/* ******************************************************************************* * Copyright (C) 2007-2013, International Business Machines Corporation and * others. All Rights Reserved. ******************************************************************************* * * File plurrule.cpp */ #include #include #include "unicode/utypes.h" #include "unicode/localpointer.h" #include "unicode/plurrule.h" #include "unicode/upluralrules.h" #include "unicode/ures.h" #include "charstr.h" #include "cmemory.h" #include "cstring.h" #include "digitlst.h" #include "hash.h" #include "locutil.h" #include "mutex.h" #include "patternprops.h" #include "plurrule_impl.h" #include "putilimp.h" #include "ucln_in.h" #include "ustrfmt.h" #include "uassert.h" #include "uvectr32.h" #if !UCONFIG_NO_FORMATTING U_NAMESPACE_BEGIN #define ARRAY_SIZE(array) (int32_t)(sizeof array / sizeof array[0]) static const UChar PLURAL_KEYWORD_OTHER[]={LOW_O,LOW_T,LOW_H,LOW_E,LOW_R,0}; static const UChar PLURAL_DEFAULT_RULE[]={LOW_O,LOW_T,LOW_H,LOW_E,LOW_R,COLON,SPACE,LOW_N,0}; static const UChar PK_IN[]={LOW_I,LOW_N,0}; static const UChar PK_NOT[]={LOW_N,LOW_O,LOW_T,0}; static const UChar PK_IS[]={LOW_I,LOW_S,0}; static const UChar PK_MOD[]={LOW_M,LOW_O,LOW_D,0}; static const UChar PK_AND[]={LOW_A,LOW_N,LOW_D,0}; static const UChar PK_OR[]={LOW_O,LOW_R,0}; static const UChar PK_VAR_N[]={LOW_N,0}; static const UChar PK_VAR_I[]={LOW_I,0}; static const UChar PK_VAR_F[]={LOW_F,0}; static const UChar PK_VAR_T[]={LOW_T,0}; static const UChar PK_VAR_V[]={LOW_V,0}; static const UChar PK_VAR_J[]={LOW_J,0}; static const UChar PK_WITHIN[]={LOW_W,LOW_I,LOW_T,LOW_H,LOW_I,LOW_N,0}; static const UChar PK_DECIMAL[]={LOW_D,LOW_E,LOW_C,LOW_I,LOW_M,LOW_A,LOW_L,0}; static const UChar PK_INTEGER[]={LOW_I,LOW_N,LOW_T,LOW_E,LOW_G,LOW_E,LOW_R,0}; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(PluralRules) UOBJECT_DEFINE_RTTI_IMPLEMENTATION(PluralKeywordEnumeration) PluralRules::PluralRules(UErrorCode& /*status*/) : UObject(), mRules(NULL) { } PluralRules::PluralRules(const PluralRules& other) : UObject(other), mRules(NULL) { *this=other; } PluralRules::~PluralRules() { delete mRules; } PluralRules* PluralRules::clone() const { return new PluralRules(*this); } PluralRules& PluralRules::operator=(const PluralRules& other) { if (this != &other) { delete mRules; if (other.mRules==NULL) { mRules = NULL; } else { mRules = new RuleChain(*other.mRules); } } return *this; } StringEnumeration* PluralRules::getAvailableLocales(UErrorCode &status) { StringEnumeration *result = new PluralAvailableLocalesEnumeration(status); if (result == NULL && U_SUCCESS(status)) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_FAILURE(status)) { delete result; result = NULL; } return result; } PluralRules* U_EXPORT2 PluralRules::createRules(const UnicodeString& description, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } PluralRuleParser parser; PluralRules *newRules = new PluralRules(status); if (U_SUCCESS(status) && newRules == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } parser.parse(description, newRules, status); if (U_FAILURE(status)) { delete newRules; newRules = NULL; } return newRules; } PluralRules* U_EXPORT2 PluralRules::createDefaultRules(UErrorCode& status) { return createRules(UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1), status); } PluralRules* U_EXPORT2 PluralRules::forLocale(const Locale& locale, UErrorCode& status) { return forLocale(locale, UPLURAL_TYPE_CARDINAL, status); } PluralRules* U_EXPORT2 PluralRules::forLocale(const Locale& locale, UPluralType type, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } if (type >= UPLURAL_TYPE_COUNT) { status = U_ILLEGAL_ARGUMENT_ERROR; return NULL; } PluralRules *newObj = new PluralRules(status); if (newObj==NULL || U_FAILURE(status)) { delete newObj; return NULL; } UnicodeString locRule = newObj->getRuleFromResource(locale, type, status); // TODO: which errors, if any, should be returned? if (locRule.length() == 0) { // Locales with no specific rules (all numbers have the "other" category // will return a U_MISSING_RESOURCE_ERROR at this point. This is not // an error. locRule = UnicodeString(PLURAL_DEFAULT_RULE); status = U_ZERO_ERROR; } PluralRuleParser parser; parser.parse(locRule, newObj, status); // TODO: should rule parse errors be returned, or // should we silently use default rules? // Original impl used default rules. // Ask the question to ICU Core. return newObj; } UnicodeString PluralRules::select(int32_t number) const { return select(FixedDecimal(number)); } UnicodeString PluralRules::select(double number) const { return