/* ********************************************************************** * Copyright (C) 1999-2001, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "cstring.h" #include "hash.h" #include "quant.h" #include "rbt_data.h" #include "rbt_pars.h" #include "rbt_rule.h" #include "strmatch.h" #include "symtable.h" #include "unirange.h" #include "unicode/parseerr.h" #include "unicode/parsepos.h" #include "unicode/putil.h" #include "unicode/rbt.h" #include "unicode/unicode.h" #include "unicode/uniset.h" // Operators #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op #define OPERATORS UNICODE_STRING("=><", 3) // Other special characters #define QUOTE ((UChar)0x0027) /*'*/ #define ESCAPE ((UChar)0x005C) /*\*/ #define END_OF_RULE ((UChar)0x003B) /*;*/ #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ #define CONTEXT_POST ((UChar)0x007D) /*}*/ #define SET_OPEN ((UChar)0x005B) /*[*/ #define SET_CLOSE ((UChar)0x005D) /*]*/ #define CURSOR_POS ((UChar)0x007C) /*|*/ #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ #define ANCHOR_START ((UChar)0x005E) /*^*/ #define KLEENE_STAR ((UChar)0x002A) /***/ #define ONE_OR_MORE ((UChar)0x002B) /*+*/ #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ // By definition, the ANCHOR_END special character is a // trailing SymbolTable.SYMBOL_REF character. // private static final char ANCHOR_END = '$'; const UnicodeString TransliteratorParser::gOPERATORS = OPERATORS; // These are also used in Transliterator::toRules() static const int32_t ID_TOKEN_LEN = 2; static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' //---------------------------------------------------------------------- // BEGIN ParseData //---------------------------------------------------------------------- /** * This class implements the SymbolTable interface. It is used * during parsing to give UnicodeSet access to variables that * have been defined so far. Note that it uses variablesVector, * _not_ data.setVariables. */ class ParseData : public SymbolTable { public: const TransliterationRuleData* data; // alias const UVector* variablesVector; // alias ParseData(const TransliterationRuleData* data = 0, const UVector* variablesVector = 0); virtual const UnicodeString* lookup(const UnicodeString& s) const; virtual const UnicodeSet* lookupSet(UChar32 ch) const; virtual UnicodeString parseReference(const UnicodeString& text, ParsePosition& pos, int32_t limit) const; }; ParseData::ParseData(const TransliterationRuleData* d, const UVector* sets) : data(d), variablesVector(sets) {} /** * Implement SymbolTable API. */ const UnicodeString* ParseData::lookup(const UnicodeString& name) const { return (const UnicodeString*) data->variableNames->get(name); } /** * Implement SymbolTable API. */ const UnicodeSet* ParseData::lookupSet(UChar32 ch) const { // Note that we cannot use data.lookupSet() because the // set array has not been constructed yet. const UnicodeSet* set = NULL; int32_t i = ch - data->variablesBase; if (i >= 0 && i < variablesVector->size()) { int32_t i = ch - data->variablesBase; set = (i < variablesVector->size()) ? (UnicodeSet*) variablesVector->elementAt(i) : 0; } return set; } /** * Implement SymbolTable API. Parse out a symbol reference * name. */ UnicodeString ParseData::parseReference(const UnicodeString& text, ParsePosition& pos, int32_t limit) const { int32_t start = pos.getIndex(); int32_t i = start; UnicodeString result; while (i < limit) { UChar c = text.charAt(i); if ((i==start && !Unicode::isUnicodeIdentifierStart(c)) || !Unicode::isUnicodeIdentifierPart(c)) { break; } ++i; } if (i == start) { // No valid name chars return result; // Indicate failure with empty string } pos.setIndex(i); text.extractBetween(start, i, result); return result; } //---------------------------------------------------------------------- // Segments //---------------------------------------------------------------------- /** * Segments are parentheses-enclosed regions of the input string. * These are referenced in the output string using the notation $1, * $2, etc. Numbering is in order of appearance of the left * parenthesis. Number is one-based. Segments are defined as start, * limit