/* * %W% %E% * * (C) Copyright IBM Corp. 1998, 1999, 2000 - All Rights Reserved * */ #include "LETypes.h" #include "OpenTypeTables.h" #include "OpenTypeUtilities.h" #include "IndicReordering.h" class ReorderingOutput { private: le_int32 fOutIndex; LEUnicode *fOutChars; le_int32 *fCharIndices; const LETag **fCharTags; LEUnicode fMpre; LEUnicode fMbelow; LEUnicode fMabove; LEUnicode fMpost; LEUnicode fLengthMark; le_int32 fMatraIndex; const LETag *fMatraTags; void saveMatra(LEUnicode matra, IndicClassTable::CharClass matraClass) { // FIXME: check if already set, or if not a matra... if (IndicClassTable::isMpre(matraClass)) { fMpre = matra; } else if (IndicClassTable::isMbelow(matraClass)) { fMbelow = matra; } else if (IndicClassTable::isMabove(matraClass)) { fMabove = matra; } else if (IndicClassTable::isMpost(matraClass)) { fMpost = matra; } else if (IndicClassTable::isLengthMark(matraClass)) { fLengthMark = matra; } } public: ReorderingOutput(LEUnicode *outChars, le_int32 *charIndices, const LETag **charTags) : fOutIndex(0), fOutChars(outChars), fCharIndices(charIndices), fCharTags(charTags), fMpre(0), fMbelow(0), fMabove(0), fMpost(0), fLengthMark(0), fMatraIndex(0), fMatraTags(NULL) { // nothing else to do... } ~ReorderingOutput() { // nothing to do here... } void noteMatra(const IndicClassTable *classTable, LEUnicode matra, le_uint32 matraIndex, const LETag *matraTags) { IndicClassTable::CharClass matraClass = classTable->getCharClass(matra); fMpre = fMbelow = fMabove = fMpost = fLengthMark = 0; fMatraIndex = matraIndex; fMatraTags = matraTags; if (IndicClassTable::isMatra(matraClass)) { if (IndicClassTable::isSplitMatra(matraClass)) { const SplitMatra *splitMatra = classTable->getSplitMatra(matraClass); int i; for (i = 0; i < 3 && (*splitMatra)[i] != 0; i += 1) { LEUnicode piece = (*splitMatra)[i]; IndicClassTable::CharClass pieceClass = classTable->getCharClass(piece); saveMatra(piece, pieceClass); } } else { saveMatra(matra, matraClass); } } } void writeMpre() { if (fMpre != 0) { writeChar(fMpre, fMatraIndex, fMatraTags); } } void writeMbelow() { if (fMbelow != 0) { writeChar(fMbelow, fMatraIndex, fMatraTags); } } void writeMabove() { if (fMabove != 0) { writeChar(fMabove, fMatraIndex, fMatraTags); } } void writeMpost() { if (fMpost != 0) { writeChar(fMpost, fMatraIndex, fMatraTags); } } void writeLengthMark() { if (fLengthMark != 0) { writeChar(fLengthMark, fMatraIndex, fMatraTags); } } void writeChar(LEUnicode ch, le_uint32 charIndex, const LETag *charTags) { fOutChars[fOutIndex] = ch; fCharIndices[fOutIndex] = charIndex; fCharTags[fOutIndex] = charTags; fOutIndex += 1; } le_int32 getOutputIndex() { return fOutIndex; } }; enum { C_DOTTED_CIRCLE = 0x25CC }; const LETag emptyTag = 0x00000000; // '' const LETag nuktFeatureTag = 0x6E756B74; // 'nukt' const LETag akhnFeatureTag = 0x616B686E; // 'akhn' const LETag rphfFeatureTag = 0x72706866; // 'rphf' const LETag blwfFeatureTag = 0x626C7766; // 'blwf' const LETag halfFeatureTag = 0x68616C66; // 'half' const LETag pstfFeatureTag = 0x70737466; // 'pstf' const LETag vatuFeatureTag = 0x76617475; // 'vatu' const LETag presFeatureTag = 