select(FixedDecimal(number)); } UnicodeString PluralRules::select(const FixedDecimal &number) const { if (mRules == NULL) { return UnicodeString(TRUE, PLURAL_DEFAULT_RULE, -1); } else { return mRules->select(number); } } StringEnumeration* PluralRules::getKeywords(UErrorCode& status) const { if (U_FAILURE(status)) return NULL; StringEnumeration* nameEnumerator = new PluralKeywordEnumeration(mRules, status); if (U_FAILURE(status)) { delete nameEnumerator; return NULL; } return nameEnumerator; } double PluralRules::getUniqueKeywordValue(const UnicodeString& /* keyword */) { // Not Implemented. return UPLRULES_NO_UNIQUE_VALUE; } int32_t PluralRules::getAllKeywordValues(const UnicodeString & /* keyword */, double * /* dest */, int32_t /* destCapacity */, UErrorCode& error) { error = U_UNSUPPORTED_ERROR; return 0; } static double scaleForInt(double d) { double scale = 1.0; while (d != floor(d)) { d = d * 10.0; scale = scale * 10.0; } return scale; } static int32_t getSamplesFromString(const UnicodeString &samples, double *dest, int32_t destCapacity, UErrorCode& status) { int32_t sampleCount = 0; int32_t sampleStartIdx = 0; int32_t sampleEndIdx = 0; //std::string ss; // TODO: debugging. // std::cout << "PluralRules::getSamples(), samples = \"" << samples.toUTF8String(ss) << "\"\n"; for (sampleCount = 0; sampleCount < destCapacity && sampleStartIdx < samples.length(); ) { sampleEndIdx = samples.indexOf(COMMA, sampleStartIdx); if (sampleEndIdx == -1) { sampleEndIdx = samples.length(); } const UnicodeString &sampleRange = samples.tempSubStringBetween(sampleStartIdx, sampleEndIdx); // ss.erase(); // std::cout << "PluralRules::getSamples(), samplesRange = \"" << sampleRange.toUTF8String(ss) << "\"\n"; int32_t tildeIndex = sampleRange.indexOf(TILDE); if (tildeIndex < 0) { FixedDecimal fixed(sampleRange, status); double sampleValue = fixed.source; if (fixed.visibleDecimalDigitCount == 0 || sampleValue != floor(sampleValue)) { dest[sampleCount++] = sampleValue; } } else { FixedDecimal fixedLo(sampleRange.tempSubStringBetween(0, tildeIndex), status); FixedDecimal fixedHi(sampleRange.tempSubStringBetween(tildeIndex+1), status); double rangeLo = fixedLo.source; double rangeHi = fixedHi.source; if (U_FAILURE(status)) { break; } if (rangeHi < rangeLo) { status = U_INVALID_FORMAT_ERROR; break; } // For ranges of samples with fraction decimal digits, scale the number up so that we // are adding one in the units place. Avoids roundoffs from repetitive adds of tenths. double scale = scaleForInt(rangeLo); double t = scaleForInt(rangeHi); if (t > scale) { scale = t; } rangeLo *= scale; rangeHi *= scale; for (double n=rangeLo; n<=rangeHi; n+=1) { // Hack Alert: don't return any decimal samples with integer values that // originated from a format with trailing decimals. // This API is returning doubles, which can't distinguish having displayed // zeros to the right of the decimal. // This results in test failures with values mapping back to a different keyword. double sampleValue = n/scale; if (!(sampleValue == floor(sampleValue) && fixedLo.visibleDecimalDigitCount > 0)) { dest[sampleCount++] = sampleValue; } if (sampleCount >= destCapacity) { break; } } } sampleStartIdx = sampleEndIdx + 1; } return sampleCount; } int32_t PluralRules::getSamples(const UnicodeString &keyword, double *dest, int32_t destCapacity, UErrorCode& status) { RuleChain *rc = rulesForKeyword(keyword); if (rc == NULL || destCapacity == 0 || U_FAILURE(status)) { return 0; } int32_t numSamples = getSamplesFromString(rc->fIntegerSamples, dest, destCapacity, status); if (numSamples == 0) { numSamples = getSamplesFromString(rc->fDecimalSamples, dest, destCapacity, status); } return numSamples; } RuleChain *PluralRules::rulesForKeyword(const UnicodeString &keyword) const { RuleChain *rc; for (rc = mRules; rc != NULL; rc = rc->fNext) { if (rc->fKeyword == keyword) { break; } } return rc; } UBool PluralRules::isKeyword(const UnicodeString& keyword) const { if (0 == keyword.compare(PLURAL_KEYWORD_OTHER, 5)) { return true; } return rulesForKeyword(keyword) != NULL; } UnicodeString PluralRules::getKeywordOther() const { return UnicodeString(TRUE, PLURAL_KEYWORD_OTHER, 5); } UBool PluralRules::operator==(const PluralRules& other) const { const UnicodeString *ptrKeyword; UErrorCode status= U_ZERO_ERROR; if ( this == &other ) { return TRUE; } LocalPointer myKeywordList(getKeywords(status)); LocalPointer otherKeywordList(other.getKeywords(status)); if (U_FAILURE(status)) { return FALSE; } if (myKeywordList->count(status)!=otherKeywordList->count(status)) { return FALSE; } myKeywordList->reset(status); while ((ptrKeyword=myKeywordList->snext(status))!