pairs. Segments may nest. * * During parsing, segment data is encoded in an object of class * Segments. At runtime, the same data is encoded in compact form as * an array of integers in a TransliterationRule. The runtime encoding * must satisfy three goals: * * 1. Iterate over the offsets in a pattern, from left to right, * and indicate all segment boundaries, in order. This is done * during matching. * * 2. Given a reference $n, produce the start and limit offsets * for that segment. This is done during replacement. * * 3. Similar to goal 1, but in addition, indicate whether each * segment boundary is a start or a limit, in other words, whether * each is an open paren or a close paren. This is required by * the toRule() method. * * Goal 1 must be satisfied at high speed since this is done during * matching. Goal 2 is next most important. Goal 3 is not performance * critical since it is only needed by toRule(). * * The array of integers is actually two arrays concatenated. The * first gives the index values of the open and close parentheses in * the order they appear. The second maps segment numbers to the * indices of the first array. The two arrays have the same length. * Iterating over the first array satisfies goal 1. Indexing into the * second array satisfies goal 2. Goal 3 is satisfied by iterating * over the second array and constructing the required data when * needed. This is what toRule() does. * * Example: (a b(c d)e f) * 0 1 2 3 4 5 6 * * First array: Indices are 0, 2, 4, and 6. * Second array: $1 is at 0 and 6, and $2 is at 2 and 4, so the * second array is 0, 3, 1 2 -- these give the indices in the * first array at which $1:open, $1:close, $2:open, and $2:close * occur. * * The final array is: 2, 7, 0, 2, 4, 6, -1, 2, 5, 3, 4, -1 * * Each subarray is terminated with a -1, and two leading entries * give the number of segments and the offset to the first entry * of the second array. In addition, the second array value are * all offset by 2 so they index directly into the final array. * The total array size is 4*segments[0] + 4. The second index is * 2*segments[0] + 3. * * In the output string, a segment reference is indicated by a * character in a special range, as defined by * RuleBasedTransliterator.Data. * * Most rules have no segments, in which case segments is null, and the * output string need not be checked for segment reference characters. * * See also rbt_rule.h/cpp. */ class Segments { UVector offsets; UVector isOpenParen; public: Segments(); ~Segments(); void addParenthesisAt(int32_t offset, UBool isOpenParen); int32_t getLastParenOffset(UBool& isOpenParen) const; UBool extractLastParenSubstring(int32_t& start, int32_t& limit); int32_t* createArray() const; UBool validate() const; int32_t count() const; // number of segments private: int32_t offset(int32_t i) const; UBool isOpen(int32_t i) const; int32_t size() const; // size of the UVectors }; int32_t Segments::offset(int32_t i) const { return offsets.elementAti(i); } UBool Segments::isOpen(int32_t i) const { return isOpenParen.elementAti(i) != 0; } int32_t Segments::size() const { // assert(offset.size() == isOpenParen.size()); return offsets.size(); } Segments::Segments() {} Segments::~Segments() {} void Segments::addParenthesisAt(int32_t offset, UBool isOpen) { offsets.addElement(offset); isOpenParen.addElement(isOpen ? 1 : 0); } int32_t Segments::getLastParenOffset(UBool& isOpenParen) const { if (size() == 0) { return -1; } isOpenParen = isOpen(size()-1); return offset(size()-1); } // Remove the last (rightmost) segment. Store its offsets in start // and limit, and then convert all offsets at or after start to be // equal to start. Upon failure, return FALSE. Assume that the // caller has already called getLastParenOffset() and validated that // there is at least one parenthesis and that the last one is a close // paren. UBool Segments::extractLastParenSubstring(int32_t& start, int32_t& limit) { // assert(offsets.size() > 0); // assert(isOpenParen.elementAt(isOpenParen.size()-1) == 0); int32_t i = size() - 1; int32_t n = 1; // count of close parens we need to match // Record position of the last close paren limit = offset(i); --i; // back up to the one before the last one while (i >= 0 && n != 0) { n += isOpen(i) ? -1 : 1; } if (n != 0) { return FALSE; } // assert(i>=0); start = offset(i); // Reset all segment pairs from i to size() - 1 to [start, start+1). while (i= 2 // want number of parens to be even // want first paren '(' // want parens to match up in the end if ((size() < 2) || (size() % 2 != 0) || !isOpen(0)) { return FALSE; } int32_t n = 0; for (int32_t i=0; i | @@@ xyz; changes // def to xyz and moves the cursor to before abc. Offset characters // must be at the start or end, and they cannot move the cursor past // the ante- or postcontext text. Placeholders are only valid in // output text. int32_t cursorOffset; // only nonzero on output side UBool anchorStart; UBool anchorEnd; TransliteratorParser& parser; static const UnicodeString gOperators; //-------------------------------------------------- // Methods RuleHalf(TransliteratorParser& parser); ~RuleHalf(); /** * Parse one side of a rule, stopping at either the limit, * the END_OF_RULE character, or an operator. Return * the pos of the terminating character (or limit). */ int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit); /** * Remove context. */ void removeContext(); /** * Create and return an int[] array of segments. */ int32_t* createSegments() const; int syntaxError(int32_t code, const UnicodeString& rule, int32_t start) { return parser.syntaxError(code, rule, start); } private: // Disallowed methods; no impl. RuleHalf(const RuleHalf&); RuleHalf& operator=(const RuleHalf&); }; const UnicodeString RuleHalf::gOperators = OPERATORS; RuleHalf::RuleHalf(TransliteratorParser& p) : parser(p) { cursor = -1; ante = -1; post = -1; segments = NULL; maxRef = -1; cursorOffset = 0; anchorStart = anchorEnd = FALSE; } RuleHalf::~RuleHalf() { delete segments; } /** * Parse one side of a rule, stopping at either the limit, * the END_OF_RULE character, or an operator. Return * the pos of the terminating character (or limit). */ int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit) { int32_t start = pos; UnicodeString& buf = text; ParsePosition pp; int32_t cursorOffsetPos = 0; // Position of first CURSOR_OFFSET on _right_ UnicodeString scratch; bool_t done = FALSE; int32_t quoteStart = -1; // Most recent 'single quoted string' int32_t quoteLimit = -1; int32_t varStart = -1; // Most recent $variableReference int32_t varLimit = -1; while (pos < limit && !done) { UChar c = rule.charAt(pos++); if (Unicode::isWhitespace(c)) { // Ignore whitespace. Note that this is not Unicode // spaces, but Java spaces -- a subset, representing // whitespace likely to be seen in code. continue; } if (gOperators.indexOf(c) >= 0) { --pos; // Backup to point to operator break; } if (anchorEnd) { // Text after a presumed end anchor is a syntax err return syntaxError(RuleBasedTransliterator::MALFORMED_VARIABLE_REFERENCE, rule, start); } // Handle escapes if (c == ESCAPE) { if (pos == limit) { return syntaxError(RuleBasedTransliterator::TRAILING_BACKSLASH, rule, start); } UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' if (escaped == (UChar32) -1) { return syntaxError(RuleBasedTransliterator::MALFORMED_UNICODE_ESCAPE, rule, start); } buf.append(escaped); continue; } // Handle quoted matter if (c == QUOTE) { int32_t iq = rule.indexOf(QUOTE, pos); if (iq == pos) { buf.append(c); // Parse [''] outside quotes as ['] ++pos; } else { /* This loop picks up a segment of quoted text of the * form 'aaaa' each time through. If this segment * hasn't really ended ('aaaa''bbbb') then it keeps * looping, each time adding on a new segment. When it * reaches the final quote it breaks. */ quoteStart = buf.length(); for (;;) { if (iq < 0) { return syntaxError(RuleBasedTransliterator::UNTERMINATED_QUOTE, rule, start); } scratch.truncate(0); rule.extractBetween(pos, iq, scratch); buf.append(scratch); pos = iq+1; if (pos < limit && rule.charAt(pos) == QUOTE) { // Parse [''] inside quotes as ['] iq = rule.indexOf(QUOTE, pos+1); // Continue looping } else { break; } } quoteLimit = buf.length(); } continue; } switch (c) { case ANCHOR_START: if (buf.length() == 0 && !anchorStart) { anchorStart = TRUE; } else { return syntaxError(RuleBasedTransliterator::MISPLACED_ANCHOR_START, rule, start); } break; case SEGMENT_OPEN: case SEGMENT_CLOSE: // Handle segment definitions "(" and ")" // Parse "(", ")" if (segments == NULL) { segments = new Segments(); } segments->addParenthesisAt(buf.length(), c == SEGMENT_OPEN); break; case END_OF_RULE: --pos; // Backup to point to END_OF_RULE done = TRUE; break; case SymbolTable::SYMBOL_REF: // Handle variable references and segment references "$1" .. "$9" { // A variable reference must be followed immediately // by a Unicode identifier start and zero or more // Unicode identifier part characters, or by a digit // 1..9 if it is a segment reference. if (pos == limit) { // A variable ref character at the end acts as // an anchor to the context limit, as in perl. anchorEnd = TRUE; break; } // Parse "$1" "$2" .. "$9" .. (no upper limit) c = rule.charAt(pos); int32_t r = u_charDigitValue(c); if (r >= 1 && r <= 9) { ++pos; for (;;) { c = rule.charAt(pos); int32_t d = u_charDigitValue(c); if (d < 0) { break; } if (r > 214748364 || (r == 214748364 && d > 7)) { return syntaxError(RuleBasedTransliterator::UNDEFINED_SEGMENT_REFERENCE, rule, start); } r = 10*r + d; } if (r > maxRef) { maxRef = r; } buf.append(parser.getSegmentStandin(r)); } else { pp.setIndex(pos); UnicodeString name = parser.parseData-> parseReference(rule, pp, limit); if (name.length() == 0) { // This means the '$' was not followed by a // valid name. Try to interpret it as an // end anchor then. If this also doesn't work // (if we see a following character) then signal // an error. anchorEnd = TRUE; break; } pos = pp.getIndex(); // If this is a variable definition statement, // then the LHS variable will be undefined. In // that case appendVariableDef() will append the // special placeholder char variableLimit-1. varStart = buf.length(); parser.appendVariableDef(name, buf); varLimit = buf.length(); } } break; case CONTEXT_ANTE: if (ante >= 0) { return syntaxError(RuleBasedTransliterator::MULTIPLE_ANTE_CONTEXTS, rule, start); } ante = buf.length(); break; case CONTEXT_POST: if (post >= 0) { return syntaxError(RuleBasedTransliterator::MULTIPLE_POST_CONTEXTS, rule, start); } post = buf.length(); break; case SET_OPEN: pp.setIndex(pos-1); // Backup to opening '[' buf.append(parser.parseSet(rule, pp)); if (U_FAILURE(parser.status)) { return syntaxError(RuleBasedTransliterator::MALFORMED_SET, rule, start); } pos = pp.getIndex(); break; case CURSOR_POS: if (cursor >= 0) { return syntaxError(RuleBasedTransliterator::MULTIPLE_CURSORS, rule, start); } cursor = buf.length(); break; case CURSOR_OFFSET: if (cursorOffset < 0) { if (buf.length() > 0) { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } --cursorOffset; } else if (cursorOffset > 0) { if (buf.length() != cursorOffsetPos || cursor >= 0) { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } ++cursorOffset; } else { if (cursor == 0 && buf.length() == 0) { cursorOffset = -1; } else if (cursor < 0) { cursorOffsetPos = buf.length(); cursorOffset = 1; } else { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } } break; case KLEENE_STAR: case ONE_OR_MORE: case ZERO_OR_ONE: // Quantifiers. We handle single characters, quoted strings, // variable references, and segments. // a+ matches aaa // 'foo'+ matches foofoofoo // $v+ matches xyxyxy if $v == xy // (seg)+ matches segsegseg { int32_t start, limit; UBool isOpenParen; UBool isSegment = FALSE; if (segments != 0 && segments->getLastParenOffset(isOpenParen) == buf.length()) { // The */+ immediately follows a segment if (isOpenParen) { return syntaxError(RuleBasedTransliterator::MISPLACED_QUANTIFIER, rule, start); } if (!segments->extractLastParenSubstring(start, limit)) { return syntaxError(RuleBasedTransliterator::MISMATCHED_SEGMENT_DELIMITERS, rule, start); } isSegment = TRUE; } else { // The */+ follows an isolated character or quote // or variable reference if (buf.length() == quoteLimit) { // The */+ follows a 'quoted string' start = quoteStart; limit = quoteLimit; } else if (buf.length() == varLimit) { // The */+ follows a $variableReference start = varStart; limit = varLimit; } else { // The */+ follows a single character start = buf.length() - 1; limit = start + 1; } } UnicodeMatcher *m = new StringMatcher(buf, start, limit, isSegment, *parser.data); int32_t min = 0; int32_t max = Quantifier::MAX; switch (c) { case ONE_OR_MORE: min = 1; break; case ZERO_OR_ONE: min = 0; max = 1; break; // case KLEENE_STAR: // do nothing -- min, max already set } m = new Quantifier(m, min, max); buf.truncate(start); buf.append(parser.generateStandInFor(m)); } break; // case SET_CLOSE: default: // Disallow unquoted characters other than [0-9A-Za-z] // in the printable ASCII range. These characters are // reserved for possible future use. if (c >= 0x0021 && c <= 0x007E && !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { return syntaxError(RuleBasedTransliterator::UNQUOTED_SPECIAL, rule, start); } buf.append(c); break; } } if (cursorOffset > 0 && cursor != cursorOffsetPos) { return syntaxError(RuleBasedTransliterator::MISPLACED_CURSOR_OFFSET, rule, start); } // text = buf.toString(); return pos; } /** * Remove context. */ void RuleHalf::removeContext() { //text = text.substring(ante < 0 ? 0 : ante, // post < 0 ? text.length() : post); if (post >= 0) { text.remove(post); } if (ante >= 0) { text.removeBetween(0, ante); } ante = post = -1; anchorStart = anchorEnd = FALSE; } /** * Create and return an int32_t[] array of segments. */ int32_t* RuleHalf::createSegments() const { return (segments == 0) ? 0 : segments->createArray(); } //---------------------------------------------------------------------- // END RuleHalf //---------------------------------------------------------------------- TransliterationRuleData* TransliteratorParser::parse(const UnicodeString& rules, UTransDirection direction, UParseError* parseError) { TransliteratorParser parser(rules, direction, parseError); UnicodeString idBlock; int32_t idSplitPoint, count; parser.parseRules(idBlock, idSplitPoint, count); if (U_FAILURE(parser.status) || idBlock.length() != 0) { delete parser.data; parser.data = 0; } return parser.data; } /** * Parse a given set of rules. Return up to three pieces of * parsed data. These are the header ::id block, the rule block, * and the footer ::id block. Any or all of these may be empty. * If the ::id blocks are empty, their corresponding parameters * are returned as the empty string. If there are no rules, the * TransliterationRuleData result is 0. * @param ruleDataResult caller owns the pointer stored here. * May be NULL. * @param headerRule string including semicolons for the header * ::id block. May be empty. * @param footerRule string including semicolons for the footer * ::id block. May be empty. */ void TransliteratorParser::parse(const UnicodeString& rules, UTransDirection direction, TransliterationRuleData*& ruleDataResult, UnicodeString& idBlockResult, int32_t& idSplitPointResult, UParseError* parseError, UErrorCode& ec) { if (U_FAILURE(ec)) { ruleDataResult = 0; return; } TransliteratorParser parser(rules, direction, parseError); int32_t count; parser.parseRules(idBlockResult, idSplitPointResult, count); if (U_FAILURE(parser.status) || count == 0) { delete parser.data; parser.data = 0; } ruleDataResult = parser.data; ec = parser.status; } /** * @param rules list of rules, separated by newline characters * @exception IllegalArgumentException if there is a syntax error in the * rules */ TransliteratorParser::TransliteratorParser( const UnicodeString& theRules, UTransDirection theDirection, UParseError* theParseError) : rules(theRules), direction(theDirection), data(0), parseError(theParseError) { parseData = new ParseData(0, &variablesVector); } /** * Destructor. */ TransliteratorParser::~TransliteratorParser() { delete parseData; } /** * Parse the given string as a sequence of rules, separated by newline * characters ('\n'), and cause this object to implement those rules. Any * previous rules are discarded. Typically this method is called exactly * once, during construction. * @exception IllegalArgumentException if there is a syntax error in the * rules */ void TransliteratorParser::parseRules(UnicodeString& idBlockResult, int32_t& idSplitPointResult, int32_t& ruleCount) { status = U_ZERO_ERROR; ruleCount = 0; // Clear error struct if (parseError != 0) { parseError->code = parseError->line = 0; parseError->offset = 0; parseError->preContext[0] = parseError->postContext[0] = (UChar)0; } delete data; data = new TransliterationRuleData(status); if (U_FAILURE(status)) { return; } parseData->data = data; variablesVector.removeAllElements(); if (parseError != 0) { parseError->code = 0; } determineVariableRange(); UnicodeString str; // scratch idBlockResult.truncate(0); idSplitPointResult = -1; int32_t pos = 0; int32_t limit = rules.length(); // The mode marks whether we are in the header ::id block, the // rule block, or the footer ::id block. // mode == 0: start: rule->1, ::id->0 // mode == 1: in rules: rule->1, ::id->2 // mode == 2: in footer rule block: rule->ERROR, ::id->2 int32_t mode = 0; while (pos < limit && U_SUCCESS(status)) { UChar c = rules.charAt(pos++); if (Unicode::isWhitespace(c)) { // Ignore leading whitespace. continue; } // Skip lines starting with the comment character if (c == RULE_COMMENT_CHAR) { pos = rules.indexOf((UChar)0x000A /*\n*/, pos) + 1; if (pos == 0) { break; // No "\n" found; rest of rule is a commnet } continue; // Either fall out or restart with next line } // We've found the start of a rule or ID. c is its first // character, and pos points past c. --pos; // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 // chars left. if ((pos + ID_TOKEN_LEN + 1) <= limit && rules.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { pos += ID_TOKEN_LEN; c = rules.charAt(pos); while (Unicode::isWhitespace(c) && pos < limit) { ++pos; c = rules.charAt(pos); } int32_t p = pos; UBool sawDelim; UnicodeString regenID; Transliterator::parseID(rules, regenID, p, sawDelim, direction, NULL, FALSE); if (p == pos || !sawDelim) { // Invalid ::id status = U_ILLEGAL_ARGUMENT_ERROR; } else { if (mode == 1) { mode = 2; idSplitPointResult = idBlockResult.length(); } rules.extractBetween(pos, p, str); idBlockResult.append(str); if (!sawDelim) { idBlockResult.append((UChar)0x003B /*;*/); } pos = p; } } else { // Parse a rule pos = parseRule(pos, limit); if (U_SUCCESS(status)) { ++ruleCount; if (mode == 2) { // ::id in illegal position (because a rule // occurred after the ::id footer block) status = U_ILLEGAL_ARGUMENT_ERROR; } } mode = 1; } } // Convert the set vector to an array data->variablesLength = variablesVector.size(); data->variables = data->variablesLength == 0 ? 0 : new UnicodeMatcher*[data->variablesLength]; // orphanElement removes the given element and shifts all other // elements down. For performance (and code clarity) we work from // the end back to index 0. int32_t i; for (i=data->variablesLength; i>0; ) { --i; data->variables[i] = (UnicodeSet*) variablesVector.orphanElementAt(i); } // Index the rules if (U_SUCCESS(status)) { data->ruleSet.freeze(status); if (idSplitPointResult < 0) { idSplitPointResult = idBlockResult.length(); } } } /** * MAIN PARSER. Parse the next rule in the given rule string, starting * at pos. Return the index after the last character parsed. Do not * parse characters at or after limit. * * Important: The character at pos must be a non-whitespace character * that is not the comment character. * * This method handles quoting, escaping, and whitespace removal. It * parses the end-of-rule character. It recognizes context and cursor * indicators. Once it does a lexical breakdown of the rule at pos, it * creates a rule object and adds it to our rule list. */ int32_t TransliteratorParser::parseRule(int32_t pos, int32_t limit) { // Locate the left side, operator, and right side int32_t start = pos; UChar op = 0; const UnicodeString& rule = rules; // TEMPORARY: FIX LATER // Use pointers to automatics to make swapping possible. RuleHalf _left(*this), _right(*this); RuleHalf* left = &_left; RuleHalf* right = &_right; undefinedVariableName.remove(); pos = left->parse(rule, pos, limit); if (U_FAILURE(status)) { return start; } if (pos == limit || gOPERATORS.indexOf(op = rule.charAt(pos++)) < 0) { return syntaxError(RuleBasedTransliterator::MISSING_OPERATOR, rule, start); } // Found an operator char. Check for forward-reverse operator. if (op == REVERSE_RULE_OP && (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { ++pos; op = FWDREV_RULE_OP; } pos = right->parse(rule, pos, limit); if (U_FAILURE(status)) { return start; } if (pos < limit) { if (rule.charAt(pos) == END_OF_RULE) { ++pos; } else { // RuleHalf parser must have terminated at an operator return syntaxError(RuleBasedTransliterator::UNQUOTED_SPECIAL, rule, start); } } if (op == VARIABLE_DEF_OP) { // LHS is the name. RHS is a single character, either a literal // or a set (already parsed). If RHS is longer than one // character, it is either a multi-character string, or multiple // sets, or a mixture of chars and sets -- syntax error. // We expect to see a single undefined variable (the one being // defined). if (undefinedVariableName.length() == 0) { // "Missing '$' or duplicate definition" return syntaxError(RuleBasedTransliterator::BAD_VARIABLE_DEFINITION, rule, start); } if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { // "Malformed LHS" return syntaxError(RuleBasedTransliterator::MALFORMED_VARIABLE_DEFINITION, rule, start); } if (left->anchorStart || left->anchorEnd || right->anchorStart || right->anchorEnd) { return syntaxError(RuleBasedTransliterator::MALFORMED_VARIABLE_DEFINITION, rule, start); } // We allow anything on the right, including an empty string. UnicodeString* value = new UnicodeString(right->text); data->variableNames->put(undefinedVariableName, value, status); ++variableLimit; return pos; } // If this is not a variable definition rule, we shouldn't have // any undefined variable names. if (undefinedVariableName.length() != 0) { syntaxError(// "Undefined variable $" + undefinedVariableName, RuleBasedTransliterator::UNDEFINED_VARIABLE, rule, start); } // If the direction we want doesn't match the rule // direction, do nothing. if (op != FWDREV_RULE_OP && ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { return pos; } // Transform the rule into a forward rule by swapping the // sides if necessary. if (direction == UTRANS_REVERSE) { left = &_right; right = &_left; } // Remove non-applicable elements in forward-reverse // rules. Bidirectional rules ignore elements that do not // apply. if (op == FWDREV_RULE_OP) { right->removeContext(); delete right->segments; right->segments = NULL; left->cursor = left->maxRef = -1; left->cursorOffset = 0; } // Normalize context if (left->ante < 0) { left->ante = 0; } if (left->post < 0) { left->post = left->text.length(); } // Context is only allowed on the input side. Cursors are only // allowed on the output side. Segment delimiters can only appear // on the left, and references on the right. Cursor offset // cannot appear without an explicit cursor. Cursor offset // cannot place the cursor outside the limits of the context. // Anchors are only allowed on the input side. if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || right->segments != NULL || left->maxRef >= 0 || (right->cursorOffset != 0 && right->cursor < 0) || (right->cursorOffset > (left->text.length() - left->post)) || (-right->cursorOffset > left->ante) || right->anchorStart || right->anchorEnd) { return syntaxError(RuleBasedTransliterator::MALFORMED_RULE, rule, start); } // Check integrity of segments and segment references. Each // segment's start must have a corresponding limit, and the // references must not refer to segments that do not exist. if (left->segments != NULL) { if (!left->segments->validate()) { return syntaxError(RuleBasedTransliterator::MISSING_SEGMENT_CLOSE, rule, start); } int32_t n = left->segments->count(); if (right->maxRef > n) { return syntaxError(RuleBasedTransliterator::UNDEFINED_SEGMENT_REFERENCE, rule, start); } } data->ruleSet.addRule(new TransliterationRule( left->text, left->ante, left->post, right->text, right->cursor, right->cursorOffset, left->createSegments(), left->anchorStart, left->anchorEnd, *data, status), status); return pos; } /** * Called by main parser upon syntax error. Search the rule string * for the probable end of the rule. Of course, if the error is that * the end of rule marker is missing, then the rule end will not be found. * In any case the rule start will be correctly reported. * @param msg error