fRoundingIncrement; /*transient*/ double fRoundingDouble; ERoundingMode fRoundingMode; UChar fPad; int32_t fFormatWidth; EPadPosition fPadPosition; // Constants for characters used in programmatic (unlocalized) patterns. static const UChar kPatternZeroDigit; static const UChar kPatternGroupingSeparator; static const UChar kPatternDecimalSeparator; static const UChar kPatternPerMill; static const UChar kPatternPercent; static const UChar kPatternDigit; static const UChar kPatternSeparator; static const UChar kPatternExponent; static const UChar kPatternPlus; static const UChar kPatternMinus; static const UChar kPatternPadEscape; /** * The CURRENCY_SIGN is the standard Unicode symbol for currency. It * is used in patterns and substitued with either the currency symbol, * or if it is doubled, with the international currency symbol. If the * CURRENCY_SIGN is seen in a pattern, then the decimal separator is * replaced with the monetary decimal separator. */ static const UChar kCurrencySign; static const UChar kQuote; protected: static const int32_t kDoubleIntegerDigits; static const int32_t kDoubleFractionDigits; }; inline UnicodeString& DecimalFormat::format(const Formattable& obj, UnicodeString& result, UErrorCode& status) const { // Don't use Format:: - use immediate base class only, // in case immediate base modifies behavior later. return NumberFormat::format(obj, result, status); } inline UnicodeString& DecimalFormat::format(double number, UnicodeString& output) const { FieldPosition pos(0); return format(number, output, pos); } inline UnicodeString& DecimalFormat::format(int32_t number, UnicodeString& output) const { FieldPosition pos(0); return format(number, output, pos); } inline UChar DecimalFormat::getPadCharacter() { return getPadCharacterString().charAt(0); } inline void DecimalFormat::setPadCharacter(UChar padChar) { setPadCharacter(UnicodeString(padChar)); } #endif // _DECIMFMT //eof