// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ******************************************************************************* * Copyright (C) 2011-2016, International Business Machines Corporation and * others. All Rights Reserved. ******************************************************************************* * * File TZNAMES_IMPL.CPP * ******************************************************************************* */ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "unicode/strenum.h" #include "unicode/ustring.h" #include "unicode/timezone.h" #include "unicode/utf16.h" #include "tznames_impl.h" #include "cmemory.h" #include "cstring.h" #include "uassert.h" #include "mutex.h" #include "resource.h" #include "uresimp.h" #include "ureslocs.h" #include "zonemeta.h" #include "ucln_in.h" #include "uvector.h" #include "olsontz.h" U_NAMESPACE_BEGIN #define ZID_KEY_MAX 128 #define MZ_PREFIX_LEN 5 static const char gZoneStrings[] = "zoneStrings"; static const char gMZPrefix[] = "meta:"; static const char EMPTY[] = ""; // place holder for empty ZNames static const char DUMMY_LOADER[] = ""; // place holder for dummy ZNamesLoader static const UChar NO_NAME[] = { 0 }; // for empty no-fallback time zone names // stuff for TZDBTimeZoneNames static const char* TZDBNAMES_KEYS[] = {"ss", "sd"}; static const int32_t TZDBNAMES_KEYS_SIZE = UPRV_LENGTHOF(TZDBNAMES_KEYS); static UMutex gTZDBNamesMapLock = U_MUTEX_INITIALIZER; static UMutex gDataMutex = U_MUTEX_INITIALIZER; static UHashtable* gTZDBNamesMap = NULL; static icu::UInitOnce gTZDBNamesMapInitOnce = U_INITONCE_INITIALIZER; static TextTrieMap* gTZDBNamesTrie = NULL; static icu::UInitOnce gTZDBNamesTrieInitOnce = U_INITONCE_INITIALIZER; // The order in which strings are stored may be different than the order in the public enum. enum UTimeZoneNameTypeIndex { UTZNM_INDEX_UNKNOWN = -1, UTZNM_INDEX_EXEMPLAR_LOCATION, UTZNM_INDEX_LONG_GENERIC, UTZNM_INDEX_LONG_STANDARD, UTZNM_INDEX_LONG_DAYLIGHT, UTZNM_INDEX_SHORT_GENERIC, UTZNM_INDEX_SHORT_STANDARD, UTZNM_INDEX_SHORT_DAYLIGHT, UTZNM_INDEX_COUNT }; static const UChar* const EMPTY_NAMES[UTZNM_INDEX_COUNT] = {0,0,0,0,0,0,0}; U_CDECL_BEGIN static UBool U_CALLCONV tzdbTimeZoneNames_cleanup(void) { if (gTZDBNamesMap != NULL) { uhash_close(gTZDBNamesMap); gTZDBNamesMap = NULL; } gTZDBNamesMapInitOnce.reset(); if (gTZDBNamesTrie != NULL) { delete gTZDBNamesTrie; gTZDBNamesTrie = NULL; } gTZDBNamesTrieInitOnce.reset(); return TRUE; } U_CDECL_END /** * ZNameInfo stores zone name information in the trie */ struct ZNameInfo { UTimeZoneNameType type; const UChar* tzID; const UChar* mzID; }; /** * ZMatchInfo stores zone name match information used by find method */ struct ZMatchInfo { const ZNameInfo* znameInfo; int32_t matchLength; }; // Helper functions static void mergeTimeZoneKey(const UnicodeString& mzID, char* result); #define DEFAULT_CHARACTERNODE_CAPACITY 1 // --------------------------------------------------- // CharacterNode class implementation // --------------------------------------------------- void CharacterNode::clear() { uprv_memset(this, 0, sizeof(*this)); } void CharacterNode::deleteValues(UObjectDeleter *valueDeleter) { if (fValues == NULL) { // Do nothing. } else if (!fHasValuesVector) { if (valueDeleter) { valueDeleter(fValues); } } else { delete (UVector *)fValues; } } void CharacterNode::addValue(void *value, UObjectDeleter *valueDeleter, UErrorCode &status) { if (U_FAILURE(status)) { if (valueDeleter) { valueDeleter(value); } return; } if (fValues == NULL) { fValues = value; } else { // At least one value already. if (!fHasValuesVector) { // There is only one value so far, and not in a vector yet. // Create a vector and add the old value. UVector *values = new UVector(valueDeleter, NULL, DEFAULT_CHARACTERNODE_CAPACITY, status); if (U_FAILURE(status)) { if (valueDeleter) { valueDeleter(value); } return; } values->addElement(fValues, status); fValues = values; fHasValuesVector = TRUE; } // Add the new value. ((UVector *)fValues)->addElement(value, status); } } // --------------------------------------------------- // TextTrieMapSearchResultHandler class implementation // --------------------------------------------------- TextTrieMapSearchResultHandler::~TextTrieMapSearchResultHandler(){ } // --------------------------------------------------- // TextTrieMap class implementation // --------------------------------------------------- TextTrieMap::TextTrieMap(UBool ignoreCase, UObjectDeleter *valueDeleter) : fIgnoreCase(ignoreCase), fNodes(NULL), fNodesCapacity(0), fNodesCount(0), fLazyContents(NULL), fIsEmpty(TRUE), fValueDeleter(valueDeleter) { } TextTrieMap::~TextTrieMap() { int32_t index; for (index = 0; index < fNodesCount; ++index) { fNodes[index].deleteValues(fValueDeleter); } uprv_free(fNodes); if (fLazyContents != NULL) { for (int32_t i=0; isize(); i+=2) { if (fValueDeleter) { fValueDeleter(fLazyContents->elementAt(i+1)); } } delete fLazyContents; } } int32_t TextTrieMap::isEmpty() const { // Use a separate field for fIsEmpty because it will remain unchanged once the // Trie is built, while fNodes and fLazyContents change with the lazy init // of the nodes structure. Trying to test the changing fields has // thread safety complications. return fIsEmpty; } // We defer actually building the TextTrieMap node structure until the first time a // search is performed. put() simply saves the parameters in case we do // eventually need to build it. // void TextTrieMap::put(const UnicodeString &key, void *value, ZNStringPool &sp, UErrorCode &status) { const UChar *s = sp.get(key, status); put(s, value, status); } // This method is designed for a persistent key, such as string key stored in // resource bundle. void TextTrieMap::put(const UChar *key, void *value, UErrorCode &status) { fIsEmpty = FALSE; if (fLazyContents == NULL) { fLazyContents = new UVector(status); if (fLazyContents == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } } if (U_FAILURE(status)) { if (fValueDeleter) { fValueDeleter((void*) key); } return; } U_ASSERT(fLazyContents != NULL); UChar *s = const_cast(key); fLazyContents->addElement(s, status); if (U_FAILURE(status)) { if (fValueDeleter) { fValueDeleter((void*) key); } return; } fLazyContents->addElement(value, status); } void TextTrieMap::putImpl(const UnicodeString &key, void *value, UErrorCode &status) { if (fNodes == NULL) { fNodesCapacity = 512; fNodes = (CharacterNode *)uprv_malloc(fNodesCapacity * sizeof(CharacterNode)); if (fNodes == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } fNodes[0].clear(); // Init root node. fNodesCount = 1; } UnicodeString foldedKey; const UChar *keyBuffer; int32_t keyLength; if (fIgnoreCase) { // Ok to use fastCopyFrom() because we discard the copy when we return. foldedKey.fastCopyFrom(key).foldCase(); keyBuffer = foldedKey.getBuffer(); keyLength = foldedKey.length(); } else { keyBuffer = key.getBuffer(); keyLength = key.length(); } CharacterNode *node = fNodes; int32_t index; for (index = 0; index < keyLength; ++index) { node = addChildNode(node, keyBuffer[index], status); } node->addValue(value, fValueDeleter, status); } UBool TextTrieMap::growNodes() { if (fNodesCapacity == 0xffff) { return FALSE; // We use 16-bit node indexes. } int32_t newCapacity = fNodesCapacity + 1000; if (newCapacity > 0xffff) { newCapacity = 0xffff; } CharacterNode *newNodes = (CharacterNode *)uprv_malloc(newCapacity * sizeof(CharacterNode)); if (newNodes == NULL) { return FALSE; } uprv_memcpy(newNodes, fNodes, fNodesCount * sizeof(CharacterNode)); uprv_free(fNodes); fNodes = newNodes; fNodesCapacity = newCapacity; return TRUE; } CharacterNode* TextTrieMap::addChildNode(CharacterNode *parent, UChar c, UErrorCode &status) { if (U_FAILURE(status)) { return NULL; } // Linear search of the sorted list of children. uint16_t prevIndex = 0; uint16_t nodeIndex = parent->fFirstChild; while (nodeIndex > 0) { CharacterNode *current = fNodes + nodeIndex; UChar childCharacter = current->fCharacter; if (childCharacter == c) { return current; } else if (childCharacter > c) { break; } prevIndex = nodeIndex; nodeIndex = current->fNextSibling; } // Ensure capacity. Grow fNodes[] if needed. if (fNodesCount == fNodesCapacity) { int32_t parentIndex = (int32_t)(parent - fNodes); if (!growNodes()) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } parent = fNodes + parentIndex; } // Insert a new child node with c in sorted order. CharacterNode *node = fNodes + fNodesCount; node->clear(); node->fCharacter = c; node->fNextSibling = nodeIndex; if (prevIndex == 0) { parent->fFirstChild = (uint16_t)fNodesCount; } else { fNodes[prevIndex].fNextSibling = (uint16_t)fNodesCount; } ++fNodesCount; return node; } CharacterNode* TextTrieMap::getChildNode(CharacterNode *parent, UChar c) const { // Linear search of the sorted list of children. uint16_t nodeIndex = parent->fFirstChild; while (nodeIndex > 0) { CharacterNode *current = fNodes + nodeIndex; UChar childCharacter = current->fCharacter; if (childCharacter == c) { return current; } else if (childCharacter > c) { break; } nodeIndex = current->fNextSibling; } return NULL; } // Mutex for protecting the lazy creation of the Trie node structure on the first call to search(). static UMutex TextTrieMutex = U_MUTEX_INITIALIZER; // buildTrie() - The Trie node structure is needed. Create it from the data that was // saved at the time the ZoneStringFormatter was created. The Trie is only // needed for parsing operations, which are less common than formatting, // and the Trie is big, which is why its creation is deferred until first use. void TextTrieMap::buildTrie(UErrorCode &status) { if (fLazyContents != NULL) { for (int32_t i=0; isize(); i+=2) { const UChar *key = (UChar *)fLazyContents->elementAt(i); void *val = fLazyContents->elementAt(i+1); UnicodeString keyString(TRUE, key, -1); // Aliasing UnicodeString constructor. putImpl(keyString, val, status); } delete fLazyContents; fLazyContents = NULL; } } void TextTrieMap::search(const UnicodeString &text, int32_t start, TextTrieMapSearchResultHandler *handler, UErrorCode &status) const { { // TODO: if locking the mutex for each check proves to be a performance problem, // add a flag of type atomic_int32_t to class TextTrieMap, and use only // the ICU atomic safe functions for assigning and testing. // Don't test the pointer fLazyContents. // Don't do unless it's really required. Mutex lock(&TextTrieMutex); if (fLazyContents != NULL) { TextTrieMap *nonConstThis = const_cast(this); nonConstThis->buildTrie(status); } } if (fNodes == NULL) { return; } search(fNodes, text, start, start, handler, status); } void TextTrieMap::search(CharacterNode *node, const UnicodeString &text, int32_t start, int32_t index, TextTrieMapSearchResultHandler *handler, UErrorCode &status) const { if (U_FAILURE(status)) { return; } if (node->hasValues()) { if (!handler->handleMatch(index - start, node, status)) { return; } if (U_FAILURE(status)) { return; } } if (fIgnoreCase) { // for folding we need to get a complete code point. // size of character may grow after fold operation; // then we need to get result as UTF16 code units. UChar32 c32 = text.char32At(index); index += U16_LENGTH(c32); UnicodeString tmp(c32); tmp.foldCase(); int32_t tmpidx = 0; while (tmpidx < tmp.length()) { UChar c = tmp.charAt(tmpidx++); node = getChildNode(node, c); if (node == NULL) { break; } } } else { // here we just get the next UTF16 code unit UChar c = text.charAt(index++); node = getChildNode(node, c); } if (node != NULL) { search(node, text, start, index, handler, status); } } // --------------------------------------------------- // ZNStringPool class implementation // --------------------------------------------------- static const int32_t POOL_CHUNK_SIZE = 2000; struct ZNStringPoolChunk: public UMemory { ZNStringPoolChunk *fNext; // Ptr to next pool chunk int32_t fLimit; // Index to start of unused area at end of fStrings UChar fStrings[POOL_CHUNK_SIZE]; // Strings array ZNStringPoolChunk(); }; ZNStringPoolChunk::ZNStringPoolChunk() { fNext = NULL; fLimit = 0; } ZNStringPool::ZNStringPool(UErrorCode &status) { fChunks = NULL; fHash = NULL; if (U_FAILURE(status)) { return; } fChunks = new ZNStringPoolChunk; if (fChunks == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } fHash = uhash_open(uhash_hashUChars /* keyHash */, uhash_compareUChars /* keyComp */, uhash_compareUChars /* valueComp */, &status); if (U_FAILURE(status)) { return; } } ZNStringPool::~ZNStringPool() { if (fHash != NULL) { uhash_close(fHash); fHash = NULL; } while (fChunks != NULL) { ZNStringPoolChunk *nextChunk = fChunks->fNext; delete fChunks; fChunks = nextChunk; } } static const UChar EmptyString = 0; const UChar *ZNStringPool::get(const UChar *s, UErrorCode &status) { const UChar *pooledString; if (U_FAILURE(status)) { return &EmptyString; } pooledString = static_cast(uhash_get(fHash, s)); if (pooledString != NULL) { return pooledString; } int32_t length = u_strlen(s); int32_t remainingLength = POOL_CHUNK_SIZE - fChunks->fLimit; if (remainingLength <= length) { U_ASSERT(length < POOL_CHUNK_SIZE); if (length >= POOL_CHUNK_SIZE) { status = U_INTERNAL_PROGRAM_ERROR; return &EmptyString; } ZNStringPoolChunk *oldChunk = fChunks; fChunks = new ZNStringPoolChunk; if (fChunks == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return &EmptyString; } fChunks->fNext = oldChunk; } UChar *destString = &fChunks->fStrings[fChunks->fLimit]; u_strcpy(destString, s); fChunks->fLimit += (length + 1); uhash_put(fHash, destString, destString, &status); return destString; } // // ZNStringPool::adopt() Put a string into the hash, but do not copy the string data // into the pool's storage. Used for strings from resource bundles, // which will perisist for the life of the zone string formatter, and // therefore can be used directly without copying. const UChar *ZNStringPool::adopt(const UChar * s, UErrorCode &status) { const UChar *pooledString; if (U_FAILURE(status)) { return &EmptyString; } if (s != NULL) { pooledString = static_cast(uhash_get(fHash, s)); if (pooledString == NULL) { UChar *ncs = const_cast(s); uhash_put(fHash, ncs, ncs, &status); } } return s; } const UChar *ZNStringPool::get(const UnicodeString &s, UErrorCode &status) { UnicodeString &nonConstStr = const_cast(s); return this->get(nonConstStr.getTerminatedBuffer(), status); } /* * freeze(). Close the hash table that maps to the pooled strings. * After freezing, the pool can not be searched or added to, * but all existing references to pooled strings remain valid. * * The main purpose is to recover the storage used for the hash. */ void ZNStringPool::freeze() { uhash_close(fHash); fHash = NULL; } /** * This class stores name data for a meta zone or time zone. */ class ZNames : public UMemory { private: friend class TimeZoneNamesImpl; static UTimeZoneNameTypeIndex getTZNameTypeIndex(UTimeZoneNameType type) { switch(type) { case UTZNM_EXEMPLAR_LOCATION: return UTZNM_INDEX_EXEMPLAR_LOCATION; case UTZNM_LONG_GENERIC: return UTZNM_INDEX_LONG_GENERIC; case UTZNM_LONG_STANDARD: return UTZNM_INDEX_LONG_STANDARD; case UTZNM_LONG_DAYLIGHT: return