=NULL) { if (!other.isKeyword(*ptrKeyword)) { return FALSE; } } otherKeywordList->reset(status); while ((ptrKeyword=otherKeywordList->snext(status))!=NULL) { if (!this->isKeyword(*ptrKeyword)) { return FALSE; } } if (U_FAILURE(status)) { return FALSE; } return TRUE; } void PluralRuleParser::parse(const UnicodeString& ruleData, PluralRules *prules, UErrorCode &status) { if (U_FAILURE(status)) { return; } U_ASSERT(ruleIndex == 0); // Parsers are good for a single use only! ruleSrc = &ruleData; while (ruleIndex< ruleSrc->length()) { getNextToken(status); if (U_FAILURE(status)) { return; } checkSyntax(status); if (U_FAILURE(status)) { return; } switch (type) { case tAnd: U_ASSERT(curAndConstraint != NULL); curAndConstraint = curAndConstraint->add(); break; case tOr: { U_ASSERT(currentChain != NULL); OrConstraint *orNode=currentChain->ruleHeader; while (orNode->next != NULL) { orNode = orNode->next; } orNode->next= new OrConstraint(); orNode=orNode->next; orNode->next=NULL; curAndConstraint = orNode->add(); } break; case tIs: U_ASSERT(curAndConstraint != NULL); U_ASSERT(curAndConstraint->value == -1); U_ASSERT(curAndConstraint->rangeList == NULL); break; case tNot: U_ASSERT(curAndConstraint != NULL); curAndConstraint->negated=TRUE; break; case tNotEqual: curAndConstraint->negated=TRUE; case tIn: case tWithin: case tEqual: U_ASSERT(curAndConstraint != NULL); curAndConstraint->rangeList = new UVector32(status); curAndConstraint->rangeList->addElement(-1, status); // range Low curAndConstraint->rangeList->addElement(-1, status); // range Hi rangeLowIdx = 0; rangeHiIdx = 1; curAndConstraint->value=PLURAL_RANGE_HIGH; curAndConstraint->integerOnly = (type != tWithin); break; case tNumber: U_ASSERT(curAndConstraint != NULL); if ( (curAndConstraint->op==AndConstraint::MOD)&& (curAndConstraint->opNum == -1 ) ) { curAndConstraint->opNum=getNumberValue(token); } else { if (curAndConstraint->rangeList == NULL) { // this is for an 'is' rule curAndConstraint->value = getNumberValue(token); } else { // this is for an 'in' or 'within' rule if (curAndConstraint->rangeList->elementAti(rangeLowIdx) == -1) { curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeLowIdx); curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeHiIdx); } else { curAndConstraint->rangeList->setElementAt(getNumberValue(token), rangeHiIdx); if (curAndConstraint->rangeList->elementAti(rangeLowIdx) > curAndConstraint->rangeList->elementAti(rangeHiIdx)) { // Range Lower bound > Range Upper bound. // U_UNEXPECTED_TOKEN seems a little funny, but it is consistently // used for all plural rule parse errors. status = U_UNEXPECTED_TOKEN; break; } } } } break; case tComma: // TODO: rule syntax checking is inadequate, can happen with badly formed rules. // Catch cases like "n mod 10, is 1" here instead. if (curAndConstraint == NULL || curAndConstraint->rangeList == NULL) { status = U_UNEXPECTED_TOKEN; break; } U_ASSERT(curAndConstraint->rangeList->size() >= 2); rangeLowIdx = curAndConstraint->rangeList->size(); curAndConstraint->rangeList->addElement(-1, status); // range Low rangeHiIdx = curAndConstraint->rangeList->size(); curAndConstraint->rangeList->addElement(-1, status); // range Hi break; case tMod: U_ASSERT(curAndConstraint != NULL); curAndConstraint->op=AndConstraint::MOD; break; case tVariableN: case tVariableI: case tVariableF: case tVariableT: case tVariableV: U_ASSERT(curAndConstraint != NULL); curAndConstraint->digitsType = type; break; case tKeyword: { RuleChain *newChain = new RuleChain; if (newChain == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } newChain->fKeyword = token; if (prules->mRules == NULL) { prules->mRules = newChain; } else { // The new rule chain goes at the end of the linked list of rule chains, // unless there is an "other" keyword & chain. "other" must remain last. RuleChain *insertAfter = prules->mRules; while (insertAfter->fNext!