/* ********************************************************************** * Copyright (C) 1999, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 10/20/99 alan Creation. ********************************************************************** */ #include "unicode/uniset.h" #include "unicode/parsepos.h" #include "rbt_data.h" // N.B.: This mapping is different in ICU and Java const UnicodeString UnicodeSet::CATEGORY_NAMES( "CnLuLlLtLmLoMnMeMcNdNlNoZsZlZpCcCfCoCsPdPsPePcPoSmScSkSoPiPf", ""); /** * A cache mapping character category integers, as returned by * Unicode::getType(), to pairs strings. Entries are initially * zero length and are filled in on demand. */ UnicodeString* UnicodeSet::CATEGORY_PAIRS_CACHE = new UnicodeString[Unicode::GENERAL_TYPES_COUNT]; /** * Delimiter string used in patterns to close a category reference: * ":]". Example: "[:Lu:]". */ const UnicodeString UnicodeSet::CATEGORY_CLOSE = UNICODE_STRING(":]", 2); /** * Delimiter char beginning a variable reference: * "{". Example: "{var}". */ const UChar UnicodeSet::VARIABLE_REF_OPEN = '{'; /** * Delimiter char ending a variable reference: * "}". Example: "{var}". */ const UChar UnicodeSet::VARIABLE_REF_CLOSE = '}'; //---------------------------------------------------------------- // Debugging and testing //---------------------------------------------------------------- /** * Return the representation of this set as a list of character * ranges. Ranges are listed in ascending Unicode order. For * example, the set [a-zA-M3] is represented as "33AMaz". */ const UnicodeString& UnicodeSet::getPairs(void) const { return pairs; } //---------------------------------------------------------------- // Constructors &c //---------------------------------------------------------------- /** * Constructs an empty set. */ UnicodeSet::UnicodeSet() : pairs() {} /** * Constructs a set from the given pattern, optionally ignoring * white space. See the class description for the syntax of the * pattern language. * @param pattern a string specifying what characters are in the set * @exception IllegalArgumentException if the pattern * contains a syntax error. */ UnicodeSet::UnicodeSet(const UnicodeString& pattern, UErrorCode& status) : pairs() { applyPattern(pattern, status); } UnicodeSet::UnicodeSet(const UnicodeString& pattern, ParsePosition& pos, const TransliterationRuleData* data, UErrorCode& status) { parse(pairs, pattern, pos, data, status); } /** * Constructs a set from the given Unicode character category. * @param category an integer indicating the character category as * returned by Character.getType(). * @exception IllegalArgumentException if the given * category is invalid. */ UnicodeSet::UnicodeSet(int8_t category, UErrorCode& status) : pairs() { if (U_SUCCESS(status)) { if (category < 0 || category >= Unicode::GENERAL_TYPES_COUNT) { status = U_ILLEGAL_ARGUMENT_ERROR; } else { pairs = getCategoryPairs(category); } } } /** * Constructs a set that is identical to the given UnicodeSet. */ UnicodeSet::UnicodeSet(const UnicodeSet& o) : pairs(o.pairs) {} /** * Destructs the set. */ UnicodeSet::~UnicodeSet() {} /** * Assigns this object to be a copy of another. */ UnicodeSet& UnicodeSet::operator=(const UnicodeSet& o) { pairs = o.pairs; return *this; } /** * Compares the specified object with this set for equality. Returns * true if the two sets * have the same size, and every member of the specified set is * contained in this set (or equivalently, every member of this set is * contained in the specified set). * * @param o set to be compared for equality with this set. * @return true if the specified set is equal to this set. */ bool_t UnicodeSet::operator==(const UnicodeSet& o) const { return pairs == o.pairs; } /** * Returns a copy of this object. All UnicodeFilter objects have * to support cloning in order to allow classes using * UnicodeFilters, such as Transliterator, to implement cloning. */ UnicodeFilter* UnicodeSet::clone() const { return new UnicodeSet(*this); } /** * Returns the hash code value for this set. * * @return the hash code value for this set. * @see Object#hashCode() */ int32_t UnicodeSet::hashCode(void) const { return