UTZNM_INDEX_LONG_DAYLIGHT; case UTZNM_SHORT_GENERIC: return UTZNM_INDEX_SHORT_GENERIC; case UTZNM_SHORT_STANDARD: return UTZNM_INDEX_SHORT_STANDARD; case UTZNM_SHORT_DAYLIGHT: return UTZNM_INDEX_SHORT_DAYLIGHT; default: return UTZNM_INDEX_UNKNOWN; } } static UTimeZoneNameType getTZNameType(UTimeZoneNameTypeIndex index) { switch(index) { case UTZNM_INDEX_EXEMPLAR_LOCATION: return UTZNM_EXEMPLAR_LOCATION; case UTZNM_INDEX_LONG_GENERIC: return UTZNM_LONG_GENERIC; case UTZNM_INDEX_LONG_STANDARD: return UTZNM_LONG_STANDARD; case UTZNM_INDEX_LONG_DAYLIGHT: return UTZNM_LONG_DAYLIGHT; case UTZNM_INDEX_SHORT_GENERIC: return UTZNM_SHORT_GENERIC; case UTZNM_INDEX_SHORT_STANDARD: return UTZNM_SHORT_STANDARD; case UTZNM_INDEX_SHORT_DAYLIGHT: return UTZNM_SHORT_DAYLIGHT; default: return UTZNM_UNKNOWN; } } const UChar* fNames[UTZNM_INDEX_COUNT]; UBool fDidAddIntoTrie; // Whether we own the location string, if computed rather than loaded from a bundle. // A meta zone names instance never has an exemplar location string. UBool fOwnsLocationName; ZNames(const UChar* names[], const UChar* locationName) : fDidAddIntoTrie(FALSE) { uprv_memcpy(fNames, names, sizeof(fNames)); if (locationName != NULL) { fOwnsLocationName = TRUE; fNames[UTZNM_INDEX_EXEMPLAR_LOCATION] = locationName; } else { fOwnsLocationName = FALSE; } } public: ~ZNames() { if (fOwnsLocationName) { const UChar* locationName = fNames[UTZNM_INDEX_EXEMPLAR_LOCATION]; U_ASSERT(locationName != NULL); uprv_free((void*) locationName); } } private: static void* createMetaZoneAndPutInCache(UHashtable* cache, const UChar* names[], const UnicodeString& mzID, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } U_ASSERT(names != NULL); // Use the persistent ID as the resource key, so we can // avoid duplications. // TODO: Is there a more efficient way, like intern() in Java? void* key = (void*) ZoneMeta::findMetaZoneID(mzID); void* value; if (uprv_memcmp(names, EMPTY_NAMES, sizeof(EMPTY_NAMES)) == 0) { value = (void*) EMPTY; } else { value = (void*) (new ZNames(names, NULL)); if (value == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } } uhash_put(cache, key, value, &status); return value; } static void* createTimeZoneAndPutInCache(UHashtable* cache, const UChar* names[], const UnicodeString& tzID, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } U_ASSERT(names != NULL); // If necessary, compute the location name from the time zone name. UChar* locationName = NULL; if (names[UTZNM_INDEX_EXEMPLAR_LOCATION] == NULL) { UnicodeString locationNameUniStr; TimeZoneNamesImpl::getDefaultExemplarLocationName(tzID, locationNameUniStr); // Copy the computed location name to the heap if (locationNameUniStr.length() > 0) { const UChar* buff = locationNameUniStr.getTerminatedBuffer(); int32_t len = sizeof(UChar) * (locationNameUniStr.length() + 1); locationName = (UChar*) uprv_malloc(len); if (locationName == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memcpy(locationName, buff, len); } } // Use the persistent ID as the resource key, so we can // avoid duplications. // TODO: Is there a more efficient way, like intern() in Java? void* key = (void*) ZoneMeta::findTimeZoneID(tzID); void* value = (void*) (new ZNames(names, locationName)); if (value == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uhash_put(cache, key, value, &status); return value; } const UChar* getName(UTimeZoneNameType type) const { UTimeZoneNameTypeIndex index = getTZNameTypeIndex(type); return index >= 0 ? fNames[index] : NULL; } void addAsMetaZoneIntoTrie(const UChar* mzID, TextTrieMap& trie, UErrorCode& status) { addNamesIntoTrie(mzID, NULL, trie, status); } void addAsTimeZoneIntoTrie(const UChar* tzID, TextTrieMap& trie, UErrorCode& status) { addNamesIntoTrie(NULL, tzID, trie, status); } void addNamesIntoTrie(const UChar* mzID, const UChar* tzID, TextTrieMap& trie, UErrorCode& status) { if (U_FAILURE(status)) { return; } if (fDidAddIntoTrie) { return; } fDidAddIntoTrie = TRUE; for (int32_t i = 0; i < UTZNM_INDEX_COUNT; i++) { const UChar* name = fNames[i]; if (name != NULL) { ZNameInfo *nameinfo = (ZNameInfo *)uprv_malloc(sizeof(ZNameInfo)); if (nameinfo == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } nameinfo->mzID = mzID; nameinfo->tzID = tzID; nameinfo->type = getTZNameType((UTimeZoneNameTypeIndex)i); trie.put(name, nameinfo, status); // trie.put() takes ownership of the key if (U_FAILURE(status)) { return; } } } } public: struct ZNamesLoader; }; struct ZNames::ZNamesLoader : public ResourceSink { const UChar *names[UTZNM_INDEX_COUNT]; ZNamesLoader() { clear(); } virtual ~ZNamesLoader(); /** Reset for loading another set of names. */ void clear() { uprv_memcpy(names, EMPTY_NAMES, sizeof(names)); } void loadMetaZone(const UResourceBundle* zoneStrings, const UnicodeString& mzID, UErrorCode& errorCode) { if (U_FAILURE(errorCode)) { return; } char key[ZID_KEY_MAX + 1]; mergeTimeZoneKey(mzID, key); loadNames(zoneStrings, key, errorCode); } void loadTimeZone(const UResourceBundle* zoneStrings, const UnicodeString& tzID, UErrorCode& errorCode) { // Replace "/" with ":". UnicodeString uKey(tzID); for (int32_t i = 0; i < uKey.length(); i++) { if (uKey.charAt(i) == (UChar)0x2F) { uKey.setCharAt(i, (UChar)0x3A); } } char key[ZID_KEY_MAX + 1]; uKey.extract(0, uKey.length(), key, sizeof(key), US_INV); loadNames(zoneStrings, key, errorCode); } void loadNames(const UResourceBundle* zoneStrings, const char* key, UErrorCode& errorCode) { U_ASSERT(zoneStrings != NULL); U_ASSERT(key != NULL); U_ASSERT(key[0] != '\0'); UErrorCode localStatus = U_ZERO_ERROR; clear(); ures_getAllItemsWithFallback(zoneStrings, key, *this, localStatus); // Ignore errors, but propogate possible warnings. if (U_SUCCESS(localStatus)) { errorCode = localStatus; } } void setNameIfEmpty(const char* key, const ResourceValue* value, UErrorCode& errorCode) { UTimeZoneNameTypeIndex type = nameTypeFromKey(key); if (type == UTZNM_INDEX_UNKNOWN) { return; } if (names[type] == NULL) { int32_t length; // 'NO_NAME' indicates internally that this field should remain empty. It will be // replaced by 'NULL' in getNames() names[type] = (value == NULL) ? NO_NAME : value->getString(length, errorCode); } } virtual void put(const char* key, ResourceValue& value, UBool /*noFallback*/, UErrorCode &errorCode) { ResourceTable namesTable = value.getTable(errorCode); if (U_FAILURE(errorCode)) { return; } for (int32_t i = 0; namesTable.getKeyAndValue(i, key, value); ++i) { if (value.isNoInheritanceMarker()) { setNameIfEmpty(key, NULL, errorCode); } else { setNameIfEmpty(key, &value, errorCode); } } } static UTimeZoneNameTypeIndex nameTypeFromKey(const char *key) { char c0, c1; if ((c0 = key[0]) == 0 || (c1 = key[1]) == 0 || key[2] != 0) { return UTZNM_INDEX_UNKNOWN; } if (c0 == 'l') { return c1 == 'g' ? UTZNM_INDEX_LONG_GENERIC : c1 == 's' ? UTZNM_INDEX_LONG_STANDARD : c1 == 'd' ? UTZNM_INDEX_LONG_DAYLIGHT : UTZNM_INDEX_UNKNOWN; } else if (c0 == 's') { return c1 == 'g' ? UTZNM_INDEX_SHORT_GENERIC : c1 == 's' ? UTZNM_INDEX_SHORT_STANDARD : c1 == 'd' ? UTZNM_INDEX_SHORT_DAYLIGHT : UTZNM_INDEX_UNKNOWN; } else if (c0 == 'e' && c1 == 'c') { return UTZNM_INDEX_EXEMPLAR_LOCATION; } return UTZNM_INDEX_UNKNOWN; } /** * Returns an array of names. It is the caller's responsibility to copy the data into a * permanent location, as the returned array is owned by the loader instance and may be * cleared or leave scope. * * This is different than Java, where the array will no longer be modified and null * may be returned. */ const UChar** getNames() { // Remove 'NO_NAME' references in the array