/* ******************************************************************************* * * Copyright (C) 2003, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: convtest.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2003jul15 * created by: Markus W. Scherer * * Test file for data-driven conversion tests. */ #include "unicode/utypes.h" #include "unicode/ucnv.h" #include "unicode/unistr.h" #include "unicode/parsepos.h" #include "unicode/uniset.h" #include "unicode/ustring.h" #include "unicode/ures.h" #include "convtest.h" #include "tstdtmod.h" #include #include #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) enum { // characters used in test data for callbacks SUB_CB='?', SKIP_CB='0', STOP_CB='.', ESC_CB='&' }; ConversionTest::~ConversionTest() {} void ConversionTest::runIndexedTest(int32_t index, UBool exec, const char *&name, char * /*par*/) { if (exec) logln("TestSuite ConversionTest: "); switch (index) { case 0: name="TestToUnicode"; if (exec) TestToUnicode(); break; case 1: name="TestFromUnicode"; if (exec) TestFromUnicode(); break; case 2: name="TestGetUnicodeSet"; if (exec) TestGetUnicodeSet(); break; default: name=""; break; //needed to end loop } } // test data interface ----------------------------------------------------- *** void ConversionTest::TestToUnicode() { ConversionCase cc; char charset[100], cbopt[4]; const char *option; UnicodeString s, unicode; int32_t offsetsLength; UConverterToUCallback callback; TestLog testLog; TestDataModule *dataModule; TestData *testData; const DataMap *testCase; UErrorCode errorCode; int32_t i; errorCode=U_ZERO_ERROR; dataModule=TestDataModule::getTestDataModule("conversion", testLog, errorCode); if(U_SUCCESS(errorCode)) { testData=dataModule->createTestData("toUnicode", errorCode); if(U_SUCCESS(errorCode)) { for(i=0; testData->nextCase(testCase, errorCode); ++i) { if(U_FAILURE(errorCode)) { errln("error retrieving conversion/toUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } cc.caseNr=i; s=testCase->getString("charset", errorCode); s.extract(0, 0x7fffffff, charset, sizeof(charset), ""); cc.charset=charset; cc.bytes=testCase->getBinary(cc.bytesLength, "bytes", errorCode); unicode=testCase->getString("unicode", errorCode); cc.unicode=unicode.getBuffer(); cc.unicodeLength=unicode.length(); offsetsLength=0; cc.offsets=testCase->getIntVector(offsetsLength, "offsets", errorCode); if(offsetsLength==0) { cc.offsets=NULL; } else if(offsetsLength!=unicode.length()) { errln("toUnicode[%d] unicode[%d] and offsets[%d] must have the same length", i, unicode.length(), offsetsLength); errorCode=U_ILLEGAL_ARGUMENT_ERROR; } cc.finalFlush= 0!=testCase->getInt28("flush", errorCode); cc.fallbacks= 0!=testCase->getInt28("fallbacks", errorCode); s=testCase->getString("errorCode", errorCode); if(s==UNICODE_STRING("invalid", 7)) { cc.outErrorCode=U_INVALID_CHAR_FOUND; } else if(s==UNICODE_STRING("illegal", 7)) { cc.outErrorCode=U_ILLEGAL_CHAR_FOUND; } else if(s==UNICODE_STRING("truncated", 9)) { cc.outErrorCode=U_TRUNCATED_CHAR_FOUND; } else if(s==UNICODE_STRING("illesc", 6)) { cc.outErrorCode=U_ILLEGAL_ESCAPE_SEQUENCE; } else if(s==UNICODE_STRING("unsuppesc", 9)) { cc.outErrorCode=U_UNSUPPORTED_ESCAPE_SEQUENCE; } else { cc.outErrorCode=U_ZERO_ERROR; } s=testCase->getString("callback", errorCode); s.extract(0, 0x7fffffff, cbopt, sizeof(cbopt), ""); cc.cbopt=cbopt; switch(cbopt[0]) { case SUB_CB: callback=UCNV_TO_U_CALLBACK_SUBSTITUTE; break; case SKIP_CB: callback=UCNV_TO_U_CALLBACK_SKIP; break; case STOP_CB: callback=UCNV_TO_U_CALLBACK_STOP; break; case ESC_CB: callback=UCNV_TO_U_CALLBACK_ESCAPE; break; default: callback=NULL; break; } option=callback==NULL ? cbopt : cbopt+1; if(*option==0) { option=NULL; } cc.invalidChars=testCase->getBinary(cc.invalidLength, "invalidChars", errorCode); if(U_FAILURE(errorCode)) { errln("error parsing conversion/toUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; } else { logln("TestToUnicode[%d] %s", i, charset); ToUnicodeCase(cc, callback, option); } } delete testData; } delete dataModule; } else { errln("Failed: could not load test conversion data"); } } void ConversionTest::TestFromUnicode() { ConversionCase cc; char charset[100], cbopt[4]; const char *option; UnicodeString s, unicode, invalidUChars; int32_t offsetsLength; UConverterFromUCallback callback; TestLog testLog; TestDataModule *dataModule; TestData *testData; const DataMap *testCase; const UChar *p; UErrorCode errorCode; int32_t i, length; errorCode=U_ZERO_ERROR; dataModule=TestDataModule::getTestDataModule("conversion", testLog, errorCode); if(U_SUCCESS(errorCode)) { testData=dataModule->createTestData("fromUnicode", errorCode); if(U_SUCCESS(errorCode)) { for(i=0; testData->nextCase(testCase, errorCode); ++i) { if(U_FAILURE(errorCode)) { errln("error retrieving conversion/fromUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } cc.caseNr=i; s=testCase->getString("charset", errorCode); s.extract(0, 0x7fffffff, charset, sizeof(charset), ""); cc.charset=charset; unicode=testCase->getString("unicode", errorCode); cc.unicode=unicode.getBuffer(); cc.unicodeLength=unicode.length(); cc.bytes=testCase->getBinary(cc.bytesLength, "bytes", errorCode); offsetsLength=0; cc.offsets=testCase->getIntVector(offsetsLength, "offsets", errorCode); if(offsetsLength==0) { cc.offsets=NULL; } else if(offsetsLength!=cc.bytesLength) { errln("fromUnicode[%d] bytes[%d] and offsets[%d] must have the same length", i, cc.bytesLength, offsetsLength); errorCode=U_ILLEGAL_ARGUMENT_ERROR; } cc.finalFlush= 0!=testCase->getInt28("flush", errorCode); cc.fallbacks= 0!=testCase->getInt28("fallbacks", errorCode); s=testCase->getString("errorCode", errorCode); if(s==UNICODE_STRING("invalid", 7)) { cc.outErrorCode=U_INVALID_CHAR_FOUND; } else if(s==UNICODE_STRING("illegal", 7)) { cc.outErrorCode=U_ILLEGAL_CHAR_FOUND; } else if(s==UNICODE_STRING("truncated", 9)) { cc.outErrorCode=U_TRUNCATED_CHAR_FOUND; } else { cc.outErrorCode=U_ZERO_ERROR; } s=testCase->getString("callback", errorCode); // read NUL-separated subchar first, if any length=u_strlen(p=s.getTerminatedBuffer()); if(++length=(int32_t)sizeof(cc.subchar)) { errorCode=U_ILLEGAL_ARGUMENT_ERROR; } else { int32_t j; for(j=0; jgetString("invalidUChars", errorCode); cc.invalidUChars=invalidUChars.getBuffer(); cc.invalidLength=invalidUChars.length(); if(U_FAILURE(errorCode)) { errln("error parsing conversion/fromUnicode test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; } else { logln("TestFromUnicode[%d] %s", i, charset); FromUnicodeCase(cc, callback, option); } } delete testData; } delete dataModule; } else { errln("Failed: could not load test conversion data"); } } static const UChar ellipsis[]={ 0x2e, 0x2e, 0x2e }; void ConversionTest::TestGetUnicodeSet() { char charset[100]; UnicodeString s, map, mapnot; int32_t which; ParsePosition pos; UnicodeSet cnvSet, mapSet, mapnotSet, diffSet; UConverter *cnv; TestLog testLog; TestDataModule *dataModule; TestData *testData; const DataMap *testCase; UErrorCode errorCode; int32_t i; errorCode=U_ZERO_ERROR; dataModule=TestDataModule::getTestDataModule("conversion", testLog, errorCode); if(U_SUCCESS(errorCode)) { testData=dataModule->createTestData("getUnicodeSet", errorCode); if(U_SUCCESS(errorCode)) { for(i=0; testData->nextCase(testCase, errorCode); ++i) { if(U_FAILURE(errorCode)) { errln("error