pairs.hashCode(); } //---------------------------------------------------------------- // Public API //---------------------------------------------------------------- /** * Modifies this set to represent the set specified by the given * pattern, optionally ignoring white space. See the class * description for the syntax of the pattern language. * @param pattern a string specifying what characters are in the set * @param ignoreSpaces if true, all spaces in the * pattern are ignored. Spaces are those characters for which * Character.isSpaceChar() is true. * Characters preceded by '\\' are escaped, losing any special * meaning they otherwise have. Spaces may be included by * escaping them. * @exception IllegalArgumentException if the pattern * contains a syntax error. */ void UnicodeSet::applyPattern(const UnicodeString& pattern, UErrorCode& status) { if (U_FAILURE(status)) { return; } ParsePosition pos(0); parse(pairs, pattern, pos, NULL, status); // Skip over trailing whitespace int32_t i = pos.getIndex(); int32_t n = pattern.length(); while (in, where 0 <= n <= 65536. * * @return the number of elements in this set (its cardinality). */ int32_t UnicodeSet::size(void) const { int32_t n = 0; for (int32_t i=0; itrue if this set contains no elements. * * @return true if this set contains no elements. */ bool_t UnicodeSet::isEmpty(void) const { return pairs.length() == 0; } /** * Returns true if this set contains the specified range * of chars. * * @return true if this set contains the specified range * of chars. */ bool_t UnicodeSet::contains(UChar first, UChar last) const { // Set i to the end of the smallest range such that its end // point >= last, or pairs.length() if no such range exists. int32_t i = 1; while (ipairs.charAt(i)) i+=2; return i=pairs.charAt(i-1); } /** * Returns true if this set contains the specified char. * * @return true if this set contains the specified char. */ bool_t UnicodeSet::contains(UChar c) const { return contains(c, c); } /** * Returns true if this set contains any character whose low byte * is the given value. This is used by RuleBasedTransliterator for * indexing. */ bool_t UnicodeSet::containsIndexValue(uint8_t v) const { /* The index value v, in the range [0,255], is contained in this set if * it is contained in any pair of this set. Pairs either have the high * bytes equal, or unequal. If the high bytes are equal, then we have * aaxx..aayy, where aa is the high byte. Then v is contained if xx <= * v <= yy. If the high bytes are unequal we have aaxx..bbyy, bb>aa. * Then v is contained if xx <= v || v <= yy. (This is identical to the * time zone month containment logic.) */ for (int32_t i=0; ilast > first * then an empty range is added, leaving the set unchanged. * * @param first first character, inclusive, of range to be added * to this set. * @param last last character, inclusive, of range to be added * to this set. */ void UnicodeSet::add(UChar first, UChar last) { if (first <= last) { addPair(pairs, first, last); } } /** * Adds the specified character to this set if it is not already * present. If this set already contains the specified character, * the call leaves this set unchanged. */ void UnicodeSet::add(UChar c) { add(c, c); } /** * Removes the specified range from this set if it is present. * The set will not contain the specified range once the call * returns. If last > first then an empty range is * removed, leaving the set unchanged. * * @param first first character, inclusive, of range to be removed * from this set. * @param last last character, inclusive, of range to be removed * from this set. */ void UnicodeSet::remove(UChar first, UChar last) { if (first <= last) { removePair(pairs, first, last); } } /** * Removes the specified character from this set if it is present. * The set will not contain the specified range once the call * returns. */ void UnicodeSet::remove(UChar c) { remove(c, c); } /** * Returns true if the specified set is a subset * of this set. * * @param c set to be checked for containment in this set. * @return true if this set contains all of the elements of the * specified set. */ bool_t UnicodeSet::containsAll(const UnicodeSet& c) const { // The specified set is a subset if all of its