and replace with 'NULL' for (int32_t i = 0; i < UTZNM_INDEX_COUNT; ++i) { if (names[i] == NO_NAME) { names[i] = NULL; } } return names; } }; ZNames::ZNamesLoader::~ZNamesLoader() {} // --------------------------------------------------- // The meta zone ID enumeration class // --------------------------------------------------- class MetaZoneIDsEnumeration : public StringEnumeration { public: MetaZoneIDsEnumeration(); MetaZoneIDsEnumeration(const UVector& mzIDs); MetaZoneIDsEnumeration(UVector* mzIDs); virtual ~MetaZoneIDsEnumeration(); static UClassID U_EXPORT2 getStaticClassID(void); virtual UClassID getDynamicClassID(void) const; virtual const UnicodeString* snext(UErrorCode& status); virtual void reset(UErrorCode& status); virtual int32_t count(UErrorCode& status) const; private: int32_t fLen; int32_t fPos; const UVector* fMetaZoneIDs; UVector *fLocalVector; }; UOBJECT_DEFINE_RTTI_IMPLEMENTATION(MetaZoneIDsEnumeration) MetaZoneIDsEnumeration::MetaZoneIDsEnumeration() : fLen(0), fPos(0), fMetaZoneIDs(NULL), fLocalVector(NULL) { } MetaZoneIDsEnumeration::MetaZoneIDsEnumeration(const UVector& mzIDs) : fPos(0), fMetaZoneIDs(&mzIDs), fLocalVector(NULL) { fLen = fMetaZoneIDs->size(); } MetaZoneIDsEnumeration::MetaZoneIDsEnumeration(UVector *mzIDs) : fLen(0), fPos(0), fMetaZoneIDs(mzIDs), fLocalVector(mzIDs) { if (fMetaZoneIDs) { fLen = fMetaZoneIDs->size(); } } const UnicodeString* MetaZoneIDsEnumeration::snext(UErrorCode& status) { if (U_SUCCESS(status) && fMetaZoneIDs != NULL && fPos < fLen) { unistr.setTo((const UChar*)fMetaZoneIDs->elementAt(fPos++), -1); return &unistr; } return NULL; } void MetaZoneIDsEnumeration::reset(UErrorCode& /*status*/) { fPos = 0; } int32_t MetaZoneIDsEnumeration::count(UErrorCode& /*status*/) const { return fLen; } MetaZoneIDsEnumeration::~MetaZoneIDsEnumeration() { if (fLocalVector) { delete fLocalVector; } } // --------------------------------------------------- // ZNameSearchHandler // --------------------------------------------------- class ZNameSearchHandler : public TextTrieMapSearchResultHandler { public: ZNameSearchHandler(uint32_t types); virtual ~ZNameSearchHandler(); UBool handleMatch(int32_t matchLength, const CharacterNode *node, UErrorCode &status); TimeZoneNames::MatchInfoCollection* getMatches(int32_t& maxMatchLen); private: uint32_t fTypes; int32_t fMaxMatchLen; TimeZoneNames::MatchInfoCollection* fResults; }; ZNameSearchHandler::ZNameSearchHandler(uint32_t types) : fTypes(types), fMaxMatchLen(0), fResults(NULL) { } ZNameSearchHandler::~ZNameSearchHandler() { if (fResults != NULL) { delete fResults; } } UBool ZNameSearchHandler::handleMatch(int32_t matchLength, const CharacterNode *node, UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } if (node->hasValues()) { int32_t valuesCount = node->countValues(); for (int32_t i = 0; i < valuesCount; i++) { ZNameInfo *nameinfo = (ZNameInfo *)node->getValue(i); if (nameinfo == NULL) { continue; } if ((nameinfo->type & fTypes) != 0) { // matches a requested type if (fResults == NULL) { fResults = new TimeZoneNames::MatchInfoCollection(); if (fResults == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } } if (U_SUCCESS(status)) { U_ASSERT(fResults != NULL); if (nameinfo->tzID) { fResults->addZone(nameinfo->type, matchLength, UnicodeString(nameinfo->tzID, -1), status); } else { U_ASSERT(nameinfo->mzID); fResults->addMetaZone(nameinfo->type, matchLength, UnicodeString(nameinfo->mzID, -1), status); } if (U_SUCCESS(status) && matchLength > fMaxMatchLen) { fMaxMatchLen = matchLength; } } } } } return TRUE; } TimeZoneNames::MatchInfoCollection* ZNameSearchHandler::getMatches(int32_t& maxMatchLen) { // give the ownership to the caller TimeZoneNames::MatchInfoCollection* results = fResults; maxMatchLen = fMaxMatchLen; // reset fResults = NULL; fMaxMatchLen = 0; return results; } // --------------------------------------------------- // TimeZoneNamesImpl // // TimeZoneNames implementation class. This is the main // part of this module. // --------------------------------------------------- U_CDECL_BEGIN /** * Deleter for ZNames */ static void U_CALLCONV deleteZNames(void *obj) { if (obj != EMPTY) { delete (ZNames*) obj; } } /** * Deleter for ZNameInfo */ static void U_CALLCONV deleteZNameInfo(void *obj) { uprv_free(obj); } U_CDECL_END TimeZoneNamesImpl::TimeZoneNamesImpl(const Locale& locale, UErrorCode& status) : fLocale(locale), fZoneStrings(NULL), fTZNamesMap(NULL), fMZNamesMap(NULL), fNamesTrieFullyLoaded(FALSE), fNamesFullyLoaded(FALSE), fNamesTrie(TRUE, deleteZNameInfo) { initialize(locale, status); } void TimeZoneNamesImpl::initialize(const Locale& locale, UErrorCode& status) { if (U_FAILURE(status)) { return; } // Load zoneStrings bundle UErrorCode tmpsts = U_ZERO_ERROR; // OK with fallback warning.. fZoneStrings = ures_open(U_ICUDATA_ZONE, locale.getName(), &tmpsts); fZoneStrings = ures_getByKeyWithFallback(fZoneStrings, gZoneStrings, fZoneStrings, &tmpsts); if (U_FAILURE(tmpsts)) { status = tmpsts; cleanup(); return; } // Initialize hashtables holding time zone/meta zone names fMZNamesMap = uhash_open(uhash_hashUChars, uhash_compareUChars, NULL, &status); fTZNamesMap = uhash_open(uhash_hashUChars, uhash_compareUChars, NULL, &status); if (U_FAILURE(status)) { cleanup(); return; } uhash_setValueDeleter(fMZNamesMap, deleteZNames); uhash_setValueDeleter(fTZNamesMap, deleteZNames); // no key deleters for name maps // preload zone strings for the default zone TimeZone *tz = TimeZone::createDefault(); const UChar *tzID = ZoneMeta::getCanonicalCLDRID(*tz); if (tzID != NULL) { loadStrings(UnicodeString(tzID), status); } delete tz; return; } /* * This method updates the cache and must be called with a lock, * except initializer. */ void TimeZoneNamesImpl::loadStrings(const UnicodeString& tzCanonicalID, UErrorCode& status) { loadTimeZoneNames(tzCanonicalID, status); LocalPointer mzIDs(getAvailableMetaZoneIDs(tzCanonicalID, status)); if (U_FAILURE(status)) { return; } U_ASSERT(!mzIDs.isNull()); const UnicodeString *mzID; while (((mzID = mzIDs->snext(status)) != NULL) && U_SUCCESS(status)) { loadMetaZoneNames(*mzID, status); } } TimeZoneNamesImpl::~TimeZoneNamesImpl() { cleanup(); } void TimeZoneNamesImpl::cleanup() { if (fZoneStrings != NULL) { ures_close(fZoneStrings); fZoneStrings = NULL; } if (fMZNamesMap != NULL) { uhash_close(fMZNamesMap); fMZNamesMap = NULL; } if (fTZNamesMap != NULL) { uhash_close(fTZNamesMap); fTZNamesMap = NULL; } } UBool TimeZoneNamesImpl::operator==(const TimeZoneNames& other) const { if (this == &other) { return TRUE; } // No implementation for now return FALSE; } TimeZoneNames* TimeZoneNamesImpl::clone() const { UErrorCode status = U_ZERO_ERROR; return new TimeZoneNamesImpl(fLocale, status); } StringEnumeration* TimeZoneNamesImpl::getAvailableMetaZoneIDs(UErrorCode& status) const { return TimeZoneNamesImpl::_getAvailableMetaZoneIDs(status); } // static implementation of getAvailableMetaZoneIDs(UErrorCode&) StringEnumeration* TimeZoneNamesImpl::_getAvailableMetaZoneIDs(UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } const UVector* mzIDs = ZoneMeta::getAvailableMetazoneIDs(); if (mzIDs == NULL) { return new MetaZoneIDsEnumeration(); } return new MetaZoneIDsEnumeration(*mzIDs); } StringEnumeration* TimeZoneNamesImpl::getAvailableMetaZoneIDs(const UnicodeString& tzID, UErrorCode& status) const { return TimeZoneNamesImpl::_getAvailableMetaZoneIDs(tzID, status); } // static implementation of getAvailableMetaZoneIDs(const UnicodeString&, UErrorCode&) StringEnumeration* TimeZoneNamesImpl::_getAvailableMetaZoneIDs(const