/* ******************************************************************************* * Copyright (C) 1996-1999, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* */ //=============================================================================== // // File sortkey.cpp // // // // Created by: Helena Shih // // Modification History: // // Date Name Description // // 6/20/97 helena Java class name change. // 6/23/97 helena Added comments to make code more readable. // 6/26/98 erm Canged to use byte arrays instead of UnicodeString // 7/31/98 erm hashCode: minimum inc should be 2 not 1, // Cleaned up operator= // 07/12/99 helena HPUX 11 CC port. //=============================================================================== #ifndef _SORTKEY #include "unicode/sortkey.h" #endif #ifndef _CMEMORY #include "cmemory.h" #endif #include "uhash.h" // A hash code of kInvalidHashCode indicates that the has code needs // to be computed. A hash code of kEmptyHashCode is used for empty keys // and for any key whose computed hash code is kInvalidHashCode. const int32_t CollationKey::kInvalidHashCode = 0; const int32_t CollationKey::kEmptyHashCode = 1; CollationKey::CollationKey() : fBogus(FALSE), fCount(0), fCapacity(0), fHashCode(kEmptyHashCode), fBytes(NULL) { } // Adopt bytes allocated with malloc CollationKey::CollationKey(int32_t count, uint8_t *values) : fBogus(FALSE), fBytes(values), fCount(count), fCapacity(count), fHashCode(kInvalidHashCode) { } // Create a collation key from a bit array. CollationKey::CollationKey(const uint8_t* newValues, int32_t count) : fBogus(FALSE), fCount(count), fCapacity(count), fHashCode(kInvalidHashCode) { fBytes = (uint8_t *)uprv_malloc(count); if (fBytes == NULL) { setToBogus(); return; } uprv_memcpy(fBytes, newValues, fCount); } CollationKey::CollationKey(const UnicodeString& value) { copyUnicodeString(value); } CollationKey::CollationKey(const CollationKey& other) : fBogus(FALSE), fCount(other.fCount), fCapacity(other.fCapacity), fHashCode(other.fHashCode), fBytes(NULL) { if (other.fBogus) { setToBogus(); return; } fBytes = (uint8_t *)uprv_malloc(fCapacity); if (fBytes == NULL) { setToBogus(); return; } uprv_memcpy(fBytes, other.fBytes, other.fCount); if(fCapacity>fCount) { uprv_memset(fBytes+fCount, 0, fCapacity-fCount); } } CollationKey::~CollationKey() { uprv_free(fBytes); } void CollationKey::adopt(uint8_t *values, int32_t count) { if(fBytes != NULL) { uprv_free(fBytes); } fBogus = FALSE; fBytes = values; fCount = count; fCapacity = count; fHashCode = kInvalidHashCode; } // set the key to an empty state CollationKey& CollationKey::reset() { fCount = 0; fBogus = FALSE; fHashCode = kEmptyHashCode; return *this; } // set the key to a "bogus" or invalid state CollationKey& CollationKey::setToBogus() { delete[] fBytes; fBytes = NULL; fCapacity = 0; fCount = 0; fHashCode = kInvalidHashCode; return *this; } UBool CollationKey::operator==(const CollationKey& source) const { return (this->fCount == source.fCount && (this->fBytes == source.fBytes || uprv_memcmp(this->fBytes, source.fBytes, this->fCount) == 0)); } const CollationKey& CollationKey::operator=(const CollationKey& other) { if (this != &other) { if (other.isBogus()) { return setToBogus(); } if (other.fBytes != NULL) { ensureCapacity(other.fCount); if (isBogus()) { return *this; } fHashCode = other.fHashCode; uprv_memcpy(fBytes, other.fBytes, fCount); } else { reset(); } } return *this; } // Bitwise comparison for the collation keys. // NOTE: this is somewhat messy 'cause we can't count // on memcmp returning the exact values which match // Collator::EComparisonResult Collator::EComparisonResult