pairs are contained // in this set. int32_t i = 1; for (int32_t j=0; j= last, or pairs.length() if no such range // exists. while (ipairs.charAt(i)) i+=2; if (i>pairs.length() || c.pairs.charAt(j) < pairs.charAt(i-1)) { return FALSE; } } return TRUE; } /** * Adds all of the elements in the specified set to this set if * they're not already present. This operation effectively * modifies this set so that its value is the union of the two * sets. The behavior of this operation is unspecified if the specified * collection is modified while the operation is in progress. * * @param c set whose elements are to be added to this set. * @see #add(char, char) */ void UnicodeSet::addAll(const UnicodeSet& c) { doUnion(pairs, c.pairs); } /** * Retains only the elements in this set that are contained in the * specified set. In other words, removes from this set all of * its elements that are not contained in the specified set. This * operation effectively modifies this set so that its value is * the intersection of the two sets. * * @param c set that defines which elements this set will retain. */ void UnicodeSet::retainAll(const UnicodeSet& c) { doIntersection(pairs, c.pairs); } /** * Removes from this set all of its elements that are contained in the * specified set. This operation effectively modifies this * set so that its value is the asymmetric set difference of * the two sets. * * @param c set that defines which elements will be removed from * this set. */ void UnicodeSet::removeAll(const UnicodeSet& c) { doDifference(pairs, c.pairs); } /** * Inverts this set. This operation modifies this set so that * its value is its complement. This is equivalent to the pseudo code: * this = new UnicodeSet("[\u0000-\uFFFF]").removeAll(this). */ void UnicodeSet::complement(void) { doComplement(pairs); } /** * Removes all of the elements from this set. This set will be * empty after this call returns. */ void UnicodeSet::clear(void) { pairs.remove(); } //---------------------------------------------------------------- // Implementation: Pattern parsing //---------------------------------------------------------------- /** * Parses the given pattern, starting at the given position. The * character at pattern.charAt(pos.getIndex()) must be '[', or the * parse fails. Parsing continues until the corresponding closing * ']'. If a syntax error is encountered between the opening and * closing brace, the parse fails. Upon return from a U_SUCCESSful * parse, the ParsePosition is updated to point to the character * following the closing ']', and a StringBuffer containing a * pairs list for the parsed pattern is returned. This method calls * itself recursively to parse embedded subpatterns. * * @param pattern the string containing the pattern to be parsed. * The portion of the string from pos.getIndex(), which must be a * '[', to the corresponding closing ']', is parsed. * @param pos upon entry, the position at which to being parsing. * The character at pattern.charAt(pos.getIndex()) must be a '['. * Upon return from a U_SUCCESSful parse, pos.getIndex() is either * the character after the closing ']' of the parsed pattern, or * pattern.length() if the closing ']' is the last character of * the pattern string. * @return a StringBuffer containing a pairs list for the parsed * substring of pattern * @exception IllegalArgumentException if the parse fails. */ UnicodeString& UnicodeSet::parse(UnicodeString& pairsBuf /*result*/, const UnicodeString& pattern, ParsePosition& pos, const TransliterationRuleData* data, UErrorCode& status) { if (U_FAILURE(status)) { return pairsBuf; } bool_t invert = FALSE; pairsBuf.remove(); int32_t lastChar = -1; // This is either a char (0..FFFF) or -1 UChar lastOp = 0; /* This loop iterates over the characters in the pattern. We start at * the position specified by pos. We exit the loop when either a * matching closing ']' is seen, or we read all characters of the * pattern. In the latter case an error will be thrown. */ /* Pattern syntax: * pat := '[' '^'? elem* ']' * elem := a | a '-' a | set | set op set * set := pat | (a set variable) * op := '&' | '-' * a := (a character, possibly defined by a var) */ // mode 0: No chars parsed