UnicodeString& tzID, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } const UVector* mappings = ZoneMeta::getMetazoneMappings(tzID); if (mappings == NULL) { return new MetaZoneIDsEnumeration(); } MetaZoneIDsEnumeration *senum = NULL; UVector* mzIDs = new UVector(NULL, uhash_compareUChars, status); if (mzIDs == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_SUCCESS(status)) { U_ASSERT(mzIDs != NULL); for (int32_t i = 0; U_SUCCESS(status) && i < mappings->size(); i++) { OlsonToMetaMappingEntry *map = (OlsonToMetaMappingEntry *)mappings->elementAt(i); const UChar *mzID = map->mzid; if (!mzIDs->contains((void *)mzID)) { mzIDs->addElement((void *)mzID, status); } } if (U_SUCCESS(status)) { senum = new MetaZoneIDsEnumeration(mzIDs); } else { delete mzIDs; } } return senum; } UnicodeString& TimeZoneNamesImpl::getMetaZoneID(const UnicodeString& tzID, UDate date, UnicodeString& mzID) const { return TimeZoneNamesImpl::_getMetaZoneID(tzID, date, mzID); } // static implementation of getMetaZoneID UnicodeString& TimeZoneNamesImpl::_getMetaZoneID(const UnicodeString& tzID, UDate date, UnicodeString& mzID) { ZoneMeta::getMetazoneID(tzID, date, mzID); return mzID; } UnicodeString& TimeZoneNamesImpl::getReferenceZoneID(const UnicodeString& mzID, const char* region, UnicodeString& tzID) const { return TimeZoneNamesImpl::_getReferenceZoneID(mzID, region, tzID); } // static implementaion of getReferenceZoneID UnicodeString& TimeZoneNamesImpl::_getReferenceZoneID(const UnicodeString& mzID, const char* region, UnicodeString& tzID) { ZoneMeta::getZoneIdByMetazone(mzID, UnicodeString(region, -1, US_INV), tzID); return tzID; } UnicodeString& TimeZoneNamesImpl::getMetaZoneDisplayName(const UnicodeString& mzID, UTimeZoneNameType type, UnicodeString& name) const { name.setToBogus(); // cleanup result. if (mzID.isEmpty()) { return name; } ZNames *znames = NULL; TimeZoneNamesImpl *nonConstThis = const_cast(this); { Mutex lock(&gDataMutex); UErrorCode status = U_ZERO_ERROR; znames = nonConstThis->loadMetaZoneNames(mzID, status); if (U_FAILURE(status)) { return name; } } if (znames != NULL) { const UChar* s = znames->getName(type); if (s != NULL) { name.setTo(TRUE, s, -1); } } return name; } UnicodeString& TimeZoneNamesImpl::getTimeZoneDisplayName(const UnicodeString& tzID, UTimeZoneNameType type, UnicodeString& name) const { name.setToBogus(); // cleanup result. if (tzID.isEmpty()) { return name; } ZNames *tznames = NULL; TimeZoneNamesImpl *nonConstThis = const_cast(this); { Mutex lock(&gDataMutex); UErrorCode status = U_ZERO_ERROR; tznames = nonConstThis->loadTimeZoneNames(tzID, status); if (U_FAILURE(status)) { return name; } } if (tznames != NULL) { const UChar *s = tznames->getName(type); if (s != NULL) { name.setTo(TRUE, s, -1); } } return name; } UnicodeString& TimeZoneNamesImpl::getExemplarLocationName(const UnicodeString& tzID, UnicodeString& name) const { name.setToBogus(); // cleanup result. const UChar* locName = NULL; ZNames *tznames = NULL; TimeZoneNamesImpl *nonConstThis = const_cast(this); { Mutex lock(&gDataMutex); UErrorCode status = U_ZERO_ERROR; tznames = nonConstThis->loadTimeZoneNames(tzID, status); if (U_FAILURE(status)) { return name; } } if (tznames != NULL) { locName = tznames->getName(UTZNM_EXEMPLAR_LOCATION); } if (locName != NULL) { name.setTo(TRUE, locName, -1); } return name; } // Merge the MZ_PREFIX and mzId static void mergeTimeZoneKey(const UnicodeString& mzID, char* result) { if (mzID.isEmpty()) { result[0] = '\0'; return; } char mzIdChar[ZID_KEY_MAX + 1]; int32_t keyLen; int32_t prefixLen = uprv_strlen(gMZPrefix); keyLen = mzID.extract(0, mzID.length(), mzIdChar, ZID_KEY_MAX + 1, US_INV); uprv_memcpy((void *)result, (void *)gMZPrefix, prefixLen); uprv_memcpy((void *)(result + prefixLen), (void *)mzIdChar, keyLen); result[keyLen + prefixLen] = '\0'; } /* * This method updates the cache and must be called with a lock */ ZNames* TimeZoneNamesImpl::loadMetaZoneNames(const UnicodeString& mzID, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } U_ASSERT(mzID.length() <= ZID_KEY_MAX - MZ_PREFIX_LEN); UChar mzIDKey[ZID_KEY_MAX + 1]; mzID.extract(mzIDKey, ZID_KEY_MAX + 1, status); U_ASSERT(U_SUCCESS(status)); // already checked length above mzIDKey[mzID.length()] = 0; void* mznames = uhash_get(fMZNamesMap, mzIDKey); if (mznames == NULL) { ZNames::ZNamesLoader loader; loader.loadMetaZone(fZoneStrings, mzID, status); mznames = ZNames::createMetaZoneAndPutInCache(fMZNamesMap, loader.getNames(), mzID, status); if (U_FAILURE(status)) { return NULL; } } if (mznames != EMPTY) { return (ZNames*)mznames; } else { return NULL; } } /* * This method updates the cache and must be called with a lock */ ZNames* TimeZoneNamesImpl::loadTimeZoneNames(const UnicodeString& tzID, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } U_ASSERT(tzID.length() <= ZID_KEY_MAX); UChar tzIDKey[ZID_KEY_MAX + 1]; int32_t tzIDKeyLen = tzID.extract(tzIDKey, ZID_KEY_MAX + 1, status); U_ASSERT(U_SUCCESS(status)); // already checked length above tzIDKey[tzIDKeyLen] = 0; void *tznames = uhash_get(fTZNamesMap, tzIDKey); if (tznames == NULL) { ZNames::ZNamesLoader loader; loader.loadTimeZone(fZoneStrings, tzID, status); tznames = ZNames::createTimeZoneAndPutInCache(fTZNamesMap, loader.getNames(), tzID, status); if (U_FAILURE(status)) { return NULL; } } // tznames is never EMPTY return (ZNames*)tznames; } TimeZoneNames::MatchInfoCollection* TimeZoneNamesImpl::find(const UnicodeString& text, int32_t start, uint32_t types, UErrorCode& status) const { ZNameSearchHandler handler(types); TimeZoneNames::MatchInfoCollection* matches; TimeZoneNamesImpl* nonConstThis = const_cast(this); // Synchronize so that data is not loaded multiple times. // TODO: Consider more fine-grained synchronization. { Mutex lock(&gDataMutex); // First try of lookup. matches = doFind(handler, text, start, status); if (U_FAILURE(status)) { return NULL; } if (matches != NULL) { return matches; } // All names are not yet loaded into the trie. // We may have loaded names for formatting several time zones, // and might be parsing one of those. // Populate the parsing trie from all of the already-loaded names. nonConstThis->addAllNamesIntoTrie(status); // Second try of lookup. matches = doFind(handler, text, start, status); if (U_FAILURE(status)) { return NULL; } if (matches != NULL) { return matches; } // There are still some names we haven't loaded into the trie yet. // Load everything now. nonConstThis->internalLoadAllDisplayNames(status); nonConstThis->addAllNamesIntoTrie(status); nonConstThis->fNamesTrieFullyLoaded = TRUE; if (U_FAILURE(status)) { return NULL; } // Third try: we must return this one. return doFind(handler, text, start, status); } } TimeZoneNames::MatchInfoCollection* TimeZoneNamesImpl::doFind(ZNameSearchHandler& handler, const UnicodeString& text, int32_t start, UErrorCode& status) const { fNamesTrie.search(text, start, (TextTrieMapSearchResultHandler *)&handler, status); if (U_FAILURE(status)) { return NULL; } int32_t maxLen = 0; TimeZoneNames::MatchInfoCollection* matches = handler.getMatches(maxLen); if (matches != NULL && ((maxLen == (text.length() - start)) || fNamesTrieFullyLoaded)) { // perfect match, or no more names available return matches; } delete matches; return NULL; } // Caller must synchronize. void TimeZoneNamesImpl::addAllNamesIntoTrie(UErrorCode& status) { if (U_FAILURE(status)) return; int32_t pos; const UHashElement* element; pos = UHASH_FIRST; while ((element = uhash_nextElement(fMZNamesMap, &pos)) != NULL) { if (element->value.pointer == EMPTY) { continue; } UChar* mzID = (UChar*) element->key.pointer; ZNames* znames = (ZNames*) element->value.pointer; znames->addAsMetaZoneIntoTrie(mzID, fNamesTrie, status); if (U_FAILURE(status)) { return; } } pos = UHASH_FIRST; while ((element = uhash_nextElement(fTZNamesMap, &pos)) != NULL) { if (element->value.pointer == EMPTY) { continue; } UChar* tzID = (UChar*) element->key.pointer; ZNames* znames = (ZNames*) element->value.pointer; znames->addAsTimeZoneIntoTrie(tzID, fNamesTrie, status); if (U_FAILURE(status)) { return; } } } U_CDECL_BEGIN static void U_CALLCONV deleteZNamesLoader(void* obj) { if (obj == DUMMY_LOADER) { return; } const ZNames::ZNamesLoader* loader = (const ZNames::ZNamesLoader*) obj; delete loader; } U_CDECL_END struct TimeZoneNamesImpl::ZoneStringsLoader : public ResourceSink { TimeZoneNamesImpl& tzn; UHashtable* keyToLoader; ZoneStringsLoader(TimeZoneNamesImpl& _tzn, UErrorCode& status) : tzn(_tzn) { keyToLoader = uhash_open(uhash_hashChars, uhash_compareChars, NULL, &status); if (U_FAILURE(status)) { return; } uhash_setKeyDeleter(keyToLoader, uprv_free); uhash_setValueDeleter(keyToLoader, deleteZNamesLoader); } virtual ~ZoneStringsLoader(); void* createKey(const char* key, UErrorCode& status) { int32_t len = sizeof(char) * (uprv_strlen(key) + 1); char* newKey = (char*) uprv_malloc(len); if (newKey == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return NULL; } uprv_memcpy(newKey, key, len); newKey[len-1] = '\0'; return (void*) newKey; } UBool isMetaZone(const char* key) { return (uprv_strlen(key) >= MZ_PREFIX_LEN && uprv_memcmp(key, gMZPrefix, MZ_PREFIX_LEN) == 0); } UnicodeString mzIDFromKey(const char* key) { return UnicodeString(key + MZ_PREFIX_LEN, uprv_strlen(key) - MZ_PREFIX_LEN, US_INV); } UnicodeString tzIDFromKey(const char* key) { UnicodeString tzID(key, -1, US_INV); // Replace all colons ':' with slashes '/' for (int i=0; ivalue.pointer == DUMMY_LOADER) { continue; } ZNames::ZNamesLoader* loader = (ZNames::ZNamesLoader*) element->value.pointer; char* key = (char*) element->key.pointer; if (isMetaZone(key)) { UnicodeString mzID = mzIDFromKey(key); ZNames::createMetaZoneAndPutInCache(tzn.fMZNamesMap, loader->getNames(), mzID, status); } else { UnicodeString tzID = tzIDFromKey(key); ZNames::createTimeZoneAndPutInCache(tzn.fTZNamesMap, loader->getNames(), tzID, status); } if (U_FAILURE(status)) { return; } } } void consumeNamesTable(const char *key, ResourceValue &value, UBool noFallback, UErrorCode &status) { if (U_FAILURE(status)) { return; } void* loader = uhash_get(keyToLoader, key); if (loader == NULL) { if (isMetaZone(key)) { UnicodeString mzID = mzIDFromKey(key); void* cacheVal = uhash_get(tzn.fMZNamesMap, mzID.getTerminatedBuffer()); if (cacheVal != NULL) { // We have already loaded the names for this meta zone. loader = (void*) DUMMY_LOADER; } else { loader = (void*) new ZNames::ZNamesLoader(); if (loader == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } } } else { UnicodeString tzID = tzIDFromKey(key); void* cacheVal = uhash_get(tzn.fTZNamesMap, tzID.getTerminatedBuffer()); if (cacheVal != NULL) { // We have already loaded the names for this time zone. loader = (void*) DUMMY_LOADER; } else { loader = (void*) new ZNames::ZNamesLoader(); if (loader == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } } } void* newKey = createKey(key, status); if (U_FAILURE(status)) { deleteZNamesLoader(loader); return; } uhash_put(keyToLoader, newKey, loader, &status); if (U_FAILURE(status)) { return; } } if (loader != DUMMY_LOADER) { // Let the ZNamesLoader consume the names table. ((ZNames::ZNamesLoader*)loader)->put(key, value, noFallback, status); } } virtual void put(const char *key, ResourceValue &value, UBool noFallback, UErrorCode &status) { ResourceTable timeZonesTable = value.getTable(status); if (U_FAILURE(status)) { return; } for (int32_t i = 0; timeZonesTable.getKeyAndValue(i, key, value); ++i) { U_ASSERT(!value.isNoInheritanceMarker()); if (value.getType() == URES_TABLE) { consumeNamesTable(key, value, noFallback, status); } else { // Ignore fields that aren't tables (e.g., fallbackFormat and regionFormatStandard). // All time zone fields are tables. } if (U_FAILURE(status)) { return; } } } }; // Virtual destructors must be defined out of line. TimeZoneNamesImpl::ZoneStringsLoader::~ZoneStringsLoader() { uhash_close(keyToLoader); } void TimeZoneNamesImpl::loadAllDisplayNames(UErrorCode& status) { if (U_FAILURE(status)) return; { Mutex lock(&gDataMutex); internalLoadAllDisplayNames(status); } } void TimeZoneNamesImpl::getDisplayNames(const UnicodeString& tzID, const UTimeZoneNameType types[], int32_t numTypes, UDate date, UnicodeString dest[], UErrorCode& status) const { if (U_FAILURE(status)) return; if (tzID.isEmpty()) { return; } void* tznames = NULL; void* mznames = NULL; TimeZoneNamesImpl *nonConstThis = const_cast(this); // Load the time zone strings { Mutex lock(&gDataMutex); tznames = (void*) nonConstThis->loadTimeZoneNames(tzID, status); if (U_FAILURE(status)) { return; } } U_ASSERT(tznames != NULL); // Load the values into the dest array for (int i = 0; i < numTypes; i++) { UTimeZoneNameType type = types[i]; const UChar* name = ((ZNames*)tznames)->getName(type); if (name == NULL) { if (mznames == NULL) { // Load the meta zone name UnicodeString mzID; getMetaZoneID(tzID, date, mzID); if (mzID.isEmpty()) { mznames = (void*) EMPTY; } else { // Load the meta zone strings // Mutex is scoped to the "else" statement Mutex lock(&gDataMutex); mznames = (void*) nonConstThis->loadMetaZoneNames(mzID, status); if (U_FAILURE(status)) { return; } // Note: when the metazone doesn't exist, in Java, loadMetaZoneNames returns // a dummy object instead of NULL. if (mznames == NULL) { mznames = (void*) EMPTY; } } } U_ASSERT(mznames != NULL); if (mznames != EMPTY) { name = ((ZNames*)mznames)->getName(type); } } if (name != NULL) { dest[i].setTo(TRUE, name, -1); } else { dest[i].setToBogus(); } } } // Caller must synchronize. void TimeZoneNamesImpl::internalLoadAllDisplayNames(UErrorCode& status) { if (!fNamesFullyLoaded) { fNamesFullyLoaded = TRUE; ZoneStringsLoader loader(*this, status); loader.load(status); if (U_FAILURE(status)) { return; } const UnicodeString *id; // load strings for all zones StringEnumeration *tzIDs = TimeZone::createTimeZoneIDEnumeration( UCAL_ZONE_TYPE_CANONICAL, NULL, NULL, status); if (U_SUCCESS(status)) { while ((id = tzIDs->snext(status)) != NULL) { if (U_FAILURE(status)) { break; } UnicodeString copy(*id); void* value = uhash_get(fTZNamesMap, copy.getTerminatedBuffer()); if (value == NULL) { // loadStrings also loads related metazone strings loadStrings(*id, status); } } } if (tzIDs != NULL) { delete tzIDs; } } } static const UChar gEtcPrefix[] = { 0x45, 0x74, 0x63, 0x2F }; // "Etc/" static const int32_t gEtcPrefixLen = 4; static const UChar gSystemVPrefix[] = { 0x53, 0x79, 0x73, 0x74, 0x65, 0x6D, 0x56, 0x2F }; // "SystemV/ static const int32_t gSystemVPrefixLen = 8; static const UChar gRiyadh8[] = { 0x52, 0x69, 0x79, 0x61, 0x64, 0x68, 0x38 }; // "Riyadh8" static const int32_t gRiyadh8Len = 7; UnicodeString& U_EXPORT2 TimeZoneNamesImpl::getDefaultExemplarLocationName(const UnicodeString& tzID, UnicodeString& name) { if (tzID.isEmpty() || tzID.startsWith(gEtcPrefix, gEtcPrefixLen) || tzID.startsWith(gSystemVPrefix, gSystemVPrefixLen) || tzID.indexOf(gRiyadh8, gRiyadh8Len, 0) > 0) { name.setToBogus(); return name; } int32_t sep = tzID.lastIndexOf((UChar)0x2F /* '/' */); if (sep > 0 && sep + 1 < tzID.length()) { name.setTo(tzID, sep + 