0x70726573; // 'pres' const LETag blwsFeatureTag = 0x626C7773; // 'blws' const LETag abvsFeatureTag = 0x61627673; // 'abvs' const LETag pstsFeatureTag = 0x70737473; // 'psts' const LETag halnFeatureTag = 0x68616C6E; // 'haln' const LETag blwmFeatureTag = 0x626C776D; // 'blwm' const LETag abvmFeatureTag = 0x6162766D; // 'abvm' const LETag distFeatureTag = 0x64697374; // 'dist' // FIXME: do we want a seperate tag array for each kind of character?? const LETag tagArray[] = { rphfFeatureTag, blwfFeatureTag, halfFeatureTag, nuktFeatureTag, akhnFeatureTag, pstfFeatureTag, vatuFeatureTag, presFeatureTag, blwsFeatureTag, abvsFeatureTag, pstsFeatureTag, halnFeatureTag, blwmFeatureTag, abvmFeatureTag, emptyTag }; const le_int8 stateTable[][IndicClassTable::CC_COUNT] = { // xx ma mp iv ct cn nu dv vr zw { 1, 1, 1, 5, 3, 2, 1, 1, 1, 1}, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {-1, 6, 1, -1, -1, -1, -1, 5, 4, -1}, {-1, 6, 1, -1, -1, -1, 2, 5, 4, -1}, {-1, -1, -1, -1, 3, 2, -1, -1, -1, 8}, {-1, 6, 1, -1, -1, -1, -1, -1, -1, -1}, {-1, 7, 1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, 1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, -1, -1, 3, 2, -1, -1, -1, -1} }; le_int32 IndicReordering::findSyllable(const IndicClassTable *classTable, const LEUnicode *chars, le_int32 prev, le_int32 charCount) { le_int32 cursor = prev; le_int8 state = 0; while (cursor < charCount) { IndicClassTable::CharClass charClass = classTable->getCharClass(chars[cursor]); state = stateTable[state][charClass & IndicClassTable::CF_CLASS_MASK]; if (state < 0) { break; } cursor += 1; } return cursor; } le_int32 IndicReordering::reorder(const LEUnicode *chars, le_int32 charCount, le_int32 scriptCode, LEUnicode *outChars, le_int32 *charIndices, const LETag **charTags) { const IndicClassTable *classTable = IndicClassTable::getScriptClassTable(scriptCode); ReorderingOutput output(outChars, charIndices, charTags); le_int32 i, prev = 0; while (prev < charCount) { le_int32 syllable = findSyllable(classTable, chars, prev, charCount); le_int32 matra, vmabove, vmpost = syllable; le_int16 flags = 0; while (vmpost > prev && classTable->isVMpost(chars[vmpost - 1])) { vmpost -= 1; } vmabove = vmpost; while (vmabove > prev && classTable->isVMabove(chars[vmabove - 1])) { vmabove -= 1; } matra = vmabove - 1; output.noteMatra(classTable, chars[matra], matra, &tagArray[1]); switch (classTable->getCharClass(chars[prev]) & IndicClassTable::CF_CLASS_MASK) { case IndicClassTable::CC_RESERVED: case IndicClassTable::CC_INDEPENDENT_VOWEL: case IndicClassTable::CC_ZERO_WIDTH_MARK: for (i = prev; i < syllable; i += 1) { output.writeChar(chars[i], i, &tagArray[1]); } break; case IndicClassTable::CC_MODIFYING_MARK_ABOVE: case IndicClassTable::CC_MODIFYING_MARK_POST: case IndicClassTable::CC_NUKTA: case IndicClassTable::CC_VIRAMA: output.writeChar(C_DOTTED_CIRCLE, prev, &tagArray[1]); output.writeChar(chars[prev], prev, &tagArray[1]); break; case IndicClassTable::CC_DEPENDENT_VOWEL: output.writeMpre(); output.writeChar(C_DOTTED_CIRCLE, prev, &tagArray[1]); output.writeMbelow(); output.writeMabove(); output.writeMpost(); output.writeLengthMark(); break; case