yet; next must be '[' // mode 1: '[' seen; if next is '^' or ':' then special // mode 2: '[' '^'? seen; parse pattern and close with ']' // mode 3: '[:' seen; parse category and close with ':]' int8_t mode = 0; int32_t openPos = 0; // offset to opening '[' int32_t i = pos.getIndex(); int32_t limit = pattern.length(); UnicodeString nestedAux; UnicodeString* nestedPairs; UnicodeString scratch; for (; i= pattern.length()) { status = U_ILLEGAL_ARGUMENT_ERROR; return pairsBuf; } c = (UChar)0x0000; for (int32_t j=(++i)+4; ilookupVariable(scratch, status); } if (U_FAILURE(status)) { // Either the reference was ill-formed (empty name, or no // closing '}', or the specified name is not defined. return pairsBuf; } isLiteral = TRUE; UnicodeSet* set = data->lookupSet(c); if (set != NULL) { nestedPairs = &set->pairs; } } /* An opening bracket indicates the first bracket of a nested * subpattern, either a normal pattern or a category pattern. We * recognize these here and set nestedPairs accordingly. */ else if (!isLiteral && c == '[') { // Handle "[:...:]", representing a character category UChar d = charAfter(pattern, i); if (d == ':') { i += 2; int32_t j = pattern.indexOf(CATEGORY_CLOSE, i); if (j < 0) { // throw new IllegalArgumentException("Missing \":]\""); status = U_ILLEGAL_ARGUMENT_ERROR; return pairsBuf; } scratch.truncate(0); pattern.extractBetween(i, j, scratch); nestedPairs = &getCategoryPairs(nestedAux, scratch, status); if (U_FAILURE(status)) { return pairsBuf; } i = j+1; // Make i point to ']' if (mode == 3) { // Entire pattern is a category; leave parse loop pairsBuf.append(*nestedPairs); break; } } else { // Recurse to get the pairs for this nested set. pos.setIndex(i); nestedPairs = &parse(nestedAux, pattern, pos, data, status); if (U_FAILURE(status)) { return pairsBuf; } i = pos.getIndex() - 1; // - 1 to point at ']' } } /* At this point we have either a character c, or a nested set. If * we have encountered a nested set, either embedded in the pattern, * or as a variable, we have a non-null nestedPairs, and c should be * ignored. Otherwise c is the current character, and isLiteral * indicates whether it is an escaped literal (or variable) or a * normal unescaped character. Unescaped characters '-', '&', and * ']' have special meanings. */ if (nestedPairs != NULL) { if (lastChar >= 0) { if (lastOp != 0) { // throw new IllegalArgumentException("Illegal rhs for " + lastChar + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return pairsBuf; } addPair(pairsBuf, (UChar)lastChar, (UChar)lastChar); lastChar = -1; } switch (lastOp) { case '-': doDifference(pairsBuf, *nestedPairs); break; case '&': doIntersection(pairsBuf, *nestedPairs); break; case 0: doUnion(pairsBuf, *nestedPairs); break; } lastOp = 0; } else if (!isLiteral && c == ']') { // Final closing delimiter. This is the only way we leave this // loop if the pattern is well-formed. break; } else if (lastOp == 0 && !isLiteral && (c == '-' || c == '&')) { lastOp = c; } else if (lastOp == '-') { addPair(pairsBuf, (UChar)lastChar, c); lastOp = 0; lastChar = -1; } else if (lastOp != 0) { // We have & or & // throw new IllegalArgumentException("Unquoted " + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return pairsBuf; } else { if (lastChar >= 0) { // We have addPair(pairsBuf, (UChar)lastChar, (UChar)lastChar); } lastChar = c; } } // Handle unprocessed stuff preceding the closing ']' if (lastOp == '-') { // Trailing '-' is treated as literal addPair(pairsBuf, lastOp, lastOp); } else if (lastOp == '&') { // throw new IllegalArgumentException("Unquoted trailing " + lastOp); status = U_ILLEGAL_ARGUMENT_ERROR; return pairsBuf; } if (lastChar >= 0) { addPair(pairsBuf, (UChar)lastChar, (UChar)lastChar); } /** * If we saw a '^' after the initial '[' of this pattern, then perform * the complement. (Inversion after '[:' is handled elsewhere.) */ if (invert) { doComplement(pairsBuf); } /** * i indexes the last character we parsed or is pattern.length(). In * the latter case, we have run off the end without finding a closing * ']'. Otherwise, we know i < pattern.length(), and we set the * ParsePosition to the next character to be parsed. */ if (i == limit) { // throw new IllegalArgumentException("Missing ']'"); status = U_ILLEGAL_ARGUMENT_ERROR; return pairsBuf; } pos.setIndex(i+1); return pairsBuf; } //---------------------------------------------------------------- // Implementation: Efficient in-place union & difference //---------------------------------------------------------------- /** * Performs a union operation: adds the range 'c'-'d' to the given * pairs list. The pairs list is modified in place. The result * is normalized (in order and as short as possible). For * example, addPair("am", 'l', 'q') => "aq". addPair("ampz", 'n', * 'o') => "az". */ void UnicodeSet::addPair(UnicodeString& pairs, UChar c, UChar d) { UChar a = 0; UChar b = 0; for (int32_t i=0; i "ak". * removePair("ampz", 'l', 'q') => "akrz". */ void UnicodeSet::removePair(UnicodeString& pairs, UChar c, UChar d) { // Iterate over pairs until we find a pair that overlaps // with the given range. for (int32_t i=0; i= a. // rangeEdited is set to true if we have modified the // range a-b (the range at i) in place. bool_t rangeEdited = FALSE; if (c > a) { // If c is after a and before b, then we have overlap // of this sort: a--c==b--d or a--c==d--b, where a-b // and c-d are the ranges of interest. We need to // add the range a,c-1. pairs.setCharAt(i+1, (UChar)(c-1)); // i is already a rangeEdited = TRUE; } if (d < b) { // If d is after a and before b, we overlap like this: // c--a==d--b or a--c==d--b, where a-b is the range at // i and c-d is the range being removed. We need to // add the range d+1,b. if (rangeEdited) { // Insert {d+1, b} pairs.insert(i+2, b); // b moves to i+3 by next insert: pairs.insert(i+2, (UChar)(d+1)); i += 2; } else { pairs.setCharAt(i, (UChar)(d+1)); // i+1 is already b rangeEdited = TRUE; } } if (!rangeEdited) { // If we didn't add any ranges, that means the entire // range a-b must be deleted, since we have // c--a==b--d. pairs.remove(i, 2); i -= 2; } } } //---------------------------------------------------------------- // Implementation: Fundamental operators //---------------------------------------------------------------- /** * Changes the pairs list to represent the complement of the set it * currently represents. The pairs list will be normalized (in * order and in shortest possible form) if the original pairs list * was normalized. */ void UnicodeSet::doComplement(UnicodeString& pairs) { if (pairs.length() == 0) { pairs.append((UChar)0x0000).append((UChar)0xffff); return; } // Change each end to a start and each start to an end of the // gaps between the ranges. That is, 3-7 9-12 becomes x-2 8-8 // 13-x, where 'x' represents a range that must now be fixed // up. for (int32_t i=0; i 0 && c1.charAt(i - 1) > ub) ub = c1.charAt(i - 1); // now advance j to the first character that is greater // that "ub" plus one while (j < c2.length() && c2.charAt(j) <= ub + 1) ++j; // if j points to the endpoint of a range, update "ub" // to that character, or if j points to the start of // a range and the endpoint of the preceding range is // greater than "ub", update "up" to _that_ character if (j % 2 == 1) ub = c2.charAt(j); else if (j > 0 && c2.charAt(j - 1) > ub) ub = c2.charAt(j - 1); } // when we finally fall out of this loop, we will have stitched // together a series of ranges that overlap or touch, i and j // will both point to starting points of ranges, and "ub" will // be the endpoint of the range we're working on. Write "ub" // to the result result.append(ub); // loop back around to create the next range in the result } // we fall out to here when we've exhausted all the characters in // one of the operands. We can append all of the remaining characters // in the other operand without doing any extra work. if (i < c1.length()) result.append(c1, i, LONG_MAX); if (j < c2.length()) result.append(c2, j, LONG_MAX); c1 = result; } /** * Given two pairs lists, changes the first in place to represent * the asymmetric difference of the two sets. */ void UnicodeSet::doDifference(UnicodeString& pairs, const UnicodeString& pairs2) { UnicodeString p2(pairs2); doComplement(p2); doIntersection(pairs, p2); } /** * Given two pairs lists, changes the first in place to represent * the intersection of the two sets. */ void UnicodeSet::doIntersection(UnicodeString& c1, const UnicodeString& c2) { UnicodeString result; int32_t i = 0; int32_t j = 0; int32_t oldI; int32_t oldJ; // iterate until we've exhausted one of the operands while (i < c1.length() && j < c2.length()) { // advance j until it points to a character that is larger than // the one i points to. If this is the beginning of a one- // character range, advance j to point to the end if (i < c1.length() && i % 2 == 0) { while (j < c2.length() && c2.charAt(j) < c1.charAt(i)) ++j; if (j < c2.length() && j % 2 == 0 && c2.charAt(j) == c1.charAt(i)) ++j; } // if j points to the endpoint of a range, save the current // value of i, then advance i until it reaches a character // which is larger than the character pointed at // by j. All of the characters we've advanced over (except // the one currently pointed to by i) are added to the result oldI = i; while (j % 2 == 1 && i < c1.length() && c1.charAt(i) <= c2.charAt(j)) ++i; result.append(c1, oldI, i-oldI); // if i points to the endpoint of a range, save the current // value of j, then advance j until it reaches a character // which is larger than the character pointed at // by i. All of the characters we've advanced over (except // the one currently pointed to by i) are added to the result oldJ = j; while (i % 2 == 1 && j < c2.length() && c2.charAt(j) <= c1.charAt(i)) ++j; result.append(c2, oldJ, j-oldJ); // advance i until it points to a character larger than j // If it points at the beginning of a one-character range, // advance it to the end of that range if (j < c2.length() && j % 2 == 0) { while (i < c1.length() && c1.charAt(i) < c2.charAt(j)) ++i; if (i < c1.length() && i % 2 == 0 && c2.charAt(j) == c1.charAt(i)) ++i; } } c1 = result; } //---------------------------------------------------------------- // Implementation: Generation of pairs for Unicode categories //---------------------------------------------------------------- /** * Returns a pairs string for the given category, given its name. * The category name must be either a two-letter name, such as * "Lu", or a one letter name, such as "L". One-letter names * indicate the logical union of all two-letter names that start * with that letter. Case is significant. If the name starts * with the character '^' then the complement of the given * character set is returned. * * Although individual categories such as "Lu" are cached, we do * not currently cache single-letter categories such as "L" or * complements such as "^Lu" or "^L". It would be easy to cache * these as well in a hashtable should the need arise. */ UnicodeString& UnicodeSet::getCategoryPairs(UnicodeString& result, const UnicodeString& catName, UErrorCode& status) { if (U_FAILURE(status)) { return result; } // The temporary cat is only really needed if invert is true. // TO DO: Allocate cat on the heap only if needed. UnicodeString cat(catName); bool_t invert = (catName.length() > 1 && catName.charAt(0) == '^'); if (invert) { cat.remove(0, 1); } result.remove(); // if we have two characters, search the category map for that // code and either construct and return a UnicodeSet from the // data in the category map or throw an exception if (cat.length() == 2) { int32_t i = CATEGORY_NAMES.indexOf(cat); if (i>=0 && i%2==0) { i /= 2; result = getCategoryPairs((int8_t)i); if (!invert) { return result; } } } else if (cat.length() == 1) { // if we have one character, search the category map for // codes beginning with that letter, and union together // all of the matching sets that we find (or throw an // exception if there are no matches) for (int32_t i=0; i= 0) { pairs.append((UChar)first).append((UChar)last); } first = last = i; } } } if (first >= 0) { pairs.append((UChar)first).append((UChar)last); } } return CATEGORY_PAIRS_CACHE[cat]; } //---------------------------------------------------------------- // Implementation: Utility methods //---------------------------------------------------------------- /** * Returns the character after the given position, or '\uFFFF' if * there is none. */ UChar UnicodeSet::charAfter(const UnicodeString& str, int32_t i) { return ((++i) < str.length()) ? str.charAt(i) : (UChar)0xFFFF; }