CollationKey::compareTo(const CollationKey& target) const { int count = (this->fCount < target.fCount) ? this->fCount : target.fCount; if (count == 0) { // If count is 0, at least one of the keys is empty. // An empty key is always LESS than a non-empty one // and EQUAL to another empty if (this->fCount < target.fCount) { return Collator::LESS; } if (this->fCount > target.fCount) { return Collator::GREATER; } return Collator::EQUAL; } int result = uprv_memcmp(this->fBytes, target.fBytes, count); if (result < 0) { return Collator::LESS; } if (result > 0) { return Collator::GREATER; } return Collator::EQUAL; } CollationKey& CollationKey::ensureCapacity(int32_t newSize) { if (fCapacity < newSize) { uprv_free(fBytes); fBytes = (uint8_t *)uprv_malloc(newSize); if (fBytes == NULL) { return setToBogus(); } uprv_memset(fBytes, 0, fCapacity); fCapacity = newSize; } fBogus = FALSE; fCount = newSize; fHashCode = kInvalidHashCode; return *this; } int32_t CollationKey::storeUnicodeString(int32_t cursor, const UnicodeString &value) { UTextOffset input = 0; int32_t charCount = value.length(); while (input < charCount) { cursor = storeBytes(cursor, value[input++]); } return storeBytes(cursor, 0); } CollationKey& CollationKey::copyUnicodeString(const UnicodeString &value) { int32_t charCount = value.length(); // We allocate enough space for two null bytes at the end. ensureCapacity((charCount * 2) + 2); if (isBogus()) { return *this; } storeUnicodeString(0, value); return *this; } void CollationKey::reverseBytes(UTextOffset from, UTextOffset to) { uint8_t *left = &fBytes[from]; uint8_t *right = &fBytes[to - 2]; while (left < right) { uint8_t swap[2]; swap[0] = right[0]; swap[1] = right[1]; right[0] = left[0]; right[1] = left[1]; left[0] = swap[0]; left[1] = swap[1]; left += 2; right -= 2; } } // Create a copy of the byte array. uint8_t* CollationKey::toByteArray(int32_t& count) const { uint8_t *result = new uint8_t[fCount]; if (result == NULL) { count = 0; } else { count = fCount; uprv_memcpy(result, fBytes, fCount); } return result; } uint16_t* CollationKey::copyValues(int32_t &size) const { uint16_t *result; uint8_t *input = fBytes; UTextOffset output = 0; size = fCount / 2; result = new uint16_t[size]; if (result == NULL) { size = 0; } else { while (output < size) { result[output] = (uint16_t)((input[0] << 8) | input[1]); output += 1; input += 2; } } return result; } int32_t CollationKey::hashCode() const { // (Cribbed from UnicodeString) // We cache the hashCode; when it becomes invalid, due to any change to the // string, we note this by setting it to kInvalidHashCode. [LIU] // Note: This method is semantically const, but physically non-const. if (fHashCode == kInvalidHashCode) { ((CollationKey *)this)->fHashCode = uhash_hashChars(fBytes); #if 0 // We compute the hash by iterating sparsely over 64 (at most) characters // spaced evenly through the string. For each character, we multiply the // previous hash value by a prime number and add the new character in, // in the manner of a additive linear congruential random number generator, // thus producing a pseudorandom deterministic value which should be well // distributed over the output range. [LIU] const uint8_t *p = fBytes, *limit = fBytes + fCount; int32_t inc = (fCount >= 256) ? fCount/128 : 2; // inc = max(fSize/64, 1); int32_t hash = 0; while (p < limit) { hash = ( hash * 37 ) + ((p[0] << 8) + p[1]); p += inc; } // If we happened to get kInvalidHashCode, replace it with kEmptyHashCode if (hash == kInvalidHashCode) { hash = kEmptyHashCode; } ((CollationKey *)this)->fHashCode = hash; // cast away const #endif } return fHashCode; }