retrieving conversion/getUnicodeSet test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } s=testCase->getString("charset", errorCode); s.extract(0, 0x7fffffff, charset, sizeof(charset), ""); map=testCase->getString("map", errorCode); mapnot=testCase->getString("mapnot", errorCode); which=testCase->getInt28("which", errorCode); if(U_FAILURE(errorCode)) { errln("error parsing conversion/getUnicodeSet test case %d - %s", i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } // test this test case mapSet.clear(); mapnotSet.clear(); pos.setIndex(0); mapSet.applyPattern(map, pos, 0, NULL, errorCode); if(U_FAILURE(errorCode) || pos.getIndex()!=map.length()) { errln("error creating the map set for conversion/getUnicodeSet test case %d - %s\n" " error index %d index %d U+%04x", i, u_errorName(errorCode), pos.getErrorIndex(), pos.getIndex(), map.char32At(pos.getIndex())); errorCode=U_ZERO_ERROR; continue; } pos.setIndex(0); mapnotSet.applyPattern(mapnot, pos, 0, NULL, errorCode); if(U_FAILURE(errorCode) || pos.getIndex()!=mapnot.length()) { errln("error creating the mapnot set for conversion/getUnicodeSet test case %d - %s\n" " error index %d index %d U+%04x", i, u_errorName(errorCode), pos.getErrorIndex(), pos.getIndex(), mapnot.char32At(pos.getIndex())); errorCode=U_ZERO_ERROR; continue; } logln("TestGetUnicodeSet[%d] %s", i, charset); cnv=cnv_open(charset, errorCode); if(U_FAILURE(errorCode)) { errln("error opening \"%s\" for conversion/getUnicodeSet test case %d - %s", charset, i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } ucnv_getUnicodeSet(cnv, (USet *)&cnvSet, (UConverterUnicodeSet)which, &errorCode); ucnv_close(cnv); if(U_FAILURE(errorCode)) { errln("error in ucnv_getUnicodeSet(\"%s\") for conversion/getUnicodeSet test case %d - %s", charset, i, u_errorName(errorCode)); errorCode=U_ZERO_ERROR; continue; } // are there items that must be in cnvSet but are not? (diffSet=mapSet).removeAll(cnvSet); if(!diffSet.isEmpty()) { diffSet.toPattern(s, TRUE); if(s.length()>100) { s.replace(100, 0x7fffffff, ellipsis, LENGTHOF(ellipsis)); } errln("error: ucnv_getUnicodeSet(\"%s\") is missing items - conversion/getUnicodeSet test case %d", charset, i); errln(s); } // are there items that must not be in cnvSet but are? (diffSet=mapnotSet).retainAll(cnvSet); if(!diffSet.isEmpty()) { diffSet.toPattern(s, TRUE); if(s.length()>100) { s.replace(100, 0x7fffffff, ellipsis, LENGTHOF(ellipsis)); } errln("error: ucnv_getUnicodeSet(\"%s\") contains unexpected items - conversion/getUnicodeSet test case %d", charset, i); errln(s); } } delete testData; } delete dataModule; } else { errln("Failed: could not load test conversion data"); } } // open testdata or ICU data converter ------------------------------------- *** UConverter * ConversionTest::cnv_open(const char *name, UErrorCode &errorCode) { if(name!=NULL && *name=='*') { /* loadTestData(): set the data directory */ return ucnv_openPackage(loadTestData(errorCode), name+1, &errorCode); } else { return ucnv_open(name, &errorCode); } } // output helpers ---------------------------------------------------------- *** static inline char hexDigit(uint8_t digit) { return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); } static char * printBytes(const uint8_t *bytes, int32_t length, char *out) { uint8_t b; if(length>0) { b=*bytes++; --length; *out++=hexDigit((uint8_t)(b>>4)); *out++=hexDigit((uint8_t)(b&0xf)); } while(length>0) { b=*bytes++; --length; *out++=' '; *out++=hexDigit((uint8_t)(b>>4)); *out++=hexDigit((uint8_t)(b&0xf)); } *out++=0; return out; } static char * printUnicode(const UChar *unicode, int32_t length, char *out) { UChar32 c; int32_t i; for(i=0; i0) { *out++=' '; } U16_NEXT(unicode, i, length, c); // write 4..6 digits if(c>=0x100000) { *out++='1'; } if(c>=0x10000) { *out++=hexDigit((uint8_t)((c>>16)&0xf)); } *out++=hexDigit((uint8_t)((c>>12)&0xf)); *out++=hexDigit((uint8_t)((c>>8)&0xf)); *out++=hexDigit((uint8_t)((c>>4)&0xf)); *out++=hexDigit((uint8_t)(c&0xf)); } *out++=0; return out; } static char * printOffsets(const int32_t *offsets, int32_t length, char *out) { int32_t i, o, d; if(offsets==NULL) { length=0; } for(i=0; i0) { *out++=' '; } o=offsets[i]; // print all offsets with 2 characters each (-x, -9..99, xx) if(o<-9) { *out++='-'; *out++='x'; } else if(o<0) { *out++='-'; *out++=(char)('0'-o); } else if(o<=99) { *out++=(d=o/10)==0 ? ' ' : (char)('0'+d); *out++=(char)('0'+o%10); } else /* o>99 */ { *out++='x'; *out++='x'; } } *out++=0; return out; } // toUnicode test worker functions ----------------------------------------- *** static int32_t stepToUnicode(ConversionCase &cc, UConverter *cnv, UChar *result, int32_t resultCapacity, int32_t *resultOffsets, /* also resultCapacity */ int32_t step, UErrorCode *pErrorCode) { const char *source, *sourceLimit, *bytesLimit; UChar *target, *targetLimit, *resultLimit; UBool flush; source=(const char *)cc.bytes; target=result; bytesLimit=source+cc.bytesLength; resultLimit=result+resultCapacity; if(step>=0) { // call ucnv_toUnicode() with in/out buffers no larger than (step) at a time // move only one buffer (in vs. out) at a time to be extra mean // step==0 performs bulk conversion and generates offsets // initialize the partial limits for the loop if(step==0) { // use the entire buffers sourceLimit=bytesLimit; targetLimit=resultLimit; flush=cc.finalFlush; } else { // start with empty partial buffers sourceLimit=source; targetLimit=target; flush=FALSE; // output offsets only for bulk conversion resultOffsets=NULL; } for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetFromUnicode(cnv); // convert ucnv_toUnicode(cnv, &target, targetLimit, &source, sourceLimit, resultOffsets, flush, pErrorCode); // check pointers and errors if(source>sourceLimit || target>targetLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit, reset the error and continue targetLimit=(resultLimit-target)>=step ? target+step : resultLimit; *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { // some other error occurred, done break; } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } if(sourceLimit==bytesLimit) { // we are done break; } // the partial conversion succeeded, set a new limit and continue sourceLimit=(bytesLimit-source)>=step ? source+step : bytesLimit; flush=(UBool)(cc.finalFlush && sourceLimit==bytesLimit); } } } else /* step<0 */ { /* * step==-1: call only ucnv_getNextUChar() * otherwise alternate between ucnv_toUnicode() and ucnv_getNextUChar() * if step==-2 or -3, then give ucnv_toUnicode() the whole remaining input, * else give it at most (-step-2)/2 bytes */ UChar32 c; // end the loop by getting an index out of bounds error for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetFromUnicode(cnv); // convert if((step&1)!=0 /* odd: -1, -3, -5, ... */) { sourceLimit=source; // use sourceLimit not as a real limit // but to remember the pre-getNextUChar source pointer c=ucnv_getNextUChar(cnv, &source, bytesLimit, pErrorCode); // check pointers and errors if(*pErrorCode==U_INDEX_OUTOFBOUNDS_ERROR) { if(source!=bytesLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; } else { *pErrorCode=U_ZERO_ERROR; } break; } else if(U_FAILURE(*pErrorCode)) { break; } // source may not move if c is from previous overflow if(target==resultLimit) { *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } if(c<=0xffff) { *target++=(UChar)c; } else { *target++=U16_LEAD(c); if(target==resultLimit) { *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } *target++=U16_TRAIL(c); } // alternate between -n-1 and -n but leave -1 alone if(step<-1) { ++step; } } else /* step is even */ { // allow only one UChar output targetLimit=targetbytesLimit) { sourceLimit=bytesLimit; } } ucnv_toUnicode(cnv, &target, targetLimit, &source, sourceLimit, NULL, (UBool)(sourceLimit==bytesLimit), pErrorCode); // check pointers and errors if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit and continue *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { // some other error occurred, done break; } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } // we are done (flush==TRUE) but we continue, to get the index out of bounds error above } --step; } } } return (int32_t)(target-result); } UBool ConversionTest::ToUnicodeCase(ConversionCase &cc, UConverterToUCallback callback, const char *option) { UConverter *cnv; UErrorCode errorCode; // open the converter errorCode=U_ZERO_ERROR; cnv=cnv_open(cc.charset, errorCode); if(U_FAILURE(errorCode)) { errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_open() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); return FALSE; } // set the callback if(callback!=NULL) { ucnv_setToUCallBack(cnv, callback, option, NULL, NULL, &errorCode); if(U_FAILURE(errorCode)) { errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setToUCallBack() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); ucnv_close(cnv); return FALSE; } } int32_t resultOffsets[200]; UChar result[200]; int32_t resultLength; UBool ok; static const struct { int32_t step; const char *name; } steps[]={ { 0, "bulk" }, // must be first for offsets to be checked { 1, "step=1" }, { 3, "step=3" }, { 7, "step=7" }, { -1, "getNext" }, { -2, "toU(bulk)+getNext" }, { -3, "getNext+toU(bulk)" }, { -4, "toU(1)+getNext" }, { -5, "getNext+toU(1)" }, { -12, "toU(5)+getNext" }, { -13, "getNext+toU(5)" }, }; int32_t i, step; ok=TRUE; for(i=0; i(int32_t)sizeof(buffer)) { errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) fatal error: checkToUnicode() test output buffer overflow writing %d chars\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, (int)(s-buffer)); exit(1); } errln("toUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) failed: %s\n" " bytes <%s>[%d]\n" " expected <%s>[%d]\n" " result <%s>[%d]\n" " offsets <%s>\n" " result offsets <%s>\n" " error code expected %s got %s\n" " invalidChars expected <%s> got <%s>\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, msg, bytesString, cc.bytesLength, unicodeString, cc.unicodeLength, resultString, resultLength, offsetsString, resultOffsetsString, u_errorName(cc.outErrorCode), u_errorName(resultErrorCode), invalidCharsString, resultInvalidCharsString); return FALSE; } } // fromUnicode test worker functions --------------------------------------- *** static int32_t stepFromUnicode(ConversionCase &cc, UConverter *cnv, char *result, int32_t resultCapacity, int32_t *resultOffsets, /* also resultCapacity */ int32_t step, UErrorCode *pErrorCode) { const UChar *source, *sourceLimit, *unicodeLimit; char *target, *targetLimit, *resultLimit; UBool flush; source=cc.unicode; target=result; unicodeLimit=source+cc.unicodeLength; resultLimit=result+resultCapacity; // call ucnv_fromUnicode() with in/out buffers no larger than (step) at a time // move only one buffer (in vs. out) at a time to be extra mean // step==0 performs bulk conversion and generates offsets // initialize the partial limits for the loop if(step==0) { // use the entire buffers sourceLimit=unicodeLimit; targetLimit=resultLimit; flush=cc.finalFlush; } else { // start with empty partial buffers sourceLimit=source; targetLimit=target; flush=FALSE; // output offsets only for bulk conversion resultOffsets=NULL; } for(;;) { // resetting the opposite conversion direction must not affect this one ucnv_resetToUnicode(cnv); // convert ucnv_fromUnicode(cnv, &target, targetLimit, &source, sourceLimit, resultOffsets, flush, pErrorCode); // check pointers and errors if(source>sourceLimit || target>targetLimit) { *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { if(target!=targetLimit) { // buffer overflow must only be set when the target is filled *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } else if(targetLimit==resultLimit) { // not just a partial overflow break; } // the partial target is filled, set a new limit, reset the error and continue targetLimit=(resultLimit-target)>=step ? target+step : resultLimit; *pErrorCode=U_ZERO_ERROR; } else if(U_FAILURE(*pErrorCode)) { // some other error occurred, done break; } else { if(source!=sourceLimit) { // when no error occurs, then the input must be consumed *pErrorCode=U_INTERNAL_PROGRAM_ERROR; break; } if(sourceLimit==unicodeLimit) { // we are done break; } // the partial conversion succeeded, set a new limit and continue sourceLimit=(unicodeLimit-source)>=step ? source+step : unicodeLimit; flush=(UBool)(cc.finalFlush && sourceLimit==unicodeLimit); } } return (int32_t)(target-result); } UBool ConversionTest::FromUnicodeCase(ConversionCase &cc, UConverterFromUCallback callback, const char *option) { UConverter *cnv; UErrorCode errorCode; // open the converter errorCode=U_ZERO_ERROR; cnv=cnv_open(cc.charset, errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_open() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); return FALSE; } // set the callback if(callback!=NULL) { ucnv_setFromUCallBack(cnv, callback, option, NULL, NULL, &errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setFromUCallBack() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); ucnv_close(cnv); return FALSE; } } // set the fallbacks flag // TODO change with Jitterbug 2401, then add a similar call for toUnicode too ucnv_setFallback(cnv, cc.fallbacks); // set the subchar int32_t length; if((length=strlen(cc.subchar))!=0) { ucnv_setSubstChars(cnv, cc.subchar, (int8_t)length, &errorCode); if(U_FAILURE(errorCode)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d) ucnv_setSubChars() failed - %s", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, u_errorName(errorCode)); ucnv_close(cnv); return FALSE; } } int32_t resultOffsets[200]; char result[200]; int32_t resultLength; UBool ok; static const struct { int32_t step; const char *name; } steps[]={ { 0, "bulk" }, // must be first for offsets to be checked { 1, "step=1" }, { 3, "step=3" }, { 7, "step=7" } }; int32_t i, step; ok=TRUE; for(i=0; i(int32_t)sizeof(buffer)) { errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) fatal error: checkFromUnicode() test output buffer overflow writing %d chars\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, (int)(s-buffer)); exit(1); } errln("fromUnicode[%d](%s cb=\"%s\" fb=%d flush=%d %s) failed: %s\n" " unicode <%s>[%d]\n" " expected <%s>[%d]\n" " result <%s>[%d]\n" " offsets <%s>\n" " result offsets <%s>\n" " error code expected %s got %s\n" " invalidChars expected <%s> got <%s>\n", cc.caseNr, cc.charset, cc.cbopt, cc.fallbacks, cc.finalFlush, name, msg, unicodeString, cc.unicodeLength, bytesString, cc.bytesLength, resultString, resultLength, offsetsString, resultOffsetsString, u_errorName(cc.outErrorCode), u_errorName(resultErrorCode), invalidCharsString, resultInvalidUCharsString); return FALSE; } }