1); name.findAndReplace(UnicodeString((UChar)0x5f /* _ */), UnicodeString((UChar)0x20 /* space */)); } else { name.setToBogus(); } return name; } // --------------------------------------------------- // TZDBTimeZoneNames and its supporting classes // // TZDBTimeZoneNames is an implementation class of // TimeZoneNames holding the IANA tz database abbreviations. // --------------------------------------------------- class TZDBNames : public UMemory { public: virtual ~TZDBNames(); static TZDBNames* createInstance(UResourceBundle* rb, const char* key); const UChar* getName(UTimeZoneNameType type) const; const char** getParseRegions(int32_t& numRegions) const; protected: TZDBNames(const UChar** names, char** regions, int32_t numRegions); private: const UChar** fNames; char** fRegions; int32_t fNumRegions; }; TZDBNames::TZDBNames(const UChar** names, char** regions, int32_t numRegions) : fNames(names), fRegions(regions), fNumRegions(numRegions) { } TZDBNames::~TZDBNames() { if (fNames != NULL) { uprv_free(fNames); } if (fRegions != NULL) { char **p = fRegions; for (int32_t i = 0; i < fNumRegions; p++, i++) { uprv_free(*p); } uprv_free(fRegions); } } TZDBNames* TZDBNames::createInstance(UResourceBundle* rb, const char* key) { if (rb == NULL || key == NULL || *key == 0) { return NULL; } UErrorCode status = U_ZERO_ERROR; const UChar **names = NULL; char** regions = NULL; int32_t numRegions = 0; int32_t len = 0; UResourceBundle* rbTable = NULL; rbTable = ures_getByKey(rb, key, rbTable, &status); if (U_FAILURE(status)) { return NULL; } names = (const UChar **)uprv_malloc(sizeof(const UChar*) * TZDBNAMES_KEYS_SIZE); UBool isEmpty = TRUE; if (names != NULL) { for (int32_t i = 0; i < TZDBNAMES_KEYS_SIZE; i++) { status = U_ZERO_ERROR; const UChar *value = ures_getStringByKey(rbTable, TZDBNAMES_KEYS[i], &len, &status); if (U_FAILURE(status) || len == 0) { names[i] = NULL; } else { names[i] = value; isEmpty = FALSE; } } } if (isEmpty) { if (names != NULL) { uprv_free(names); } return NULL; } UResourceBundle *regionsRes = ures_getByKey(rbTable, "parseRegions", NULL, &status); UBool regionError = FALSE; if (U_SUCCESS(status)) { numRegions = ures_getSize(regionsRes); if (numRegions > 0) { regions = (char**)uprv_malloc(sizeof(char*) * numRegions); if (regions != NULL) { char **pRegion = regions; for (int32_t i = 0; i < numRegions; i++, pRegion++) { *pRegion = NULL; } // filling regions pRegion = regions; for (int32_t i = 0; i < numRegions; i++, pRegion++) { status = U_ZERO_ERROR; const UChar *uregion = ures_getStringByIndex(regionsRes, i, &len, &status); if (U_FAILURE(status)) { regionError = TRUE; break; } *pRegion = (char*)uprv_malloc(sizeof(char) * (len + 1)); if (*pRegion == NULL) { regionError = TRUE; break; } u_UCharsToChars(uregion, *pRegion, len); (*pRegion)[len] = 0; } } } } ures_close(regionsRes); ures_close(rbTable); if (regionError) { if (names != NULL) { uprv_free(names); } if (regions != NULL) { char **p = regions; for (int32_t i = 0; i < numRegions; p++, i++) { uprv_free(*p); } uprv_free(regions); } return NULL; } return new TZDBNames(names, regions, numRegions); } const UChar* TZDBNames::getName(UTimeZoneNameType type) const { if (fNames == NULL) { return NULL; } const UChar *name = NULL; switch(type) { case UTZNM_SHORT_STANDARD: name = fNames[0]; break; case UTZNM_SHORT_DAYLIGHT: name = fNames[1]; break; default: name = NULL; } return name; } const char** TZDBNames::getParseRegions(int32_t& numRegions) const { if (fRegions == NULL) { numRegions = 0; } else { numRegions = fNumRegions; } return (const char**)fRegions; } U_CDECL_BEGIN /** * TZDBNameInfo stores metazone name information for the IANA abbreviations * in the trie */ typedef struct TZDBNameInfo { const UChar* mzID; UTimeZoneNameType type; UBool ambiguousType; const char** parseRegions; int32_t nRegions; } TZDBNameInfo; U_CDECL_END class TZDBNameSearchHandler : public TextTrieMapSearchResultHandler { public: TZDBNameSearchHandler(uint32_t types, const char* region); virtual ~TZDBNameSearchHandler(); UBool handleMatch(int32_t matchLength, const CharacterNode *node, UErrorCode &status); TimeZoneNames::MatchInfoCollection* getMatches(int32_t& maxMatchLen); private: uint32_t fTypes; int32_t fMaxMatchLen; TimeZoneNames::MatchInfoCollection* fResults; const char* fRegion; }; TZDBNameSearchHandler::TZDBNameSearchHandler(uint32_t types, const char* region) : fTypes(types), fMaxMatchLen(0), fResults(NULL), fRegion(region) { } TZDBNameSearchHandler::~TZDBNameSearchHandler() { if (fResults != NULL) { delete fResults; } } UBool TZDBNameSearchHandler::handleMatch(int32_t matchLength, const CharacterNode *node, UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } TZDBNameInfo *match = NULL; TZDBNameInfo *defaultRegionMatch = NULL; if (node->hasValues()) { int32_t valuesCount = node->countValues(); for (int32_t i = 0; i < valuesCount; i++) { TZDBNameInfo *ninfo = (TZDBNameInfo *)node->getValue(i); if (ninfo == NULL) { continue; } if ((ninfo->type & fTypes) != 0) { // Some tz database abbreviations are ambiguous. For example, // CST means either Central Standard Time or China Standard Time. // Unlike CLDR time zone display names, this implementation // does not use unique names. And TimeZoneFormat does not expect // multiple results returned for the same time zone type. // For this reason, this implementation resolve one among same // zone type with a same name at this level. if (ninfo->parseRegions == NULL) { // parseRegions == null means this is the default metazone // mapping for the abbreviation. if (defaultRegionMatch == NULL) { match = defaultRegionMatch = ninfo; } } else { UBool matchRegion = FALSE; // non-default metazone mapping for an abbreviation // comes with applicable regions. For example, the default // metazone mapping for "CST" is America_Central, // but if region is one of CN/MO/TW, "CST" is parsed // as metazone China (China Standard Time). for (int32_t i = 0; i < ninfo->nRegions; i++) { const char *region = ninfo->parseRegions[i]; if (uprv_strcmp(fRegion, region) == 0) { match = ninfo; matchRegion = TRUE; break; } } if (matchRegion) { break; } if (match == NULL) { match = ninfo; } } } } if (match != NULL) { UTimeZoneNameType ntype = match->type; // Note: Workaround for duplicated standard/daylight names // The tz database contains a few zones sharing a // same name for both standard time and daylight saving // time. For example, Australia/Sydney observes DST, // but "EST" is used for both standard and daylight. // When both SHORT_STANDARD and SHORT_DAYLIGHT are included // in the find operation, we cannot tell which one was // actually matched. // TimeZoneFormat#parse returns a matched name type (standard // or daylight) and DateFormat implementation uses the info to // to adjust actual time. To avoid false type information, // this implementation replaces the name type with SHORT_GENERIC. if (match->ambiguousType && (ntype == UTZNM_SHORT_STANDARD || ntype == UTZNM_SHORT_DAYLIGHT) && (fTypes & UTZNM_SHORT_STANDARD) != 0 && (fTypes & UTZNM_SHORT_DAYLIGHT) != 0) { ntype = UTZNM_SHORT_GENERIC; } if (fResults == NULL) { fResults = new TimeZoneNames::MatchInfoCollection(); if (fResults == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } } if (U_SUCCESS(status)) { U_ASSERT(fResults != NULL); U_ASSERT(match->mzID != NULL); fResults->addMetaZone(ntype, matchLength, UnicodeString(match->mzID, -1), status); if (U_SUCCESS(status) && matchLength > fMaxMatchLen) { fMaxMatchLen = matchLength; } } } } return TRUE; } TimeZoneNames::MatchInfoCollection* TZDBNameSearchHandler::getMatches(int32_t& maxMatchLen) { // give the ownership to the caller TimeZoneNames::MatchInfoCollection* results = fResults; maxMatchLen = fMaxMatchLen; // reset fResults = NULL; fMaxMatchLen = 0; return results; } U_CDECL_BEGIN /** * Deleter for TZDBNames */ static void U_CALLCONV deleteTZDBNames(void *obj) { if (obj != EMPTY) { delete (TZDBNames *)obj; } } static void U_CALLCONV initTZDBNamesMap(UErrorCode &status) { gTZDBNamesMap = uhash_open(uhash_hashUChars, uhash_compareUChars, NULL, &status); if (U_FAILURE(status)) { gTZDBNamesMap = NULL; return; } // no key deleters for tzdb name maps uhash_setValueDeleter(gTZDBNamesMap, deleteTZDBNames); ucln_i18n_registerCleanup(UCLN_I18N_TZDBTIMEZONENAMES, tzdbTimeZoneNames_cleanup); } /** * Deleter for TZDBNameInfo */ static void U_CALLCONV deleteTZDBNameInfo(void *obj) { if (obj != NULL) { uprv_free(obj); } } static void U_CALLCONV prepareFind(UErrorCode &status) { if (U_FAILURE(status)) { return; } gTZDBNamesTrie = new TextTrieMap(TRUE, deleteTZDBNameInfo); if (gTZDBNamesTrie == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return; } const UnicodeString *mzID; StringEnumeration *mzIDs = TimeZoneNamesImpl::_getAvailableMetaZoneIDs(status); if (U_SUCCESS(status)) { while ((mzID = mzIDs->snext(status)) && U_SUCCESS(status)) { const TZDBNames *names = TZDBTimeZoneNames::getMetaZoneNames(*mzID, status); if (U_FAILURE(status)) { break; } if (names == NULL) { continue; } const UChar *std = names->getName(UTZNM_SHORT_STANDARD); const UChar *dst = names->getName(UTZNM_SHORT_DAYLIGHT); if (std == NULL && dst == NULL) { continue; } int32_t numRegions = 0; const char **parseRegions = names->getParseRegions(numRegions); // The tz database contains a few zones sharing a // same name for both standard time and daylight saving // time. For example, Australia/Sydney observes DST, // but "EST" is used for both standard and daylight. // we need to store the information for later processing. UBool ambiguousType = (std != NULL && dst != NULL && u_strcmp(std, dst) == 0); const UChar *uMzID = ZoneMeta::findMetaZoneID(*mzID); if (std != NULL) { TZDBNameInfo *stdInf = (TZDBNameInfo *)uprv_malloc(sizeof(TZDBNameInfo)); if (stdInf == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } stdInf->mzID = uMzID; stdInf->type = UTZNM_SHORT_STANDARD; stdInf->ambiguousType = ambiguousType; stdInf->parseRegions = parseRegions; stdInf->nRegions = numRegions; gTZDBNamesTrie->put(std, stdInf, status); } if (U_SUCCESS(status) && dst != NULL) { TZDBNameInfo *dstInf = (TZDBNameInfo *)uprv_malloc(sizeof(TZDBNameInfo)); if (dstInf == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } dstInf->mzID = uMzID; dstInf->type = UTZNM_SHORT_DAYLIGHT; dstInf->ambiguousType = ambiguousType; dstInf->parseRegions = parseRegions; dstInf->nRegions = numRegions; gTZDBNamesTrie->put(dst, dstInf, status); } } } delete mzIDs; if (U_FAILURE(status)) { delete gTZDBNamesTrie; gTZDBNamesTrie = NULL; return; } ucln_i18n_registerCleanup(UCLN_I18N_TZDBTIMEZONENAMES, tzdbTimeZoneNames_cleanup); } U_CDECL_END TZDBTimeZoneNames::TZDBTimeZoneNames(const Locale& locale) : fLocale(locale) { UBool useWorld = TRUE; const char* region = fLocale.getCountry(); int32_t regionLen = uprv_strlen(region); if (regionLen == 0) { UErrorCode status = U_ZERO_ERROR; char loc[ULOC_FULLNAME_CAPACITY]; uloc_addLikelySubtags(fLocale.getName(), loc, sizeof(loc), &status); regionLen = uloc_getCountry(loc, fRegion, sizeof(fRegion), &status); if (U_SUCCESS(status) && regionLen < (int32_t)sizeof(fRegion)) { useWorld = FALSE; } } else if (regionLen < (int32_t)sizeof(fRegion)) { uprv_strcpy(fRegion, region); useWorld = FALSE; } if (useWorld) { uprv_strcpy(fRegion, "001"); } } TZDBTimeZoneNames::~TZDBTimeZoneNames() { } UBool TZDBTimeZoneNames::operator==(const TimeZoneNames& other) const { if (this == &other) { return TRUE; } // No implementation for now return FALSE; } TimeZoneNames* TZDBTimeZoneNames::clone() const { return new TZDBTimeZoneNames(fLocale); } StringEnumeration* TZDBTimeZoneNames::getAvailableMetaZoneIDs(UErrorCode& status) const { return TimeZoneNamesImpl::_getAvailableMetaZoneIDs(status); } StringEnumeration* TZDBTimeZoneNames::getAvailableMetaZoneIDs(const UnicodeString& tzID, UErrorCode& status) const { return TimeZoneNamesImpl::_getAvailableMetaZoneIDs(tzID, status); } UnicodeString& TZDBTimeZoneNames::getMetaZoneID(const UnicodeString& tzID, UDate date, UnicodeString& mzID) const { return TimeZoneNamesImpl::_getMetaZoneID(tzID, date, mzID); } UnicodeString& TZDBTimeZoneNames::getReferenceZoneID(const UnicodeString& mzID, const char* region, UnicodeString& tzID) const { return TimeZoneNamesImpl::_getReferenceZoneID(mzID, region, tzID); } UnicodeString& TZDBTimeZoneNames::getMetaZoneDisplayName(const UnicodeString& mzID, UTimeZoneNameType type, UnicodeString& name) const { name.setToBogus(); if (mzID.isEmpty()) { return name; } UErrorCode status = U_ZERO_ERROR; const TZDBNames *tzdbNames = TZDBTimeZoneNames::getMetaZoneNames(mzID, status); if (U_SUCCESS(status)) { if (tzdbNames != NULL) { const UChar *s = tzdbNames->getName(type); if (s != NULL) { name.setTo(TRUE, s, -1); } } } return name; } UnicodeString& TZDBTimeZoneNames::getTimeZoneDisplayName(const UnicodeString& /* tzID */, UTimeZoneNameType /* type */, UnicodeString& name) const { // No abbreviations associated a zone directly for now. name.setToBogus(); return name; } TZDBTimeZoneNames::MatchInfoCollection* TZDBTimeZoneNames::find(const UnicodeString& text, int32_t start, uint32_t types, UErrorCode& status) const { umtx_initOnce(gTZDBNamesTrieInitOnce, &prepareFind, status); if (U_FAILURE(status)) { return NULL; } TZDBNameSearchHandler handler(types, fRegion); gTZDBNamesTrie->search(text, start, (TextTrieMapSearchResultHandler *)&handler, status); if (U_FAILURE(status)) { return NULL; } int32_t maxLen = 0; return handler.getMatches(maxLen); } const TZDBNames* TZDBTimeZoneNames::getMetaZoneNames(const UnicodeString& mzID, UErrorCode& status) { umtx_initOnce(gTZDBNamesMapInitOnce, &initTZDBNamesMap, status); if (U_FAILURE(status)) { return NULL; } TZDBNames* tzdbNames = NULL; UChar mzIDKey[ZID_KEY_MAX + 1]; mzID.extract(mzIDKey, ZID_KEY_MAX + 1, status); U_ASSERT(status == U_ZERO_ERROR); // already checked length above mzIDKey[mzID.length()] = 0; umtx_lock(&gTZDBNamesMapLock); { void *cacheVal = uhash_get(gTZDBNamesMap, mzIDKey); if (cacheVal == NULL) { UResourceBundle *zoneStringsRes = ures_openDirect(U_ICUDATA_ZONE, "tzdbNames", &status); zoneStringsRes = ures_getByKey(zoneStringsRes, gZoneStrings, zoneStringsRes, &status); if (U_SUCCESS(status)) { char key[ZID_KEY_MAX + 1]; mergeTimeZoneKey(mzID, key); tzdbNames = TZDBNames::createInstance(zoneStringsRes, key); if (tzdbNames == NULL) { cacheVal = (void *)EMPTY; } else { cacheVal = tzdbNames; } // Use the persistent ID as the resource key, so we can // avoid duplications. // TODO: Is there a more efficient way, like intern() in Java? void* newKey = (void*) ZoneMeta::findMetaZoneID(mzID); if (newKey != NULL) { uhash_put(gTZDBNamesMap, newKey, cacheVal, &status); if (U_FAILURE(status)) { if (tzdbNames != NULL) { delete tzdbNames; tzdbNames = NULL; } } } else { // Should never happen with a valid input if (tzdbNames != NULL) { // It's not possible that we get a valid tzdbNames with unknown ID. // But just in case.. delete tzdbNames; tzdbNames = NULL; } } } ures_close(zoneStringsRes); } else if (cacheVal != EMPTY) { tzdbNames = (TZDBNames *)cacheVal; } } umtx_unlock(&gTZDBNamesMapLock); return tzdbNames; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof