/* ******************************************************************************* * Copyright (C) 2010-2014, International Business Machines * Corporation and others. All Rights Reserved. ******************************************************************************* * collation.h * * created on: 2010oct27 * created by: Markus W. Scherer */ #ifndef __COLLATION_H__ #define __COLLATION_H__ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION U_NAMESPACE_BEGIN /** * Collation v2 basic definitions and static helper functions. * * Data structures except for expansion tables store 32-bit CEs which are * either specials (see tags below) or are compact forms of 64-bit CEs. */ class U_I18N_API Collation { public: // Special sort key bytes for all levels. static const uint8_t TERMINATOR_BYTE = 0; static const uint8_t LEVEL_SEPARATOR_BYTE = 1; /** * Merge-sort-key separator. * Must not be used as the lead byte of any CE weight, * nor as primary compression low terminator. * Otherwise usable. */ static const uint8_t MERGE_SEPARATOR_BYTE = 2; static const uint32_t MERGE_SEPARATOR_PRIMARY = 0x02000000; // U+FFFE static const uint32_t MERGE_SEPARATOR_WEIGHT16 = 0x0200; // U+FFFE static const uint32_t MERGE_SEPARATOR_LOWER32 = 0x02000200; // U+FFFE static const uint32_t MERGE_SEPARATOR_CE32 = 0x02000202; // U+FFFE /** * Primary compression low terminator, must be greater than MERGE_SEPARATOR_BYTE. * Reserved value in primary second byte if the lead byte is compressible. * Otherwise usable in all CE weight bytes. */ static const uint8_t PRIMARY_COMPRESSION_LOW_BYTE = 3; /** * Primary compression high terminator. * Reserved value in primary second byte if the lead byte is compressible. * Otherwise usable in all CE weight bytes. */ static const uint8_t PRIMARY_COMPRESSION_HIGH_BYTE = 0xff; /** Default secondary/tertiary weight lead byte. */ static const uint8_t COMMON_BYTE = 5; static const uint32_t COMMON_WEIGHT16 = 0x0500; /** Middle 16 bits of a CE with a common secondary weight. */ static const uint32_t COMMON_SECONDARY_CE = 0x05000000; /** Lower 16 bits of a CE with a common tertiary weight. */ static const uint32_t COMMON_TERTIARY_CE = 0x0500; /** Lower 32 bits of a CE with common secondary and tertiary weights. */ static const uint32_t COMMON_SEC_AND_TER_CE = 0x05000500; static const uint32_t SECONDARY_MASK = 0xffff0000; static const uint32_t CASE_MASK = 0xc000; static const uint32_t SECONDARY_AND_CASE_MASK = SECONDARY_MASK | CASE_MASK; /** Only the 2*6 bits for the pure tertiary weight. */ static const uint32_t ONLY_TERTIARY_MASK = 0x3f3f; /** Only the secondary & tertiary bits; no case, no quaternary. */ static const uint32_t ONLY_SEC_TER_MASK = SECONDARY_MASK | ONLY_TERTIARY_MASK; /** Case bits and tertiary bits. */ static const uint32_t CASE_AND_TERTIARY_MASK = CASE_MASK | ONLY_TERTIARY_MASK; static const uint32_t QUATERNARY_MASK = 0xc0; /** Case bits and quaternary bits. */ static const uint32_t CASE_AND_QUATERNARY_MASK = CASE_MASK | QUATERNARY_MASK; static const uint8_t UNASSIGNED_IMPLICIT_BYTE = 0xfe; // compressible /** * First unassigned: AlphabeticIndex overflow boundary. * We want a 3-byte primary so that it fits into the root elements table. * * This 3-byte primary will not collide with * any unassigned-implicit 4-byte primaries because * the first few hundred Unicode code points all have real mappings. */ static const uint32_t FIRST_UNASSIGNED_PRIMARY = 0xfe040200; static const uint8_t TRAIL_WEIGHT_BYTE = 0xff; // not compressible static const uint32_t FIRST_TRAILING_PRIMARY = 0xff020200; // [first trailing] static const uint32_t MAX_PRIMARY = 0xffff0000; // U+FFFF static const uint32_t MAX_REGULAR_CE32 = 0xffff0505; // U+FFFF // CE32 value for U+FFFD as well as illegal UTF-8 byte sequences (which behave like U+FFFD). // We use the third-highest primary weight for U+FFFD (as in UCA 6.3+). static const uint32_t FFFD_PRIMARY = MAX_PRIMARY - 0x20000; static const uint32_t FFFD_CE32 = MAX_REGULAR_CE32 - 0x20000; /** * A CE32 is special if its low byte is this or greater. * Impossible case bits 11 mark special CE32s. * This value itself is used to indicate a fallback to the base collator. */ static const uint8_t SPECIAL_CE32_LOW_BYTE = 0xc0; static const uint32_t FALLBACK_CE32 = SPECIAL_CE32_LOW_BYTE; /** * Low byte of a long-primary special CE32. */ static const uint8_t LONG_PRIMARY_CE32_LOW_BYTE = 0xc1; // SPECIAL_CE32_LOW_BYTE | LONG_PRIMARY_TAG static const uint32_t UNASSIGNED_CE32 = 0xffffffff; // Compute an unassigned-implicit CE. static const uint32_t NO_CE32 = 1; /** No CE: End of input. Only used in runtime code, not stored in data. */ static const uint32_t NO_CE_PRIMARY = 1; // not a left-adjusted weight static const uint32_t NO_CE_WEIGHT16 = 0x0100; // weight of LEVEL_SEPARATOR_BYTE static const int64_t NO_CE = INT64_C(0x101000100); // NO_CE_PRIMARY, NO_CE_WEIGHT16, NO_CE_WEIGHT16 /** Sort key levels. */ enum Level { /** Unspecified level. */ NO_LEVEL, PRIMARY_LEVEL, SECONDARY_LEVEL, CASE_LEVEL, TERTIARY_LEVEL, QUATERNARY_LEVEL, IDENTICAL_LEVEL, /** Beyond sort key bytes. */ ZERO_LEVEL }; /** * Sort key level flags: xx_FLAG = 1 << xx_LEVEL. * In Java, use enum Level with flag() getters, or use EnumSet rather than hand-made bit sets. */ static const uint32_t NO_LEVEL_FLAG = 1; static const uint32_t PRIMARY_LEVEL_FLAG = 2; static const uint32_t SECONDARY_LEVEL_FLAG = 4; static const uint32_t CASE_LEVEL_FLAG = 8; static const uint32_t TERTIARY_LEVEL_FLAG = 0x10; static const uint32_t QUATERNARY_LEVEL_FLAG = 0x20; static const uint32_t IDENTICAL_LEVEL_FLAG = 0x40; static const uint32_t ZERO_LEVEL_FLAG = 0x80; /** * Special-CE32 tags, from bits 3..0 of a special 32-bit CE. * Bits 31..8 are available for tag-specific data. * Bits 5..4: Reserved. May be used in the future to indicate lccc!=0 and tccc!=0. */ enum { /** * Fall back to the base collator. * This is the tag value in SPECIAL_CE32_LOW_BYTE and FALLBACK_CE32. * Bits 31..8: Unused, 0. */ FALLBACK_TAG = 0, /** * Long-primary CE with COMMON_SEC_AND_TER_CE. * Bits 31..8: Three-byte primary. */ LONG_PRIMARY_TAG = 1, /** * Long-secondary CE with zero primary. * Bits 31..16: Secondary weight. * Bits 15.. 8: Tertiary weight. */ LONG_SECONDARY_TAG = 2, /** * Unused. * May be used in the future for single-byte secondary CEs (SHORT_SECONDARY_TAG), * storing the secondary in bits 31..24, the ccc in bits 23..16, * and the tertiary in bits 15..8. */ RESERVED_TAG_3 = 3, /** * Latin mini expansions of two simple CEs [pp, 05, tt] [00, ss, 05]. * Bits 31..24: Single-byte primary weight pp of the first CE. * Bits 23..16: Tertiary weight tt of the first CE. * Bits 15.. 