IndicClassTable::CC_CONSONANT: case IndicClassTable::CC_CONSONANT_WITH_NUKTA: { le_uint32 length = vmabove - prev; le_int32 lastConsonant = vmabove - 1; le_int32 baseLimit = prev; // Check for REPH at front of syllable if (length > 2 && classTable->isReph(chars[prev]) && classTable->isVirama(chars[prev + 1])) { baseLimit = prev + 2; // Check for eyelash RA, if the script supports it if ((classTable->scriptFlags & IndicClassTable::SF_EYELASH_RA) != 0 && chars[prev + 2] == C_SIGN_ZWJ) { if (length > 3) { baseLimit += 1; } else { baseLimit = prev; } } } while (lastConsonant >= baseLimit && !classTable->isConsonant(chars[lastConsonant])) { lastConsonant -= 1; } le_int32 baseConsonant = lastConsonant; le_int32 postBase = lastConsonant + 1; if (lastConsonant >= prev) { int postBaseLimit = classTable->scriptFlags & IndicClassTable::SF_POST_BASE_LIMIT_MASK; le_bool seenVattu = false; le_bool seenBelowBaseForm = false; while (baseConsonant >= baseLimit) { IndicClassTable::CharClass charClass = classTable->getCharClass(chars[baseConsonant]); if (IndicClassTable::isConsonant(charClass)) { if (postBaseLimit == 0 || seenVattu || (baseConsonant > baseLimit && !classTable->isVirama(chars[baseConsonant - 1])) || !IndicClassTable::hasPostOrBelowBaseForm(charClass)) { break; } seenVattu = IndicClassTable::isVattu(charClass); if (IndicClassTable::hasPostBaseForm(charClass)) { if (seenBelowBaseForm) { break; } postBase = baseConsonant; } else if (IndicClassTable::hasBelowBaseForm(charClass)) { seenBelowBaseForm = true; } postBaseLimit -= 1; } baseConsonant -= 1; } if (baseConsonant < baseLimit) { baseConsonant = baseLimit; } // Write Mpre output.writeMpre(); // Write eyelash RA // NOTE: baseLimit == prev + 3 iff eyelash RA present... if (baseLimit == prev + 3) { output.writeChar(chars[prev], prev, &tagArray[2]); output.writeChar(chars[prev + 1], prev + 1, &tagArray[2]); output.writeChar(chars[prev + 2], prev + 2, &tagArray[2]); } // write any pre-base consonants le_bool supressVattu = true; for (i = baseLimit; i < baseConsonant; i += 1) { LEUnicode ch = chars[i]; const LETag *tag = &tagArray[1]; IndicClassTable::CharClass charClass = classTable->getCharClass(ch); if (IndicClassTable::isConsonant(charClass)) { if (IndicClassTable::isVattu(charClass) && supressVattu) { tag = &tagArray[3]; } supressVattu = IndicClassTable::isVattu(charClass); } else if (IndicClassTable::isVirama(charClass) && chars[i + 1] == C_SIGN_ZWNJ) { tag = &tagArray[3]; } output.writeChar(ch, i, tag); } le_int32 bcSpan = baseConsonant + 1; if (bcSpan < vmabove && classTable->isNukta(chars[bcSpan])) { bcSpan += 1; } if (baseConsonant == lastConsonant && bcSpan < vmabove && classTable->isVirama(chars[bcSpan])) { bcSpan += 1; if (bcSpan < vmabove && chars[bcSpan] == C_SIGN_ZWNJ) { bcSpan += 1; } } // write base consonant for (i = baseConsonant; i < bcSpan; i += 1) { output.writeChar(chars[i], i, &tagArray[3]); } if ((classTable->scriptFlags & IndicClassTable::SF_MATRAS_AFTER_BASE) != 0) { output.writeMbelow(); output.writeMabove(); output.writeMpost(); } // write below-base consonants if (baseConsonant != lastConsonant) { for (i = bcSpan + 1; i < postBase; i += 1) { output.writeChar(chars[i], i, &tagArray[1]); } if (postBase > lastConsonant) { // write halant that was after base consonant output.writeChar(chars[bcSpan], bcSpan, &tagArray[1]); } } // write Mbelow, Mabove if ((classTable->scriptFlags & IndicClassTable::SF_MATRAS_AFTER_BASE) == 0) { output.writeMbelow(); output.writeMabove(); } if ((classTable->scriptFlags & IndicClassTable::SF_REPH_AFTER_BELOW) != 0) { if (baseLimit == prev + 2) { output.writeChar(chars[prev], prev, &tagArray[0]); output.writeChar(chars[prev + 1], prev + 1, &tagArray[0]); } // write VMabove for (i = vmabove; i < vmpost; i += 1) { output.writeChar(chars[i], i, &tagArray[1]); } } // write post-base consonants // FIXME: does this put the right tags on post-base consonants? if (baseConsonant != lastConsonant) { if (postBase <= lastConsonant) { for (i = postBase; i <= lastConsonant; i += 1) { output.writeChar(chars[i], i, &tagArray[3]); } // write halant that was after base consonant output.writeChar(chars[bcSpan], bcSpan, &tagArray[1]); } // write the training halant, if there is one if (lastConsonant < matra && classTable->isVirama(chars[matra])) { output.writeChar(chars[matra], matra, &tagArray[3]); } } // write Mpost if ((classTable->scriptFlags & IndicClassTable::SF_MATRAS_AFTER_BASE) == 0) { output.writeMpost(); } output.writeLengthMark(); // write reph if ((classTable->scriptFlags & IndicClassTable::SF_REPH_AFTER_BELOW) == 0) { if (baseLimit == prev + 2) { output.writeChar(chars[prev], prev, &tagArray[0]); output.writeChar(chars[prev + 1], prev + 1, &tagArray[0]); } // write VMabove for (i = vmabove; i < vmpost; i += 1) { output.writeChar(chars[i], i, &tagArray[1]); } } // write VMpost for (i = vmpost; i < syllable; i += 1) { output.writeChar(chars[i], i, &tagArray[1]); } } break; } default: break; } prev = syllable; } return output.getOutputIndex(); } void IndicReordering::adjustMPres(const LEUnicode *chars, le_int32 charCount, LEGlyphID *glyphs, le_int32 *charIndices, le_int32 scriptCode) { const IndicClassTable *classTable = IndicClassTable::getScriptClassTable(scriptCode); if (classTable->scriptFlags & IndicClassTable::SF_MPRE_FIXUP) { le_int32 i; for (i = 0; i < charCount; i += 1) { if (classTable->isMpre(chars[i])) { le_int32 j; le_bool cflag = true; for (j = i + 1; j < charCount; j += 1) { IndicClassTable::CharClass charClass = classTable->getCharClass(chars[j]); if (IndicClassTable::isConsonant(charClass)) { if (! cflag) { break; } cflag = false; } else if (IndicClassTable::isVirama(charClass)) { if (cflag) { break; } cflag = true; } else { break; } } // Don't bother to reorder if // there's one or fewer consonants if (j <= i + 2) { continue; } int lastConsonant = j - 1; int base; for (base = lastConsonant; base > i; base -= 1) { if (classTable->isConsonant(chars[base]) && glyphs[base] != 0xFFFF) { break; } } LEGlyphID matra = glyphs[i]; le_int32 mIndex = charIndices[i]; le_int32 x; for (x = i; x < base - 1; x += 1) { glyphs[x] = glyphs[x + 1]; charIndices[x] = charIndices[x + 1]; } glyphs[base - 1] = matra; charIndices[base - 1] = mIndex; } } } }