=NULL && insertAfter->fNext->fKeyword.compare(PLURAL_KEYWORD_OTHER, 5) != 0 ){ insertAfter=insertAfter->fNext; } newChain->fNext = insertAfter->fNext; insertAfter->fNext = newChain; } OrConstraint *orNode = new OrConstraint(); newChain->ruleHeader = orNode; curAndConstraint = orNode->add(); currentChain = newChain; } break; case tInteger: for (;;) { getNextToken(status); if (U_FAILURE(status) || type == tSemiColon || type == tEOF || type == tAt) { break; } if (type == tEllipsis) { currentChain->fIntegerSamplesUnbounded = TRUE; continue; } currentChain->fIntegerSamples.append(token); } break; case tDecimal: for (;;) { getNextToken(status); if (U_FAILURE(status) || type == tSemiColon || type == tEOF || type == tAt) { break; } if (type == tEllipsis) { currentChain->fDecimalSamplesUnbounded = TRUE; continue; } currentChain->fDecimalSamples.append(token); } break; default: break; } prevType=type; if (U_FAILURE(status)) { break; } } } UnicodeString PluralRules::getRuleFromResource(const Locale& locale, UPluralType type, UErrorCode& errCode) { UnicodeString emptyStr; if (U_FAILURE(errCode)) { return emptyStr; } LocalUResourceBundlePointer rb(ures_openDirect(NULL, "plurals", &errCode)); if(U_FAILURE(errCode)) { return emptyStr; } const char *typeKey; switch (type) { case UPLURAL_TYPE_CARDINAL: typeKey = "locales"; break; case UPLURAL_TYPE_ORDINAL: typeKey = "locales_ordinals"; break; default: // Must not occur: The caller should have checked for valid types. errCode = U_ILLEGAL_ARGUMENT_ERROR; return emptyStr; } LocalUResourceBundlePointer locRes(ures_getByKey(rb.getAlias(), typeKey, NULL, &errCode)); if(U_FAILURE(errCode)) { return emptyStr; } int32_t resLen=0; const char *curLocaleName=locale.getName(); const UChar* s = ures_getStringByKey(locRes.getAlias(), curLocaleName, &resLen, &errCode); if (s == NULL) { // Check parent locales. UErrorCode status = U_ZERO_ERROR; char parentLocaleName[ULOC_FULLNAME_CAPACITY]; const char *curLocaleName=locale.getName(); uprv_strcpy(parentLocaleName, curLocaleName); while (uloc_getParent(parentLocaleName, parentLocaleName, ULOC_FULLNAME_CAPACITY, &status) > 0) { resLen=0; s = ures_getStringByKey(locRes.getAlias(), parentLocaleName, &resLen, &status); if (s != NULL) { errCode = U_ZERO_ERROR; break; } status = U_ZERO_ERROR; } } if (s==NULL) { return emptyStr; } char setKey[256]; u_UCharsToChars(s, setKey, resLen + 1); // printf("\n PluralRule: %s\n", setKey); LocalUResourceBundlePointer ruleRes(ures_getByKey(rb.getAlias(), "rules", NULL, &errCode)); if(U_FAILURE(errCode)) { return emptyStr; } LocalUResourceBundlePointer setRes(ures_getByKey(ruleRes.getAlias(), setKey, NULL, &errCode)); if (U_FAILURE(errCode)) { return emptyStr; } int32_t numberKeys = ures_getSize(setRes.getAlias()); UnicodeString result; const char *key=NULL; for(int32_t i=0; idumpRules(rules); } return rules; } AndConstraint::AndConstraint() { op = AndConstraint::NONE; opNum=-1; value = -1; rangeList = NULL; negated = FALSE; integerOnly = FALSE; digitsType = none; next=NULL; } AndConstraint::AndConstraint(const AndConstraint& other) { this->op = other.op; this->opNum=other.opNum; this->value=other.value; this->rangeList=NULL; if (other.rangeList != NULL) { UErrorCode status = U_ZERO_ERROR; this->rangeList = new UVector32(status); this->rangeList->assign(*other.rangeList, status); } this->integerOnly=other.integerOnly; this->negated=other.negated; this->digitsType = other.digitsType; if (other.next==NULL) { this->next=NULL; } else { this->next = new AndConstraint(*other.next); } } AndConstraint::~AndConstraint() { delete rangeList; if (next!=NULL) { delete next; } } UBool AndConstraint::isFulfilled(const FixedDecimal &number) { UBool result = TRUE; if (digitsType == none) { // An empty AndConstraint, created by a rule with a keyword but no following expression. return TRUE; } double n = number.get(digitsType); // pulls n | i | v | f value for the number. // Will always be positive. // May be non-integer (n option only) do { if (integerOnly && n != uprv_floor(n)) { result = FALSE; break; } if (op == MOD) { n = fmod(n, opNum); } if (rangeList == NULL) { result = value == -1 || // empty rule n == value; // 'is' rule break; } result = FALSE; // 'in' or 'within' rule for (int32_t r=0; rsize(); r+=2) { if (rangeList->elementAti(r) <= n && n <= rangeList->elementAti(r+1)) { result = TRUE; break; } } } while (FALSE); if (negated) { result = !result; } return result; } AndConstraint* AndConstraint::add() { this->next = new AndConstraint(); return this->next; } OrConstraint::OrConstraint() { childNode=NULL; next=NULL; } OrConstraint::OrConstraint(const OrConstraint& other) { if ( other.childNode == NULL ) { this->childNode = NULL; } else { this->childNode = new AndConstraint(*(other.childNode)); } if (other.next == NULL ) { this->next = NULL; } else { this->next = new OrConstraint(*(other.next)); } } OrConstraint::~OrConstraint() { if (childNode!=NULL) { delete childNode; } if (next!=NULL) { delete next; } } AndConstraint* OrConstraint::add() { OrConstraint *curOrConstraint=this; { while (curOrConstraint->next!=NULL) { curOrConstraint = curOrConstraint->next; } U_ASSERT(curOrConstraint->childNode == NULL); curOrConstraint->childNode = new AndConstraint(); } return curOrConstraint->childNode; } UBool OrConstraint::isFulfilled(const FixedDecimal &number) { OrConstraint* orRule=this; UBool result=FALSE; while (orRule!