8: Secondary weight ss of the second CE. */ LATIN_EXPANSION_TAG = 4, /** * Points to one or more simple/long-primary/long-secondary 32-bit CE32s. * Bits 31..13: Index into uint32_t table. * Bits 12.. 8: Length=1..31. */ EXPANSION32_TAG = 5, /** * Points to one or more 64-bit CEs. * Bits 31..13: Index into CE table. * Bits 12.. 8: Length=1..31. */ EXPANSION_TAG = 6, /** * Builder data, used only in the CollationDataBuilder, not in runtime data. * * If bit 8 is 0: Builder context, points to a list of context-sensitive mappings. * Bits 31..13: Index to the builder's list of ConditionalCE32 for this character. * Bits 12.. 9: Unused, 0. * * If bit 8 is 1 (IS_BUILDER_JAMO_CE32): Builder-only jamoCE32 value. * The builder fetches the Jamo CE32 from the trie. * Bits 31..13: Jamo code point. * Bits 12.. 9: Unused, 0. */ BUILDER_DATA_TAG = 7, /** * Points to prefix trie. * Bits 31..13: Index into prefix/contraction data. * Bits 12.. 8: Unused, 0. */ PREFIX_TAG = 8, /** * Points to contraction data. * Bits 31..13: Index into prefix/contraction data. * Bits 12..11: Unused, 0. * Bit 10: CONTRACT_TRAILING_CCC flag. * Bit 9: CONTRACT_NEXT_CCC flag. * Bit 8: CONTRACT_SINGLE_CP_NO_MATCH flag. */ CONTRACTION_TAG = 9, /** * Decimal digit. * Bits 31..13: Index into uint32_t table for non-numeric-collation CE32. * Bit 12: Unused, 0. * Bits 11.. 8: Digit value 0..9. */ DIGIT_TAG = 10, /** * Tag for U+0000, for moving the NUL-termination handling * from the regular fastpath into specials-handling code. * Bits 31..8: Unused, 0. */ U0000_TAG = 11, /** * Tag for a Hangul syllable. * Bits 31..9: Unused, 0. * Bit 8: HANGUL_NO_SPECIAL_JAMO flag. */ HANGUL_TAG = 12, /** * Tag for a lead surrogate code unit. * Optional optimization for UTF-16 string processing. * Bits 31..10: Unused, 0. * 9.. 8: =0: All associated supplementary code points are unassigned-implict. * =1: All associated supplementary code points fall back to the base data. * else: (Normally 2) Look up the data for the supplementary code point. */ LEAD_SURROGATE_TAG = 13, /** * Tag for CEs with primary weights in code point order. * Bits 31..13: Index into CE table, for one data "CE". * Bits 12.. 8: Unused, 0. * * This data "CE" has the following bit fields: * Bits 63..32: Three-byte primary pppppp00. * 31.. 8: Start/base code point of the in-order range. * 7: Flag isCompressible primary. * 6.. 0: Per-code point primary-weight increment. */ OFFSET_TAG = 14, /** * Implicit CE tag. Compute an unassigned-implicit CE. * All bits are set (UNASSIGNED_CE32=0xffffffff). */ IMPLICIT_TAG = 15 }; static UBool isAssignedCE32(uint32_t ce32) { return ce32 != FALLBACK_CE32 && ce32 != UNASSIGNED_CE32; } /** * We limit the number of CEs in an expansion * so that we can use a small number of length bits in the data structure, * and so that an implementation can copy CEs at runtime without growing a destination buffer. */ static const int32_t MAX_EXPANSION_LENGTH = 31; static const int32_t MAX_INDEX = 0x7ffff; /** * Set if there is no match for the single (no-suffix) character itself. * This is only possible if there is a prefix. * In this case, discontiguous contraction matching cannot add combining marks * starting from an empty suffix. * The default CE32 is used anyway if there is no suffix match. */ static const uint32_t CONTRACT_SINGLE_CP_NO_MATCH = 0x100; /** Set if the first character of every contraction suffix has lccc!=0. */ static const uint32_t CONTRACT_NEXT_CCC = 0x200; /** Set if any contraction suffix ends with lccc!=0. */ static const uint32_t CONTRACT_TRAILING_CCC = 0x400; /** For HANGUL_TAG: None of its Jamo CE32s isSpecialCE32(). */ static const uint32_t HANGUL_NO_SPECIAL_JAMO = 0x100; static const uint32_t LEAD_ALL_UNASSIGNED = 0; static const uint32_t LEAD_ALL_FALLBACK = 0x100; static const uint32_t LEAD_MIXED = 0x200; static const uint32_t LEAD_TYPE_MASK = 0x300; static uint32_t makeLongPrimaryCE32(uint32_t p) { return p | LONG_PRIMARY_CE32_LOW_BYTE; } /** Turns the long-primary CE32 into a primary weight pppppp00. */ static inline uint32_t primaryFromLongPrimaryCE32(uint32_t ce32) { return ce32 & 0xffffff00; } static inline int64_t ceFromLongPrimaryCE32(uint32_t ce32) { return ((int64_t)(ce32 & 0xffffff00) << 32) | COMMON_SEC_AND_TER_CE; } static uint32_t makeLongSecondaryCE32(uint32_t lower32) { return lower32 | SPECIAL_CE32_LOW_BYTE | LONG_SECONDARY_TAG; } static inline int64_t ceFromLongSecondaryCE32(uint32_t ce32) { return ce32 & 0xffffff00; } /** Makes a special CE32 with tag, index and length. */ static uint32_t makeCE32FromTagIndexAndLength(int32_t tag, int32_t index, int32_t length) { return (index << 13) | (length << 8) | SPECIAL_CE32_LOW_BYTE | tag; } /** Makes a special CE32 with only tag and index. */ static uint32_t makeCE32FromTagAndIndex(int32_t tag, int32_t index) { return (index << 13) | SPECIAL_CE32_LOW_BYTE | tag; } static inline UBool isSpecialCE32(uint32_t ce32) { return (ce32 & 0xff) >= SPECIAL_CE32_LOW_BYTE; } static inline int32_t tagFromCE32(uint32_t ce32) { return (int32_t)(ce32 & 0xf); } static inline UBool hasCE32Tag(uint32_t ce32, int32_t tag) { return isSpecialCE32(ce32) && tagFromCE32(ce32) == tag; } static inline UBool isLongPrimaryCE32(uint32_t ce32) { return hasCE32Tag(ce32, LONG_PRIMARY_TAG); } static UBool isSimpleOrLongCE32(uint32_t ce32) { return !isSpecialCE32(ce32) || tagFromCE32(ce32) == LONG_PRIMARY_TAG || tagFromCE32(ce32) == LONG_SECONDARY_TAG; } /** * @return TRUE if the ce32 yields one or more CEs without further data lookups */ static UBool isSelfContainedCE32(uint32_t ce32) { return !isSpecialCE32(ce32) || tagFromCE32(ce32) == LONG_PRIMARY_TAG || tagFromCE32(ce32) == LONG_SECONDARY_TAG || tagFromCE32(ce32) == LATIN_EXPANSION_TAG; } static inline UBool isPrefixCE32(uint32_t ce32) { return hasCE32Tag(ce32, PREFIX_TAG); } static inline UBool isContractionCE32(uint32_t ce32) { return hasCE32Tag(ce32, CONTRACTION_TAG); } static inline UBool ce32HasContext(uint32_t ce32) { return isSpecialCE32(ce32) && (tagFromCE32(ce32) == PREFIX_TAG || tagFromCE32(ce32) == CONTRACTION_TAG); } /** * Get the first of the two Latin-expansion CEs encoded in ce32. * @see LATIN_EXPANSION_TAG */ static inline int64_t latinCE0FromCE32(uint32_t ce32) { return ((int64_t)(ce32 & 0xff000000) << 32) | COMMON_SECONDARY_CE | ((ce32 & 0xff0000) >> 8); } /** * Get the second of the two Latin-expansion CEs encoded in ce32. * @see LATIN_EXPANSION_TAG */ static inline int64_t latinCE1FromCE32(uint32_t ce32) { return ((ce32 & 0xff00) << 16) | COMMON_TERTIARY_CE; } /** * Returns the data index from a special CE32. */ static inline int32_t indexFromCE32(uint32_t ce32) { return (int32_t)(ce32 >> 13); } /** * Returns the data length from a ce32. */ static inline int32_t lengthFromCE32(uint32_t ce32) { return (ce32 >> 8) & 31; } /** * Returns the digit value from a DIGIT_TAG ce32. */ static inline char digitFromCE32(uint32_t ce32) { return (char)((ce32 >> 8) & 0xf); } /** Returns a 64-bit CE from a simple CE32 (not special). */ static inline int64_t ceFromSimpleCE32(uint32_t ce32) { // normal form ppppsstt -> pppp0000ss00tt00 // assert (ce32 & 0xff) < SPECIAL_CE32_LOW_BYTE return ((int64_t)(ce32 & 0xffff0000) << 32) | ((ce32 & 0xff00) << 16) | ((ce32 & 0xff) << 8); } /** Returns a 64-bit CE from a simple/long-primary/long-secondary CE32. */ static inline int64_t ceFromCE32(uint32_t ce32) { uint32_t tertiary = ce32 & 0xff; if(tertiary < SPECIAL_CE32_LOW_BYTE) { // normal form ppppsstt -> pppp0000ss00tt00 return ((int64_t)(ce32 & 0xffff0000) << 32) | ((ce32 & 0xff00) << 16) | (tertiary << 8); } else { ce32 -= tertiary; if((tertiary & 0xf) == LONG_PRIMARY_TAG) { // long-primary form ppppppC1 -> pppppp00050000500 return ((int64_t)ce32 << 32) | COMMON_SEC_AND_TER_CE; } else { // long-secondary form ssssttC2 -> 00000000sssstt00 // assert (tertiary & 0xf) == LONG_SECONDARY_TAG return ce32; } } } /** Creates a CE from a primary weight. */ static inline int64_t makeCE(uint32_t p) { return ((int64_t)p << 32) | COMMON_SEC_AND_TER_CE; } /** * Creates a CE from a primary weight, * 16-bit secondary/tertiary weights, and a 2-bit quaternary. */ static inline int64_t makeCE(uint32_t p, uint32_t s, uint32_t t, uint32_t q) { return ((int64_t)p << 32) | (s << 16) | t | (q << 6); } /** * Increments a 2-byte primary by a code point offset. */ static uint32_t incTwoBytePrimaryByOffset(uint32_t basePrimary, UBool isCompressible, int32_t offset); /** * Increments a 3-byte primary by a code point offset. */ static uint32_t incThreeBytePrimaryByOffset(uint32_t basePrimary, UBool isCompressible, int32_t offset); /** * Decrements a 2-byte primary by one range step (1..0x7f). */ static uint32_t decTwoBytePrimaryByOneStep(uint32_t basePrimary, UBool isCompressible, int32_t step); /** * Decrements a 3-byte primary by one range step (1..0x7f). */ static uint32_t decThreeBytePrimaryByOneStep(uint32_t basePrimary, UBool isCompressible, int32_t step); /** * Computes a 3-byte primary for c's OFFSET_TAG data "CE". */ static uint32_t getThreeBytePrimaryForOffsetData(UChar32 c, int64_t dataCE); /** * Returns the unassigned-character implicit primary weight for any valid code point c. */ static uint32_t unassignedPrimaryFromCodePoint(UChar32 c); static inline int64_t unassignedCEFromCodePoint(UChar32 c) { return makeCE(unassignedPrimaryFromCodePoint(c)); } static inline uint32_t reorder(const uint8_t reorderTable[256], uint32_t primary) { return ((uint32_t)reorderTable[primary >> 24] << 24) | (primary & 0xffffff); } private: Collation(); // No instantiation. }; U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION #endif // __COLLATION_H__