description * @param rule pattern string * @param start position of first character of current rule */ int32_t TransliteratorParser::syntaxError(int32_t parseErrorCode, const UnicodeString& rule, int32_t start) { if (parseError != 0) { parseError->code = parseErrorCode; parseError->line = 0; // We don't return a line # parseError->offset = start; // Character offset from rule start int32_t end = quotedIndexOf(rule, start, rule.length(), END_OF_RULE); if (end < 0) { end = rule.length(); } int32_t len = uprv_min(end - start, U_PARSE_CONTEXT_LEN-1); // Extract everything into the preContext and leave the postContext // blank, since we don't have precise error position. // TODO: Fix this. rule.extract(start, len, parseError->preContext); // Current rule parseError->preContext[len] = 0; parseError->postContext[0] = 0; } status = U_ILLEGAL_ARGUMENT_ERROR; return start; } /** * Parse a UnicodeSet out, store it, and return the stand-in character * used to represent it. */ UChar TransliteratorParser::parseSet(const UnicodeString& rule, ParsePosition& pos) { UnicodeSet* set = new UnicodeSet(rule, pos, *parseData, status); set->compact(); return generateStandInFor(set); } /** * Generate and return a stand-in for a new UnicodeMatcher. Store * the matcher (adopt it). */ UChar TransliteratorParser::generateStandInFor(UnicodeMatcher* adopted) { // assert(adopted != 0); if (variableNext >= variableLimit) { // throw new RuntimeException("Private use variables exhausted"); delete adopted; status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } variablesVector.addElement(adopted); return variableNext++; } /** * Append the value of the given variable name to the given * UnicodeString. */ void TransliteratorParser::appendVariableDef(const UnicodeString& name, UnicodeString& buf) { const UnicodeString* s = (const UnicodeString*) data->variableNames->get(name); if (s == NULL) { // We allow one undefined variable so that variable definition // statements work. For the first undefined variable we return // the special placeholder variableLimit-1, and save the variable // name. if (undefinedVariableName.length() == 0) { undefinedVariableName = name; if (variableNext >= variableLimit) { // throw new RuntimeException("Private use variables exhausted"); status = U_ILLEGAL_ARGUMENT_ERROR; return; } buf.append((UChar) --variableLimit); } else { //throw new IllegalArgumentException("Undefined variable $" // + name); status = U_ILLEGAL_ARGUMENT_ERROR; return; } } else { buf.append(*s); } } UChar TransliteratorParser::getSegmentStandin(int32_t r) { // assert(r>=1); if (r > data->segmentCount) { data->segmentCount = r; variableLimit = data->segmentBase - r + 1; if (variableNext >= variableLimit) { status = U_ILLEGAL_ARGUMENT_ERROR; } } return data->getSegmentStandin(r); } /** * Determines what part of the private use region of Unicode we can use for * variable stand-ins. The correct way to do this is as follows: Parse each * rule, and for forward and reverse rules, take the FROM expression, and * make a hash of all characters used. The TO expression should be ignored. * When done, everything not in the hash is available for use. In practice, * this method may employ some other algorithm for improved speed. */ void TransliteratorParser::determineVariableRange(void) { UnicodeRange privateUse(0xE000, 0x1900); // Private use area UnicodeRange* r = privateUse.largestUnusedSubrange(rules); data->variablesBase = variableNext = variableLimit = (UChar) 0; if (r != 0) { // Segment references work down; variables work up. We don't // know how many of each we will need. data->segmentBase = (UChar) (r->start + r->length - 1); data->segmentCount = 0; data->variablesBase = variableNext = (UChar) r->start; variableLimit = (UChar) (r->start + r->length); delete r; } if (variableNext >= variableLimit) { status = U_ILLEGAL_ARGUMENT_ERROR; } } /** * Returns the index of a character, ignoring quoted text. * For example, in the string "abc'hide'h", the 'h' in "hide" will not be * found by a search for 'h'. */ int32_t TransliteratorParser::quotedIndexOf(const UnicodeString& text, int32_t start, int32_t limit, UChar charToFind) { for (int32_t i=start; i