=NULL && !result) { result=TRUE; AndConstraint* andRule = orRule->childNode; while (andRule!=NULL && result) { result = andRule->isFulfilled(number); andRule=andRule->next; } orRule = orRule->next; } return result; } RuleChain::RuleChain(): fKeyword(), fNext(NULL), ruleHeader(NULL), fDecimalSamples(), fIntegerSamples(), fDecimalSamplesUnbounded(FALSE), fIntegerSamplesUnbounded(FALSE) { } RuleChain::RuleChain(const RuleChain& other) : fKeyword(other.fKeyword), fNext(NULL), ruleHeader(NULL), fDecimalSamples(other.fDecimalSamples), fIntegerSamples(other.fIntegerSamples), fDecimalSamplesUnbounded(other.fDecimalSamplesUnbounded), fIntegerSamplesUnbounded(other.fIntegerSamplesUnbounded) { if (other.ruleHeader != NULL) { this->ruleHeader = new OrConstraint(*(other.ruleHeader)); } if (other.fNext != NULL ) { this->fNext = new RuleChain(*other.fNext); } } RuleChain::~RuleChain() { delete fNext; delete ruleHeader; } UnicodeString RuleChain::select(const FixedDecimal &number) const { if (!number.isNanOrInfinity) { for (const RuleChain *rules = this; rules != NULL; rules = rules->fNext) { if (rules->ruleHeader->isFulfilled(number)) { return rules->fKeyword; } } } return UnicodeString(TRUE, PLURAL_KEYWORD_OTHER, 5); } static UnicodeString tokenString(tokenType tok) { UnicodeString s; switch (tok) { case tVariableN: s.append(LOW_N); break; case tVariableI: s.append(LOW_I); break; case tVariableF: s.append(LOW_F); break; case tVariableV: s.append(LOW_V); break; case tVariableT: s.append(LOW_T); break; default: s.append(TILDE); } return s; } void RuleChain::dumpRules(UnicodeString& result) { UChar digitString[16]; if ( ruleHeader != NULL ) { result += fKeyword; result += COLON; result += SPACE; OrConstraint* orRule=ruleHeader; while ( orRule != NULL ) { AndConstraint* andRule=orRule->childNode; while ( andRule != NULL ) { if ((andRule->op==AndConstraint::NONE) && (andRule->rangeList==NULL) && (andRule->value == -1)) { // Empty Rules. } else if ( (andRule->op==AndConstraint::NONE) && (andRule->rangeList==NULL) ) { result += tokenString(andRule->digitsType); result += UNICODE_STRING_SIMPLE(" is "); if (andRule->negated) { result += UNICODE_STRING_SIMPLE("not "); } uprv_itou(digitString,16, andRule->value,10,0); result += UnicodeString(digitString); } else { result += tokenString(andRule->digitsType); result += SPACE; if (andRule->op==AndConstraint::MOD) { result += UNICODE_STRING_SIMPLE("mod "); uprv_itou(digitString,16, andRule->opNum,10,0); result += UnicodeString(digitString); } if (andRule->rangeList==NULL) { if (andRule->negated) { result += UNICODE_STRING_SIMPLE(" is not "); uprv_itou(digitString,16, andRule->value,10,0); result += UnicodeString(digitString); } else { result += UNICODE_STRING_SIMPLE(" is "); uprv_itou(digitString,16, andRule->value,10,0); result += UnicodeString(digitString); } } else { if (andRule->negated) { if ( andRule->integerOnly ) { result += UNICODE_STRING_SIMPLE(" not in "); } else { result += UNICODE_STRING_SIMPLE(" not within "); } } else { if ( andRule->integerOnly ) { result += UNICODE_STRING_SIMPLE(" in "); } else { result += UNICODE_STRING_SIMPLE(" within "); } } for (int32_t r=0; rrangeList->size(); r+=2) { int32_t rangeLo = andRule->rangeList->elementAti(r); int32_t rangeHi = andRule->rangeList->elementAti(r+1); uprv_itou(digitString,16, rangeLo, 10, 0); result += UnicodeString(digitString); result += UNICODE_STRING_SIMPLE(".."); uprv_itou(digitString,16, rangeHi, 10,0); result += UnicodeString(digitString); if (r+2 < andRule->rangeList->size()) { result += UNICODE_STRING_SIMPLE(", "); } } } } if ( (andRule=andRule->next) != NULL) { result += UNICODE_STRING_SIMPLE(" and "); } } if ( (orRule = orRule->next) != NULL ) { result += UNICODE_STRING_SIMPLE(" or "); } } } if ( fNext != NULL ) { result += UNICODE_STRING_SIMPLE("; "); fNext->dumpRules(result); } } UErrorCode RuleChain::getKeywords(int32_t capacityOfKeywords, UnicodeString* keywords, int32_t& arraySize) const { if ( arraySize < capacityOfKeywords-1 ) { keywords[arraySize++]=fKeyword; } else { return U_BUFFER_OVERFLOW_ERROR; } if ( fNext != NULL ) { return fNext->getKeywords(capacityOfKeywords, keywords, arraySize); } else { return U_ZERO_ERROR; } } UBool RuleChain::isKeyword(const UnicodeString& keywordParam) const { if ( fKeyword == keywordParam ) { return TRUE; } if ( fNext != NULL ) { return fNext->isKeyword(keywordParam); } else { return FALSE; } } PluralRuleParser::PluralRuleParser() : ruleIndex(0), token(), type(none), prevType(none), curAndConstraint(NULL), currentChain(NULL), rangeLowIdx(-1), rangeHiIdx(-1) { } PluralRuleParser::~PluralRuleParser() { } int32_t PluralRuleParser::getNumberValue(const UnicodeString& token) { int32_t i; char digits[128]; i = token.extract(0, token.length(), digits, ARRAY_SIZE(digits), US_INV); digits[i]='\0'; return((int32_t)atoi(digits)); } void PluralRuleParser::checkSyntax(UErrorCode &status) { if (U_FAILURE(status)) { return; } if (!(prevType==none || prevType==tSemiColon)) { type = getKeyType(token, type); // Switch token type from tKeyword if we scanned a reserved word, // and we are not at the start of a rule, where a // keyword is expected. } switch(prevType) { case none: case tSemiColon: if (type!=tKeyword && type != tEOF) { status = U_UNEXPECTED_TOKEN; } break; case tVariableN: case tVariableI: case tVariableF: case tVariableT: case tVariableV: if (type != tIs && type != tMod && type != tIn && type != tNot && type != tWithin && type != tEqual && type != tNotEqual) { status = U_UNEXPECTED_TOKEN; } break; case tKeyword: if (type != tColon) { status = U_UNEXPECTED_TOKEN; } break; case tColon: if (!(type == tVariableN || type == tVariableI || type == tVariableF || type == tVariableT || type == tVariableV || type == tAt)) { status = U_UNEXPECTED_TOKEN; } break; case tIs: if ( type != tNumber && type != tNot) { status = U_UNEXPECTED_TOKEN; } break; case tNot: if (type != tNumber && type != tIn && type != tWithin) { status = U_UNEXPECTED_TOKEN; } break; case tMod: case tDot2: case tIn: case tWithin: case tEqual: case tNotEqual: if (type != tNumber) { status = U_UNEXPECTED_TOKEN; } break; case tAnd: case tOr: if ( type != tVariableN && type != tVariableI && type != tVariableF && type != tVariableT && type != tVariableV) { status = U_UNEXPECTED_TOKEN; } break; case tComma: if (type != tNumber) { status = U_UNEXPECTED_TOKEN; } break; case tNumber: if (type != tDot2 && type != tSemiColon && type != tIs && type != tNot && type != tIn && type != tEqual && type != tNotEqual && type != tWithin && type != tAnd && type != tOr && type != tComma && type != tAt && type != tEOF) { status = U_UNEXPECTED_TOKEN; } // TODO: a comma following a number that is not part of a range will be allowed. // It's not the only case of this sort of thing. Parser needs a re-write. break; case tAt: if (type != tDecimal && type != tInteger) { status = U_UNEXPECTED_TOKEN; } break; default: status = U_UNEXPECTED_TOKEN; break; } } /* * Scan the next token from the input rules. * rules and returned token type are in the parser state variables. */ void PluralRuleParser::getNextToken(UErrorCode &status) { if (U_FAILURE(status)) { return; } UChar ch; while (ruleIndex < ruleSrc->length()) { ch = ruleSrc->charAt(ruleIndex); type = charType(ch); if (type != tSpace) { break; } ++(ruleIndex); } if (ruleIndex >= ruleSrc->length()) { type = tEOF; return; } int32_t curIndex= ruleIndex; switch (type) { case tColon: case tSemiColon: case tComma: case tEllipsis: case tTilde: // scanned '~' case tAt: // scanned '@' case tEqual: // scanned '=' case tMod: // scanned '%' // Single character tokens. ++curIndex; break; case tNotEqual: // scanned '!' if (ruleSrc->charAt(curIndex+1) == EQUALS) { curIndex += 2; } else { type = none; curIndex += 1; } break; case tKeyword: while (type == tKeyword && ++curIndex < ruleSrc->length()) { ch = ruleSrc->charAt(curIndex); type = charType(ch); } type = tKeyword; break; case tNumber: while (type == tNumber && ++curIndex < ruleSrc->length()) { ch = ruleSrc->charAt(curIndex); type = charType(ch); } type = tNumber; break; case tDot: // We could be looking at either ".." in a range, or "..." at the end of a sample. if (curIndex+1 >= ruleSrc->length() || ruleSrc->charAt(curIndex+1) != DOT) { ++curIndex; break; // Single dot } if (curIndex+2 >= ruleSrc->length() || ruleSrc->charAt(curIndex+2) != DOT) { curIndex += 2; type = tDot2; break; // double dot } type = tEllipsis; curIndex += 3; break; // triple dot default: status = U_UNEXPECTED_TOKEN; ++curIndex; break; } U_ASSERT(ruleIndex <= ruleSrc->length()); U_ASSERT(curIndex <= ruleSrc->length()); token=UnicodeString(*ruleSrc, ruleIndex, curIndex-ruleIndex); ruleIndex = curIndex; } tokenType PluralRuleParser::charType(UChar ch) { if ((ch>=U_ZERO) && (ch<=U_NINE)) { return tNumber; } if (ch>=LOW_A && ch<=LOW_Z) { return tKeyword; } switch (ch) { case COLON: return tColon; case SPACE: return tSpace; case SEMI_COLON: return tSemiColon; case DOT: return tDot; case COMMA: return tComma; case EXCLAMATION: return tNotEqual; case EQUALS: return tEqual; case PERCENT_SIGN: return tMod; case AT: return tAt; case ELLIPSIS: return tEllipsis; case TILDE: return tTilde; default : return none; } } // Set token type for reserved words in the Plural Rule syntax. tokenType PluralRuleParser::getKeyType(const UnicodeString &token, tokenType keyType) { if (keyType != tKeyword) { return keyType; } if (0 == token.compare(PK_VAR_N, 1)) { keyType = tVariableN; } else if (0 == token.compare(PK_VAR_I, 1)) { keyType = tVariableI; } else if (0 == token.compare(PK_VAR_F, 1)) { keyType = tVariableF; } else if (0 == token.compare(PK_VAR_T, 1)) { keyType = tVariableT; } else if (0 == token.compare(PK_VAR_V, 1)) { keyType = tVariableV; } else if (0 == token.compare(PK_IS, 2)) { keyType = tIs; } else if (0 == token.compare(PK_AND, 3)) { keyType = tAnd; } else if (0 == token.compare(PK_IN, 2)) { keyType = tIn; } else if (0 == token.compare(PK_WITHIN, 6)) { keyType = tWithin; } else if (0 == token.compare(PK_NOT, 3)) { keyType = tNot; } else if (0 == token.compare(PK_MOD, 3)) { keyType = tMod; } else if (0 == token.compare(PK_OR, 2)) { keyType = tOr; } else if (0 == token.compare(PK_DECIMAL, 7)) { keyType = tDecimal; } else if (0 == token.compare(PK_INTEGER, 7)) { keyType = tInteger; } return keyType; } PluralKeywordEnumeration::PluralKeywordEnumeration(RuleChain *header, UErrorCode& status) : pos(0), fKeywordNames(status) { if (U_FAILURE(status)) { return; } fKeywordNames.setDeleter(uprv_deleteUObject); UBool addKeywordOther=TRUE; RuleChain *node=header; while(node!=NULL) { fKeywordNames.addElement(new UnicodeString(node->fKeyword), status); if (U_FAILURE(status)) { return; } if (0 == node->fKeyword.compare(PLURAL_KEYWORD_OTHER, 5)) { addKeywordOther= FALSE; } node=node->fNext; } if (addKeywordOther) { fKeywordNames.addElement(new UnicodeString(PLURAL_KEYWORD_OTHER), status); } } const UnicodeString* PluralKeywordEnumeration::snext(UErrorCode& status) { if (U_SUCCESS(status) && pos < fKeywordNames.size()) { return (const UnicodeString*)fKeywordNames.elementAt(pos++); } return NULL; } void PluralKeywordEnumeration::reset(UErrorCode& /*status*/) { pos=0; } int32_t PluralKeywordEnumeration::count(UErrorCode& /*status*/) const { return fKeywordNames.size(); } PluralKeywordEnumeration::~PluralKeywordEnumeration() { } FixedDecimal::FixedDecimal(double n, int32_t v, int64_t f) { init(n, v, f); // check values. TODO make into unit test. // // long visiblePower = (int) Math.pow(10, v); // if (decimalDigits > visiblePower) { // throw new IllegalArgumentException(); // } // double fraction = intValue + (decimalDigits / (double) visiblePower); // if (fraction != source) { // double diff = Math.abs(fraction - source)/(Math.abs(fraction) + Math.abs(source)); // if (diff > 0.00000001d) { // throw new IllegalArgumentException(); // } // } } FixedDecimal::FixedDecimal(double n, int32_t v) { // Ugly, but for samples we don't care. init(n, v, getFractionalDigits(n, v)); } FixedDecimal::FixedDecimal(double n) { init(n); } FixedDecimal::FixedDecimal() { init(0, 0, 0); } // Create a FixedDecimal from a UnicodeString containing a number. // Inefficient, but only used for samples, so simplicity trumps efficiency. FixedDecimal::FixedDecimal(const UnicodeString &num, UErrorCode &status) { CharString cs; cs.appendInvariantChars(num, status); DigitList dl; dl.set(cs.toStringPiece(), status); if (U_FAILURE(status)) { init(0, 0, 0); return; } int32_t decimalPoint = num.indexOf(DOT); double n = dl.getDouble(); if (decimalPoint == -1) { init(n, 0, 0); } else { int32_t v = num.length() - decimalPoint - 1; init(n, v, getFractionalDigits(n, v)); } } FixedDecimal::FixedDecimal(const FixedDecimal &other) { source = other.source; visibleDecimalDigitCount = other.visibleDecimalDigitCount; decimalDigits = other.decimalDigits; decimalDigitsWithoutTrailingZeros = other.decimalDigitsWithoutTrailingZeros; intValue = other.intValue; hasIntegerValue = other.hasIntegerValue; isNegative = other.isNegative; isNanOrInfinity = other.isNanOrInfinity; } void FixedDecimal::init(double n) { int32_t numFractionDigits = decimals(n); init(n, numFractionDigits, getFractionalDigits(n, numFractionDigits)); } void FixedDecimal::init(double n, int32_t v, int64_t f) { isNegative = n < 0.0; source = fabs(n); isNanOrInfinity = uprv_isNaN(source) || uprv_isPositiveInfinity(source); if (isNanOrInfinity) { v = 0; f = 0; intValue = 0; hasIntegerValue = FALSE; } else { intValue = (int64_t)source; hasIntegerValue = (source == intValue); } visibleDecimalDigitCount = v; decimalDigits = f; if (f == 0) { decimalDigitsWithoutTrailingZeros = 0; } else { int64_t fdwtz = f; while ((fdwtz%10) == 0) { fdwtz /= 10; } decimalDigitsWithoutTrailingZeros = fdwtz; } } // Fast path only exact initialization. Return true if successful. // Note: Do not multiply by 10 each time through loop, rounding cruft can build // up that makes the check for an integer result fail. // A single multiply of the original number works more reliably. static int32_t p10[] = {1, 10, 100, 1000, 10000}; UBool FixedDecimal::quickInit(double n) { UBool success = FALSE; n = fabs(n); int32_t numFractionDigits; for (numFractionDigits = 0; numFractionDigits <= 3; numFractionDigits++) { double scaledN = n * p10[numFractionDigits]; if (scaledN == floor(scaledN)) { success = TRUE; break; } } if (success) { init(n, numFractionDigits, getFractionalDigits(n, numFractionDigits)); } return success; } int32_t FixedDecimal::decimals(double n) { // Count the number of decimal digits in the fraction part of the number, excluding trailing zeros. // fastpath the common cases, integers or fractions with 3 or fewer digits n = fabs(n); for (int ndigits=0; ndigits<=3; ndigits++) { double scaledN = n * p10[ndigits]; if (scaledN == floor(scaledN)) { return ndigits; } } // Slow path, convert with sprintf, parse converted output. char buf[30] = {0}; sprintf(buf, "%1.15e", n); // formatted number looks like this: 1.234567890123457e-01 int exponent = atoi(buf+18); int numFractionDigits = 15; for (int i=16; ; --i) { if (buf[i] != '0') { break; } --numFractionDigits; } numFractionDigits -= exponent; // Fraction part of fixed point representation. return numFractionDigits; } // Get the fraction digits of a double, represented as an integer. // v is the number of visible fraction digits in the displayed form of the number. // Example: n = 1001.234, v = 6, result = 234000 // TODO: need to think through how this is used in the plural rule context. // This function can easily encounter integer overflow, // and can easily return noise digits when the precision of a double is exceeded. int64_t FixedDecimal::getFractionalDigits(double n, int32_t v) { if (v == 0 || n == floor(n) || uprv_isNaN(n) || uprv_isPositiveInfinity(n)) { return 0; } n = fabs(n); double fract = n - floor(n); switch (v) { case 1: return (int64_t)(fract*10.0 + 0.5); case 2: return (int64_t)(fract*100.0 + 0.5); case 3: return (int64_t)(fract*1000.0 + 0.5); default: double scaled = floor(fract * pow(10.0, (double)v) + 0.5); if (scaled > U_INT64_MAX) { return U_INT64_MAX; } else { return (int64_t)scaled; } } } void FixedDecimal::adjustForMinFractionDigits(int32_t minFractionDigits) { int32_t numTrailingFractionZeros = minFractionDigits - visibleDecimalDigitCount; if (numTrailingFractionZeros > 0) { for (int32_t i=0; i= 100000000000000000LL) { break; } decimalDigits *= 10; } visibleDecimalDigitCount += numTrailingFractionZeros; } } double FixedDecimal::get(tokenType operand) const { switch(operand) { case tVariableN: return source; case tVariableI: return (double)intValue; case tVariableF: return (double)decimalDigits; case tVariableT: return (double)decimalDigitsWithoutTrailingZeros; case tVariableV: return visibleDecimalDigitCount; default: U_ASSERT(FALSE); // unexpected. return source; } } int32_t FixedDecimal::getVisibleFractionDigitCount() const { return visibleDecimalDigitCount; } PluralAvailableLocalesEnumeration::PluralAvailableLocalesEnumeration(UErrorCode &status) { fLocales = NULL; fRes = NULL; fOpenStatus = status; if (U_FAILURE(status)) { return; } fOpenStatus = U_ZERO_ERROR; LocalUResourceBundlePointer rb(ures_openDirect(NULL, "plurals", &fOpenStatus)); fLocales = ures_getByKey(rb.getAlias(), "locales", NULL, &fOpenStatus); } PluralAvailableLocalesEnumeration::~PluralAvailableLocalesEnumeration() { ures_close(fLocales); ures_close(fRes); fLocales = NULL; fRes = NULL; } const char *PluralAvailableLocalesEnumeration::next(int32_t *resultLength, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } if (U_FAILURE(fOpenStatus)) { status = fOpenStatus; return NULL; } fRes = ures_getNextResource(fLocales, fRes, &status); if (fRes == NULL || U_FAILURE(status)) { if (status == U_INDEX_OUTOFBOUNDS_ERROR) { status = U_ZERO_ERROR; } return NULL; } const char *result = ures_getKey(fRes); if (resultLength != NULL) { *resultLength = uprv_strlen(result); } return result; } void PluralAvailableLocalesEnumeration::reset(UErrorCode &status) { if (U_FAILURE(status)) { return; } if (U_FAILURE(fOpenStatus)) { status = fOpenStatus; return; } ures_resetIterator(fLocales); } int32_t PluralAvailableLocalesEnumeration::count(UErrorCode &status) const { if (U_FAILURE(status)) { return 0; } if (U_FAILURE(fOpenStatus)) { status = fOpenStatus; return 0; } return ures_getSize(fLocales); } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof