/* ******************************************************************************* * Copyright (C) 2016 and later: Unicode, Inc. and others. * License & terms of use: http://www.unicode.org/copyright.html ******************************************************************************* * * File DTPTNGEN.CPP * ******************************************************************************* */ #include "unicode/utypes.h" #if !UCONFIG_NO_FORMATTING #include "unicode/datefmt.h" #include "unicode/decimfmt.h" #include "unicode/dtfmtsym.h" #include "unicode/dtptngen.h" #include "unicode/simpleformatter.h" #include "unicode/smpdtfmt.h" #include "unicode/udat.h" #include "unicode/udatpg.h" #include "unicode/uniset.h" #include "unicode/uloc.h" #include "unicode/ures.h" #include "unicode/ustring.h" #include "unicode/rep.h" #include "cpputils.h" #include "mutex.h" #include "umutex.h" #include "cmemory.h" #include "cstring.h" #include "locbased.h" #include "gregoimp.h" #include "hash.h" #include "uhash.h" #include "uresimp.h" #include "dtptngen_impl.h" #include "ucln_in.h" #include "charstr.h" #if U_CHARSET_FAMILY==U_EBCDIC_FAMILY /** * If we are on EBCDIC, use an iterator which will * traverse the bundles in ASCII order. */ #define U_USE_ASCII_BUNDLE_ITERATOR #define U_SORT_ASCII_BUNDLE_ITERATOR #endif #if defined(U_USE_ASCII_BUNDLE_ITERATOR) #include "unicode/ustring.h" #include "uarrsort.h" struct UResAEntry { UChar *key; UResourceBundle *item; }; struct UResourceBundleAIterator { UResourceBundle *bund; UResAEntry *entries; int32_t num; int32_t cursor; }; /* Must be C linkage to pass function pointer to the sort function */ U_CDECL_BEGIN static int32_t U_CALLCONV ures_a_codepointSort(const void *context, const void *left, const void *right) { //CompareContext *cmp=(CompareContext *)context; return u_strcmp(((const UResAEntry *)left)->key, ((const UResAEntry *)right)->key); } U_CDECL_END static void ures_a_open(UResourceBundleAIterator *aiter, UResourceBundle *bund, UErrorCode *status) { if(U_FAILURE(*status)) { return; } aiter->bund = bund; aiter->num = ures_getSize(aiter->bund); aiter->cursor = 0; #if !defined(U_SORT_ASCII_BUNDLE_ITERATOR) aiter->entries = NULL; #else aiter->entries = (UResAEntry*)uprv_malloc(sizeof(UResAEntry)*aiter->num); for(int i=0;inum;i++) { aiter->entries[i].item = ures_getByIndex(aiter->bund, i, NULL, status); const char *akey = ures_getKey(aiter->entries[i].item); int32_t len = uprv_strlen(akey)+1; aiter->entries[i].key = (UChar*)uprv_malloc(len*sizeof(UChar)); u_charsToUChars(akey, aiter->entries[i].key, len); } uprv_sortArray(aiter->entries, aiter->num, sizeof(UResAEntry), ures_a_codepointSort, NULL, TRUE, status); #endif } static void ures_a_close(UResourceBundleAIterator *aiter) { #if defined(U_SORT_ASCII_BUNDLE_ITERATOR) for(int i=0;inum;i++) { uprv_free(aiter->entries[i].key); ures_close(aiter->entries[i].item); } #endif } static const UChar *ures_a_getNextString(UResourceBundleAIterator *aiter, int32_t *len, const char **key, UErrorCode *err) { #if !defined(U_SORT_ASCII_BUNDLE_ITERATOR) return ures_getNextString(aiter->bund, len, key, err); #else if(U_FAILURE(*err)) return NULL; UResourceBundle *item = aiter->entries[aiter->cursor].item; const UChar* ret = ures_getString(item, len, err); *key = ures_getKey(item); aiter->cursor++; return ret; #endif } #endif U_NAMESPACE_BEGIN // ***************************************************************************** // class DateTimePatternGenerator // ***************************************************************************** static const UChar Canonical_Items[] = { // GyQMwWEdDFHmsSv CAP_G, LOW_Y, CAP_Q, CAP_M, LOW_W, CAP_W, CAP_E, LOW_D, CAP_D, CAP_F, CAP_H, LOW_M, LOW_S, CAP_S, LOW_V, 0 }; static const dtTypeElem dtTypes[] = { // patternChar, field, type, minLen, weight {CAP_G, UDATPG_ERA_FIELD, DT_SHORT, 1, 3,}, {CAP_G, UDATPG_ERA_FIELD, DT_LONG, 4, 0}, {LOW_Y, UDATPG_YEAR_FIELD, DT_NUMERIC, 1, 20}, {CAP_Y, UDATPG_YEAR_FIELD, DT_NUMERIC + DT_DELTA, 1, 20}, {LOW_U, UDATPG_YEAR_FIELD, DT_NUMERIC + 2*DT_DELTA, 1, 20}, {LOW_R, UDATPG_YEAR_FIELD, DT_NUMERIC + 3*DT_DELTA, 1, 20}, {CAP_U, UDATPG_YEAR_FIELD, DT_SHORT, 1, 3}, {CAP_U, UDATPG_YEAR_FIELD, DT_LONG, 4, 0}, {CAP_U, UDATPG_YEAR_FIELD, DT_NARROW, 5, 0}, {CAP_Q, UDATPG_QUARTER_FIELD, DT_NUMERIC, 1, 2}, {CAP_Q, UDATPG_QUARTER_FIELD, DT_SHORT, 3, 0}, {CAP_Q, UDATPG_QUARTER_FIELD, DT_LONG, 4, 0}, {LOW_Q, UDATPG_QUARTER_FIELD, DT_NUMERIC + DT_DELTA, 1, 2}, {LOW_Q, UDATPG_QUARTER_FIELD, DT_SHORT + DT_DELTA, 3, 0}, {LOW_Q, UDATPG_QUARTER_FIELD, DT_LONG + DT_DELTA, 4, 0}, {CAP_M, UDATPG_MONTH_FIELD, DT_NUMERIC, 1, 2}, {CAP_M, UDATPG_MONTH_FIELD, DT_SHORT, 3, 0}, {CAP_M, UDATPG_MONTH_FIELD, DT_LONG, 4, 0}, {CAP_M, UDATPG_MONTH_FIELD, DT_NARROW, 5, 0}, {CAP_L, UDATPG_MONTH_FIELD, DT_NUMERIC + DT_DELTA, 1, 2}, {CAP_L, UDATPG_MONTH_FIELD, DT_SHORT - DT_DELTA, 3, 0}, {CAP_L, UDATPG_MONTH_FIELD, DT_LONG - DT_DELTA, 4, 0}, {CAP_L, UDATPG_MONTH_FIELD, DT_NARROW - DT_DELTA, 5, 0}, {LOW_L, UDATPG_MONTH_FIELD, DT_NUMERIC + DT_DELTA, 1, 1}, {LOW_W, UDATPG_WEEK_OF_YEAR_FIELD, DT_NUMERIC, 1, 2}, {CAP_W, UDATPG_WEEK_OF_MONTH_FIELD, DT_NUMERIC + DT_DELTA, 1, 0}, {CAP_E, UDATPG_WEEKDAY_FIELD, DT_SHORT, 1, 3}, {CAP_E, UDATPG_WEEKDAY_FIELD, DT_LONG, 4, 0}, {CAP_E, UDATPG_WEEKDAY_FIELD, DT_NARROW, 5, 0}, {LOW_C, UDATPG_WEEKDAY_FIELD, DT_NUMERIC + 2*DT_DELTA, 1, 2}, {LOW_C, UDATPG_WEEKDAY_FIELD, DT_SHORT - 2*DT_DELTA, 3, 0}, {LOW_C, UDATPG_WEEKDAY_FIELD, DT_LONG - 2*DT_DELTA, 4, 0}, {LOW_C, UDATPG_WEEKDAY_FIELD, DT_NARROW - 2*DT_DELTA, 5, 0}, {LOW_E, UDATPG_WEEKDAY_FIELD, DT_NUMERIC + DT_DELTA, 1, 2}, // LOW_E is currently not used in CLDR data, should not be canonical {LOW_E, UDATPG_WEEKDAY_FIELD, DT_SHORT - DT_DELTA, 3, 0}, {LOW_E, UDATPG_WEEKDAY_FIELD, DT_LONG - DT_DELTA, 4, 0}, {LOW_E, UDATPG_WEEKDAY_FIELD, DT_NARROW - DT_DELTA, 5, 0}, {LOW_D, UDATPG_DAY_FIELD, DT_NUMERIC, 1, 2}, {CAP_D, UDATPG_DAY_OF_YEAR_FIELD, DT_NUMERIC + DT_DELTA, 1, 3}, {CAP_F, UDATPG_DAY_OF_WEEK_IN_MONTH_FIELD, DT_NUMERIC + 2*DT_DELTA, 1, 0}, {LOW_G, UDATPG_DAY_FIELD, DT_NUMERIC + 3*DT_DELTA, 1, 20}, // really internal use, so we don't care {LOW_A, UDATPG_DAYPERIOD_FIELD, DT_SHORT, 1, 0}, {CAP_H, UDATPG_HOUR_FIELD, DT_NUMERIC + 10*DT_DELTA, 1, 2}, // 24 hour {LOW_K, UDATPG_HOUR_FIELD, DT_NUMERIC + 11*DT_DELTA, 1, 2}, // 24 hour {LOW_H, UDATPG_HOUR_FIELD, DT_NUMERIC, 1, 2}, // 12 hour {CAP_K, UDATPG_HOUR_FIELD, DT_NUMERIC + DT_DELTA, 1, 2}, // 12 hour {LOW_M, UDATPG_MINUTE_FIELD, DT_NUMERIC, 1, 2}, {LOW_S, UDATPG_SECOND_FIELD, DT_NUMERIC, 1, 2}, {CAP_S, UDATPG_FRACTIONAL_SECOND_FIELD, DT_NUMERIC + DT_DELTA, 1, 1000}, {CAP_A, UDATPG_SECOND_FIELD, DT_NUMERIC + 2*DT_DELTA, 1, 1000}, {LOW_V, UDATPG_ZONE_FIELD, DT_SHORT - 2*DT_DELTA, 1, 0}, {LOW_V, UDATPG_ZONE_FIELD, DT_LONG - 2*DT_DELTA, 4, 0}, {LOW_Z, UDATPG_ZONE_FIELD, DT_SHORT, 1, 3}, {LOW_Z, UDATPG_ZONE_FIELD, DT_LONG, 4, 0}, {CAP_Z, UDATPG_ZONE_FIELD, DT_NARROW - DT_DELTA, 1, 3}, {CAP_Z, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0}, {CAP_Z, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 5, 0}, {CAP_O, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 1, 0}, {CAP_O, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0}, {CAP_V, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 1, 0}, {CAP_V, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 2, 0}, {CAP_X, UDATPG_ZONE_FIELD, DT_NARROW - DT_DELTA, 1, 0}, {CAP_X, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 2, 0}, {CAP_X, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0}, {LOW_X, UDATPG_ZONE_FIELD, DT_NARROW - DT_DELTA, 1, 0}, {LOW_X, UDATPG_ZONE_FIELD, DT_SHORT - DT_DELTA, 2, 0}, {LOW_X, UDATPG_ZONE_FIELD, DT_LONG - DT_DELTA, 4, 0}, {LOW_J, UDATPG_HOUR_FIELD, DT_NUMERIC, 1, 2}, // 12/24 hour {CAP_J, UDATPG_HOUR_FIELD, DT_NUMERIC, 1, 2}, // 12/24 hour no AM/PM {0, UDATPG_FIELD_COUNT, 0, 0, 0} , // last row of dtTypes[] }; static const char* const CLDR_FIELD_APPEND[] = { "Era", "Year", "Quarter", "Month", "Week", "*", "Day-Of-Week", "Day", "*", "*", "*", "Hour", "Minute", "Second", "*", "Timezone" }; static const char* const CLDR_FIELD_NAME[] = { "era", "year", "quarter", "month", "week", "*", "weekday", "*", "*", "day", "dayperiod", "hour", "minute", "second", "*", "zone" }; static const char* const Resource_Fields[] = { "day", "dayperiod", "era", "hour", "minute", "month", "second", "week", "weekday", "year", "zone", "quarter" }; // For appendItems static const UChar UDATPG_ItemFormat[]= {0x7B, 0x30, 0x7D, 0x20, 0x251C, 0x7B, 0x32, 0x7D, 0x3A, 0x20, 0x7B, 0x31, 0x7D, 0x2524, 0}; // {0} \u251C{2}: {1}\u2524 //static const UChar repeatedPatterns[6]={CAP_G, CAP_E, LOW_Z, LOW_V, CAP_Q, 0}; // "GEzvQ" static const char DT_DateTimePatternsTag[]="DateTimePatterns"; static const char DT_DateTimeCalendarTag[]="calendar"; static const char DT_DateTimeGregorianTag[]="gregorian"; static const char DT_DateTimeAppendItemsTag[]="appendItems"; static const char DT_DateTimeFieldsTag[]="fields"; static const char DT_DateTimeAvailableFormatsTag[]="availableFormats"; //static const UnicodeString repeatedPattern=UnicodeString(repeatedPatterns); UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DateTimePatternGenerator) UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DTSkeletonEnumeration) UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DTRedundantEnumeration) DateTimePatternGenerator* U_EXPORT2 DateTimePatternGenerator::createInstance(UErrorCode& status) { return createInstance(Locale::getDefault(), status); } DateTimePatternGenerator* U_EXPORT2 DateTimePatternGenerator::createInstance(const Locale& locale, UErrorCode& status) { if (U_FAILURE(status)) { return NULL; } LocalPointer result( new DateTimePatternGenerator(locale, status), status); return U_SUCCESS(status) ? result.orphan() : NULL; } DateTimePatternGenerator* U_EXPORT2 DateTimePatternGenerator::createEmptyInstance(UErrorCode& status) { DateTimePatternGenerator *result = new DateTimePatternGenerator(status); if (result == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } if (U_FAILURE(status)) { delete result; result = NULL; } return result; } DateTimePatternGenerator::DateTimePatternGenerator(UErrorCode &status) : skipMatcher(NULL), fAvailableFormatKeyHash(NULL) { fp = new FormatParser(); dtMatcher = new DateTimeMatcher(); distanceInfo = new DistanceInfo(); patternMap = new PatternMap(); if (fp == NULL || dtMatcher == NULL || distanceInfo == NULL || patternMap == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } } DateTimePatternGenerator::DateTimePatternGenerator(const Locale& locale, UErrorCode &status) : skipMatcher(NULL), fAvailableFormatKeyHash(NULL) { fp = new FormatParser(); dtMatcher = new DateTimeMatcher(); distanceInfo = new DistanceInfo(); patternMap = new PatternMap(); if (fp == NULL || dtMatcher == NULL || distanceInfo == NULL || patternMap == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } else { initData(locale, status); } } DateTimePatternGenerator::DateTimePatternGenerator(const DateTimePatternGenerator& other) : UObject(), skipMatcher(NULL), fAvailableFormatKeyHash(NULL) { fp = new FormatParser(); dtMatcher = new DateTimeMatcher(); distanceInfo = new DistanceInfo(); patternMap = new PatternMap(); *this=other; } DateTimePatternGenerator& DateTimePatternGenerator::operator=(const DateTimePatternGenerator& other) { // reflexive case if (&other == this) { return *this; } pLocale = other.pLocale; fDefaultHourFormatChar = other.fDefaultHourFormatChar; *fp = *(other.fp); dtMatcher->copyFrom(other.dtMatcher->skeleton); *distanceInfo = *(other.distanceInfo); dateTimeFormat = other.dateTimeFormat; decimal = other.decimal; // NUL-terminate for the C API. dateTimeFormat.getTerminatedBuffer(); decimal.getTerminatedBuffer(); delete skipMatcher; if ( other.skipMatcher == NULL ) { skipMatcher = NULL; } else { skipMatcher = new DateTimeMatcher(*other.skipMatcher); } for (int32_t i=0; i< UDATPG_FIELD_COUNT; ++i ) { appendItemFormats[i] = other.appendItemFormats[i]; appendItemNames[i] = other.appendItemNames[i]; // NUL-terminate for the C API. appendItemFormats[i].getTerminatedBuffer(); appendItemNames[i].getTerminatedBuffer(); } UErrorCode status = U_ZERO_ERROR; patternMap->copyFrom(*other.patternMap, status); copyHashtable(other.fAvailableFormatKeyHash, status); return *this; } UBool DateTimePatternGenerator::operator==(const DateTimePatternGenerator& other) const { if (this == &other) { return TRUE; } if ((pLocale==other.pLocale) && (patternMap->equals(*other.patternMap)) && (dateTimeFormat==other.dateTimeFormat) && (decimal==other.decimal)) { for ( int32_t i=0 ; i list; int32_t length; if (value.getType() == URES_STRING) { list.adoptInsteadAndCheckErrorCode( static_cast(uprv_malloc(2 * sizeof(int32_t))), errorCode); if (U_FAILURE(errorCode)) { return; } list[0] = getHourFormatFromUnicodeString(value.getUnicodeString(errorCode)); length = 1; } else { ResourceArray allowedFormats = value.getArray(errorCode); length = allowedFormats.getSize(); list.adoptInsteadAndCheckErrorCode( static_cast(uprv_malloc((length + 1) * sizeof(int32_t))), errorCode); if (U_FAILURE(errorCode)) { return; } for (int32_t k = 0; k < length; ++k) { allowedFormats.getValue(k, value); list[k] = getHourFormatFromUnicodeString(value.getUnicodeString(errorCode)); } } list[length] = ALLOWED_HOUR_FORMAT_UNKNOWN; uhash_put(localeToAllowedHourFormatsMap, const_cast(regionOrLocale), list.orphan(), &errorCode); if (U_FAILURE(errorCode)) { return; } } } } } AllowedHourFormat getHourFormatFromUnicodeString(UnicodeString s) { if (s.length() == 1) { if (s[0] == LOW_H) { return ALLOWED_HOUR_FORMAT_h; } if (s[0] == CAP_H) { return ALLOWED_HOUR_FORMAT_H; } } else if (s.length() == 2) { if (s[0] == LOW_H && s[1] == LOW_B) { return ALLOWED_HOUR_FORMAT_hb; } if (s[0] == CAP_H && s[1] == LOW_B) { return ALLOWED_HOUR_FORMAT_Hb; } if (s[0] == LOW_H && s[1] == CAP_B) { return ALLOWED_HOUR_FORMAT_hB; } if (s[0] == CAP_H && s[1] == CAP_B) { return ALLOWED_HOUR_FORMAT_HB; } } return ALLOWED_HOUR_FORMAT_UNKNOWN; } }; } // namespace AllowedHourFormatsSink::~AllowedHourFormatsSink() {} void DateTimePatternGenerator::loadAllowedHourFormatsData(UErrorCode &status) { if (U_FAILURE(status)) { return; } localeToAllowedHourFormatsMap = uhash_open( uhash_hashChars, uhash_compareChars, NULL, &status); uhash_setValueDeleter(localeToAllowedHourFormatsMap, deleteAllowedHourFormats); LocalUResourceBundlePointer rb(ures_openDirect(NULL, "supplementalData", &status)); AllowedHourFormatsSink sink; // TODO: Currently in the enumeration each table allocates a new array. // Try to reduce the number of memory allocations. Consider storing a // UVector32 with the concatenation of all of the sub-arrays, put the start index // into the hashmap, store 6 single-value sub-arrays right at the beginning of the // vector (at index enum*2) for easy data sharing, copy sub-arrays into runtime // object. Remember to clean up the vector, too. ures_getAllItemsWithFallback(rb.getAlias(), "timeData", sink, status); ucln_i18n_registerCleanup(UCLN_I18N_ALLOWED_HOUR_FORMATS, allowedHourFormatsCleanup); } void DateTimePatternGenerator::getAllowedHourFormats(const Locale &locale, UErrorCode &status) { if (U_FAILURE(status)) { return; } const char *localeID = locale.getName(); char maxLocaleID[ULOC_FULLNAME_CAPACITY]; int32_t length = uloc_addLikelySubtags(localeID, maxLocaleID, ULOC_FULLNAME_CAPACITY, &status); if (U_FAILURE(status)) { return; } else if (length == ULOC_FULLNAME_CAPACITY) { // no room for NUL status = U_BUFFER_OVERFLOW_ERROR; return; } Locale maxLocale = Locale(maxLocaleID); const char *country = maxLocale.getCountry(); if (*country == '\0') { country = "001"; } const char *language = maxLocale.getLanguage(); CharString langCountry; langCountry.append(language, uprv_strlen(language), status); langCountry.append('_', status); langCountry.append(country, uprv_strlen(country), status); int32_t *allowedFormats; allowedFormats = (int32_t *)uhash_get(localeToAllowedHourFormatsMap, langCountry.data()); if (allowedFormats == NULL) { allowedFormats = (int32_t *)uhash_get(localeToAllowedHourFormatsMap, const_cast(country)); } if (allowedFormats != NULL) { // Lookup is successful for (int32_t i = 0; i < UPRV_LENGTHOF(fAllowedHourFormats); ++i) { fAllowedHourFormats[i] = allowedFormats[i]; if (allowedFormats[i] == ALLOWED_HOUR_FORMAT_UNKNOWN) { break; } } } else { // Lookup failed, twice fAllowedHourFormats[0] = ALLOWED_HOUR_FORMAT_H; fAllowedHourFormats[1] = ALLOWED_HOUR_FORMAT_UNKNOWN; } } UnicodeString DateTimePatternGenerator::getSkeleton(const UnicodeString& pattern, UErrorCode& /*status*/) { FormatParser fp; DateTimeMatcher matcher; PtnSkeleton localSkeleton; matcher.set(pattern, &fp, localSkeleton); return localSkeleton.getSkeleton(); } UnicodeString DateTimePatternGenerator::staticGetSkeleton( const UnicodeString& pattern, UErrorCode& /*status*/) { FormatParser fp; DateTimeMatcher matcher; PtnSkeleton localSkeleton; matcher.set(pattern, &fp, localSkeleton); return localSkeleton.getSkeleton(); } UnicodeString DateTimePatternGenerator::getBaseSkeleton(const UnicodeString& pattern, UErrorCode& /*status*/) { FormatParser fp; DateTimeMatcher matcher; PtnSkeleton localSkeleton; matcher.set(pattern, &fp, localSkeleton); return localSkeleton.getBaseSkeleton(); } UnicodeString DateTimePatternGenerator::staticGetBaseSkeleton( const UnicodeString& pattern, UErrorCode& /*status*/) { FormatParser fp; DateTimeMatcher matcher; PtnSkeleton localSkeleton; matcher.set(pattern, &fp, localSkeleton); return localSkeleton.getBaseSkeleton(); } void DateTimePatternGenerator::addICUPatterns(const Locale& locale, UErrorCode& status) { UnicodeString dfPattern; UnicodeString conflictingString; DateFormat* df; if (U_FAILURE(status)) { return; } // Load with ICU patterns for (int32_t i=DateFormat::kFull; i<=DateFormat::kShort; i++) { DateFormat::EStyle style = (DateFormat::EStyle)i; df = DateFormat::createDateInstance(style, locale); SimpleDateFormat* sdf; if (df != NULL && (sdf = dynamic_cast(df)) != NULL) { addPattern(sdf->toPattern(dfPattern), FALSE, conflictingString, status); } // TODO Maybe we should return an error when the date format isn't simple. delete df; if (U_FAILURE(status)) { return; } df = DateFormat::createTimeInstance(style, locale); if (df != NULL && (sdf = dynamic_cast(df)) != NULL) { addPattern(sdf->toPattern(dfPattern), FALSE, conflictingString, status); // HACK for hh:ss if ( i==DateFormat::kMedium ) { hackPattern = dfPattern; } } // TODO Maybe we should return an error when the date format isn't simple. delete df; if (U_FAILURE(status)) { return; } } } void DateTimePatternGenerator::hackTimes(const UnicodeString& hackPattern, UErrorCode& status) { UnicodeString conflictingString; fp->set(hackPattern); UnicodeString mmss; UBool gotMm=FALSE; for (int32_t i=0; iitemNumber; ++i) { UnicodeString field = fp->items[i]; if ( fp->isQuoteLiteral(field) ) { if ( gotMm ) { UnicodeString quoteLiteral; fp->getQuoteLiteral(quoteLiteral, &i); mmss += quoteLiteral; } } else { if (fp->isPatternSeparator(field) && gotMm) { mmss+=field; } else { UChar ch=field.charAt(0); if (ch==LOW_M) { gotMm=TRUE; mmss+=field; } else { if (ch==LOW_S) { if (!gotMm) { break; } mmss+= field; addPattern(mmss, FALSE, conflictingString, status); break; } else { if (gotMm || ch==LOW_Z || ch==CAP_Z || ch==LOW_V || ch==CAP_V) { break; } } } } } } } #define ULOC_LOCALE_IDENTIFIER_CAPACITY (ULOC_FULLNAME_CAPACITY + 1 + ULOC_KEYWORD_AND_VALUES_CAPACITY) static const UChar hourFormatChars[] = { CAP_H, LOW_H, CAP_K, LOW_K, 0 }; // HhKk, the hour format characters void DateTimePatternGenerator::addCLDRData(const Locale& locale, UErrorCode& err) { UResourceBundle *rb, *calTypeBundle, *calBundle; UResourceBundle *patBundle, *fieldBundle, *fBundle; UnicodeString rbPattern, value, field; UnicodeString conflictingPattern; const char *key=NULL; int32_t i; UnicodeString defaultItemFormat(TRUE, UDATPG_ItemFormat, UPRV_LENGTHOF(UDATPG_ItemFormat)-1); // Read-only alias. err = U_ZERO_ERROR; fDefaultHourFormatChar = 0; for (i=0; i0) { hackTimes(hackPattern, err); } } void DateTimePatternGenerator::initHashtable(UErrorCode& err) { if (fAvailableFormatKeyHash!=NULL) { return; } if ((fAvailableFormatKeyHash = new Hashtable(FALSE, err))==NULL) { err=U_MEMORY_ALLOCATION_ERROR; return; } } void DateTimePatternGenerator::setAppendItemFormat(UDateTimePatternField field, const UnicodeString& value) { appendItemFormats[field] = value; // NUL-terminate for the C API. appendItemFormats[field].getTerminatedBuffer(); } const UnicodeString& DateTimePatternGenerator::getAppendItemFormat(UDateTimePatternField field) const { return appendItemFormats[field]; } void DateTimePatternGenerator::setAppendItemName(UDateTimePatternField field, const UnicodeString& value) { appendItemNames[field] = value; // NUL-terminate for the C API. appendItemNames[field].getTerminatedBuffer(); } const UnicodeString& DateTimePatternGenerator:: getAppendItemName(UDateTimePatternField field) const { return appendItemNames[field]; } void DateTimePatternGenerator::getAppendName(UDateTimePatternField field, UnicodeString& value) { value = SINGLE_QUOTE; value += appendItemNames[field]; value += SINGLE_QUOTE; } UnicodeString DateTimePatternGenerator::getBestPattern(const UnicodeString& patternForm, UErrorCode& status) { return getBestPattern(patternForm, UDATPG_MATCH_NO_OPTIONS, status); } UnicodeString DateTimePatternGenerator::getBestPattern(const UnicodeString& patternForm, UDateTimePatternMatchOptions options, UErrorCode& status) { const UnicodeString *bestPattern=NULL; UnicodeString dtFormat; UnicodeString resultPattern; int32_t flags = kDTPGNoFlags; int32_t dateMask=(1<set(patternFormCopy, fp); const PtnSkeleton* specifiedSkeleton=NULL; bestPattern=getBestRaw(*dtMatcher, -1, distanceInfo, &specifiedSkeleton); if ( distanceInfo->missingFieldMask==0 && distanceInfo->extraFieldMask==0 ) { resultPattern = adjustFieldTypes(*bestPattern, specifiedSkeleton, flags, options); return resultPattern; } int32_t neededFields = dtMatcher->getFieldMask(); UnicodeString datePattern=getBestAppending(neededFields & dateMask, flags, options); UnicodeString timePattern=getBestAppending(neededFields & timeMask, flags, options); if (datePattern.length()==0) { if (timePattern.length()==0) { resultPattern.remove(); } else { return timePattern; } } if (timePattern.length()==0) { return datePattern; } resultPattern.remove(); status = U_ZERO_ERROR; dtFormat=getDateTimeFormat(); SimpleFormatter(dtFormat, 2, 2, status).format(timePattern, datePattern, resultPattern, status); return resultPattern; } UnicodeString DateTimePatternGenerator::replaceFieldTypes(const UnicodeString& pattern, const UnicodeString& skeleton, UErrorCode& status) { return replaceFieldTypes(pattern, skeleton, UDATPG_MATCH_NO_OPTIONS, status); } UnicodeString DateTimePatternGenerator::replaceFieldTypes(const UnicodeString& pattern, const UnicodeString& skeleton, UDateTimePatternMatchOptions options, UErrorCode& /*status*/) { dtMatcher->set(skeleton, fp); UnicodeString result = adjustFieldTypes(pattern, NULL, kDTPGNoFlags, options); return result; } void DateTimePatternGenerator::setDecimal(const UnicodeString& newDecimal) { this->decimal = newDecimal; // NUL-terminate for the C API. this->decimal.getTerminatedBuffer(); } const UnicodeString& DateTimePatternGenerator::getDecimal() const { return decimal; } void DateTimePatternGenerator::addCanonicalItems() { UnicodeString conflictingPattern; UErrorCode status = U_ZERO_ERROR; for (int32_t i=0; igetType():NULL, status); UResourceBundle *dateTimePatterns = calData.getByKey(DT_DateTimePatternsTag, status); if (U_FAILURE(status)) return; if (ures_getSize(dateTimePatterns) <= DateFormat::kDateTime) { status = U_INVALID_FORMAT_ERROR; return; } resStr = ures_getStringByIndex(dateTimePatterns, (int32_t)DateFormat::kDateTime, &resStrLen, &status); setDateTimeFormat(UnicodeString(TRUE, resStr, resStrLen)); delete fCalendar; } void DateTimePatternGenerator::setDecimalSymbols(const Locale& locale, UErrorCode& status) { DecimalFormatSymbols dfs = DecimalFormatSymbols(locale, status); if(U_SUCCESS(status)) { decimal = dfs.getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol); // NUL-terminate for the C API. decimal.getTerminatedBuffer(); } } UDateTimePatternConflict DateTimePatternGenerator::addPattern( const UnicodeString& pattern, UBool override, UnicodeString &conflictingPattern, UErrorCode& status) { return addPatternWithSkeleton(pattern, NULL, override, conflictingPattern, status); } // For DateTimePatternGenerator::addPatternWithSkeleton - // If skeletonToUse is specified, then an availableFormats entry is being added. In this case: // 1. We pass that skeleton to matcher.set instead of having it derive a skeleton from the pattern. // 2. If the new entry's skeleton or basePattern does match an existing entry but that entry also had a skeleton specified // (i.e. it was also from availableFormats), then the new entry does not override it regardless of the value of the override // parameter. This prevents later availableFormats entries from a parent locale overriding earlier ones from the actual // specified locale. However, availableFormats entries *should* override entries with matching skeleton whose skeleton was // derived (i.e. entries derived from the standard date/time patters for the specified locale). // 3. When adding the pattern (patternMap->add), we set a new boolean to indicate that the added entry had a // specified skeleton (which sets a new field in the PtnElem in the PatternMap). UDateTimePatternConflict DateTimePatternGenerator::addPatternWithSkeleton( const UnicodeString& pattern, const UnicodeString* skeletonToUse, UBool override, UnicodeString& conflictingPattern, UErrorCode& status) { UnicodeString basePattern; PtnSkeleton skeleton; UDateTimePatternConflict conflictingStatus = UDATPG_NO_CONFLICT; DateTimeMatcher matcher; if ( skeletonToUse == NULL ) { matcher.set(pattern, fp, skeleton); matcher.getBasePattern(basePattern); } else { matcher.set(*skeletonToUse, fp, skeleton); // no longer trims skeleton fields to max len 3, per #7930 matcher.getBasePattern(basePattern); // or perhaps instead: basePattern = *skeletonToUse; } // We only care about base conflicts - and replacing the pattern associated with a base - if: // 1. the conflicting previous base pattern did *not* have an explicit skeleton; in that case the previous // base + pattern combination was derived from either (a) a canonical item, (b) a standard format, or // (c) a pattern specified programmatically with a previous call to addPattern (which would only happen // if we are getting here from a subsequent call to addPattern). // 2. a skeleton is specified for the current pattern, but override=false; in that case we are checking // availableFormats items from root, which should not override any previous entry with the same base. UBool entryHadSpecifiedSkeleton; const UnicodeString *duplicatePattern = patternMap->getPatternFromBasePattern(basePattern, entryHadSpecifiedSkeleton); if (duplicatePattern != NULL && (!entryHadSpecifiedSkeleton || (skeletonToUse != NULL && !override))) { conflictingStatus = UDATPG_BASE_CONFLICT; conflictingPattern = *duplicatePattern; if (!override) { return conflictingStatus; } } // The only time we get here with override=true and skeletonToUse!=null is when adding availableFormats // items from CLDR data. In that case, we don't want an item from a parent locale to replace an item with // same skeleton from the specified locale, so skip the current item if skeletonWasSpecified is true for // the previously-specified conflicting item. const PtnSkeleton* entrySpecifiedSkeleton = NULL; duplicatePattern = patternMap->getPatternFromSkeleton(skeleton, &entrySpecifiedSkeleton); if (duplicatePattern != NULL ) { conflictingStatus = UDATPG_CONFLICT; conflictingPattern = *duplicatePattern; if (!override || (skeletonToUse != NULL && entrySpecifiedSkeleton != NULL)) { return conflictingStatus; } } patternMap->add(basePattern, skeleton, pattern, skeletonToUse != NULL, status); if(U_FAILURE(status)) { return conflictingStatus; } return UDATPG_NO_CONFLICT; } UDateTimePatternField DateTimePatternGenerator::getAppendFormatNumber(const char* field) const { for (int32_t i=0; igetPatternFromSkeleton(*trial.getSkeletonPtr(), &specifiedSkeleton); missingFields->setTo(tempInfo); if (distance==0) { break; } } } // If the best raw match had a specified skeleton and that skeleton was requested by the caller, // then return it too. This generally happens when the caller needs to pass that skeleton // through to adjustFieldTypes so the latter can do a better job. if (bestPattern && specifiedSkeletonPtr) { *specifiedSkeletonPtr = specifiedSkeleton; } return bestPattern; } UnicodeString DateTimePatternGenerator::adjustFieldTypes(const UnicodeString& pattern, const PtnSkeleton* specifiedSkeleton, int32_t flags, UDateTimePatternMatchOptions options) { UnicodeString newPattern; fp->set(pattern); for (int32_t i=0; i < fp->itemNumber; i++) { UnicodeString field = fp->items[i]; if ( fp->isQuoteLiteral(field) ) { UnicodeString quoteLiteral; fp->getQuoteLiteral(quoteLiteral, &i); newPattern += quoteLiteral; } else { if (fp->isPatternSeparator(field)) { newPattern+=field; continue; } int32_t canonicalIndex = fp->getCanonicalIndex(field); if (canonicalIndex < 0) { newPattern+=field; continue; // don't adjust } const dtTypeElem *row = &dtTypes[canonicalIndex]; int32_t typeValue = row->field; // Handle special day periods. if (typeValue == UDATPG_DAYPERIOD_FIELD && flags != 0) { UChar c = NONE; // '0' if (flags & kDTPGSkeletonUsesCapB) { c = CAP_B; } if (flags & kDTPGSkeletonUsesLowB) { c = LOW_B; } if (c != NONE) { for (int32_t i = 0; i < field.length(); ++i) field.setCharAt(i, c); } } if ((flags & kDTPGFixFractionalSeconds) != 0 && typeValue == UDATPG_SECOND_FIELD) { UnicodeString newField=dtMatcher->skeleton.original[UDATPG_FRACTIONAL_SECOND_FIELD]; field = field + decimal + newField; } else if (dtMatcher->skeleton.type[typeValue]!=0) { // Here: // - "reqField" is the field from the originally requested skeleton, with length // "reqFieldLen". // - "field" is the field from the found pattern. // // The adjusted field should consist of characters from the originally requested // skeleton, except in the case of UDATPG_HOUR_FIELD or UDATPG_MONTH_FIELD or // UDATPG_WEEKDAY_FIELD or UDATPG_YEAR_FIELD, in which case it should consist // of characters from the found pattern. // // The length of the adjusted field (adjFieldLen) should match that in the originally // requested skeleton, except that in the following cases the length of the adjusted field // should match that in the found pattern (i.e. the length of this pattern field should // not be adjusted): // 1. typeValue is UDATPG_HOUR_FIELD/MINUTE/SECOND and the corresponding bit in options is // not set (ticket #7180). Note, we may want to implement a similar change for other // numeric fields (MM, dd, etc.) so the default behavior is to get locale preference for // field length, but options bits can be used to override this. // 2. There is a specified skeleton for the found pattern and one of the following is true: // a) The length of the field in the skeleton (skelFieldLen) is equal to reqFieldLen. // b) The pattern field is numeric and the skeleton field is not, or vice versa. UnicodeString reqField = dtMatcher->skeleton.original[typeValue]; int32_t reqFieldLen = reqField.length(); if (reqField.charAt(0) == CAP_E && reqFieldLen < 3) reqFieldLen = 3; // 1-3 for E are equivalent to 3 for c,e int32_t adjFieldLen = reqFieldLen; if ( (typeValue==UDATPG_HOUR_FIELD && (options & UDATPG_MATCH_HOUR_FIELD_LENGTH)==0) || (typeValue==UDATPG_MINUTE_FIELD && (options & UDATPG_MATCH_MINUTE_FIELD_LENGTH)==0) || (typeValue==UDATPG_SECOND_FIELD && (options & UDATPG_MATCH_SECOND_FIELD_LENGTH)==0) ) { adjFieldLen = field.length(); } else if (specifiedSkeleton) { UnicodeString skelField = specifiedSkeleton->original[typeValue]; int32_t skelFieldLen = skelField.length(); UBool patFieldIsNumeric = (row->type > 0); UBool skelFieldIsNumeric = (specifiedSkeleton->type[typeValue] > 0); if (skelFieldLen == reqFieldLen || (patFieldIsNumeric && !skelFieldIsNumeric) || (skelFieldIsNumeric && !patFieldIsNumeric)) { // don't adjust the field length in the found pattern adjFieldLen = field.length(); } } UChar c = (typeValue!= UDATPG_HOUR_FIELD && typeValue!= UDATPG_MONTH_FIELD && typeValue!= UDATPG_WEEKDAY_FIELD && (typeValue!= UDATPG_YEAR_FIELD || reqField.charAt(0)==CAP_Y))? reqField.charAt(0): field.charAt(0); if (typeValue == UDATPG_HOUR_FIELD && (flags & kDTPGSkeletonUsesCapJ) != 0) { c = fDefaultHourFormatChar; } field.remove(); for (int32_t i=adjFieldLen; i>0; --i) { field+=c; } } newPattern+=field; } } return newPattern; } UnicodeString DateTimePatternGenerator::getBestAppending(int32_t missingFields, int32_t flags, UDateTimePatternMatchOptions options) { UnicodeString resultPattern, tempPattern; UErrorCode err=U_ZERO_ERROR; int32_t lastMissingFieldMask=0; if (missingFields!=0) { resultPattern=UnicodeString(); const PtnSkeleton* specifiedSkeleton=NULL; tempPattern = *getBestRaw(*dtMatcher, missingFields, distanceInfo, &specifiedSkeleton); resultPattern = adjustFieldTypes(tempPattern, specifiedSkeleton, flags, options); if ( distanceInfo->missingFieldMask==0 ) { return resultPattern; } while (distanceInfo->missingFieldMask!=0) { // precondition: EVERY single field must work! if ( lastMissingFieldMask == distanceInfo->missingFieldMask ) { break; // cannot find the proper missing field } if (((distanceInfo->missingFieldMask & UDATPG_SECOND_AND_FRACTIONAL_MASK)==UDATPG_FRACTIONAL_MASK) && ((missingFields & UDATPG_SECOND_AND_FRACTIONAL_MASK) == UDATPG_SECOND_AND_FRACTIONAL_MASK)) { resultPattern = adjustFieldTypes(resultPattern, specifiedSkeleton, flags | kDTPGFixFractionalSeconds, options); distanceInfo->missingFieldMask &= ~UDATPG_FRACTIONAL_MASK; continue; } int32_t startingMask = distanceInfo->missingFieldMask; tempPattern = *getBestRaw(*dtMatcher, distanceInfo->missingFieldMask, distanceInfo, &specifiedSkeleton); tempPattern = adjustFieldTypes(tempPattern, specifiedSkeleton, flags, options); int32_t foundMask=startingMask& ~distanceInfo->missingFieldMask; int32_t topField=getTopBitNumber(foundMask); UnicodeString appendName; getAppendName((UDateTimePatternField)topField, appendName); const UnicodeString *values[3] = { &resultPattern, &tempPattern, &appendName }; SimpleFormatter(appendItemFormats[topField], 2, 3, err). formatAndReplace(values, 3, resultPattern, NULL, 0, err); lastMissingFieldMask = distanceInfo->missingFieldMask; } } return resultPattern; } int32_t DateTimePatternGenerator::getTopBitNumber(int32_t foundMask) { if ( foundMask==0 ) { return 0; } int32_t i=0; while (foundMask!=0) { foundMask >>=1; ++i; } if (i-1 >UDATPG_ZONE_FIELD) { return UDATPG_ZONE_FIELD; } else return i-1; } void DateTimePatternGenerator::setAvailableFormat(const UnicodeString &key, UErrorCode& err) { fAvailableFormatKeyHash->puti(key, 1, err); } UBool DateTimePatternGenerator::isAvailableFormatSet(const UnicodeString &key) const { return (UBool)(fAvailableFormatKeyHash->geti(key) == 1); } void DateTimePatternGenerator::copyHashtable(Hashtable *other, UErrorCode &status) { if (other == NULL) { return; } if (fAvailableFormatKeyHash != NULL) { delete fAvailableFormatKeyHash; fAvailableFormatKeyHash = NULL; } initHashtable(status); if(U_FAILURE(status)){ return; } int32_t pos = UHASH_FIRST; const UHashElement* elem = NULL; // walk through the hash table and create a deep clone while((elem = other->nextElement(pos))!= NULL){ const UHashTok otherKeyTok = elem->key; UnicodeString* otherKey = (UnicodeString*)otherKeyTok.pointer; fAvailableFormatKeyHash->puti(*otherKey, 1, status); if(U_FAILURE(status)){ return; } } } StringEnumeration* DateTimePatternGenerator::getSkeletons(UErrorCode& status) const { StringEnumeration* skeletonEnumerator = new DTSkeletonEnumeration(*patternMap, DT_SKELETON, status); return skeletonEnumerator; } const UnicodeString& DateTimePatternGenerator::getPatternForSkeleton(const UnicodeString& skeleton) const { PtnElem *curElem; if (skeleton.length() ==0) { return emptyString; } curElem = patternMap->getHeader(skeleton.charAt(0)); while ( curElem != NULL ) { if ( curElem->skeleton->getSkeleton()==skeleton ) { return curElem->pattern; } curElem=curElem->next; } return emptyString; } StringEnumeration* DateTimePatternGenerator::getBaseSkeletons(UErrorCode& status) const { StringEnumeration* baseSkeletonEnumerator = new DTSkeletonEnumeration(*patternMap, DT_BASESKELETON, status); return baseSkeletonEnumerator; } StringEnumeration* DateTimePatternGenerator::getRedundants(UErrorCode& status) { StringEnumeration* output = new DTRedundantEnumeration(); const UnicodeString *pattern; PatternMapIterator it; for (it.set(*patternMap); it.hasNext(); ) { DateTimeMatcher current = it.next(); pattern = patternMap->getPatternFromSkeleton(*(it.getSkeleton())); if ( isCanonicalItem(*pattern) ) { continue; } if ( skipMatcher == NULL ) { skipMatcher = new DateTimeMatcher(current); } else { *skipMatcher = current; } UnicodeString trial = getBestPattern(current.getPattern(), status); if (trial == *pattern) { ((DTRedundantEnumeration *)output)->add(*pattern, status); } if (current.equals(skipMatcher)) { continue; } } return output; } UBool DateTimePatternGenerator::isCanonicalItem(const UnicodeString& item) const { if ( item.length() != 1 ) { return FALSE; } for (int32_t i=0; iisDupAllowed = other.isDupAllowed; for (int32_t bootIndex=0; bootIndexbasePattern, otherElem->pattern))==NULL) { // out of memory status = U_MEMORY_ALLOCATION_ERROR; return; } if ( this->boot[bootIndex]== NULL ) { this->boot[bootIndex] = curElem; } if ((curElem->skeleton=new PtnSkeleton(*(otherElem->skeleton))) == NULL ) { // out of memory status = U_MEMORY_ALLOCATION_ERROR; return; } curElem->skeletonWasSpecified = otherElem->skeletonWasSpecified; if (prevElem!=NULL) { prevElem->next=curElem; } curElem->next=NULL; prevElem = curElem; otherElem = otherElem->next; } } } PtnElem* PatternMap::getHeader(UChar baseChar) { PtnElem* curElem; if ( (baseChar >= CAP_A) && (baseChar <= CAP_Z) ) { curElem = boot[baseChar-CAP_A]; } else { if ( (baseChar >=LOW_A) && (baseChar <= LOW_Z) ) { curElem = boot[26+baseChar-LOW_A]; } else { return NULL; } } return curElem; } PatternMap::~PatternMap() { for (int32_t i=0; i < MAX_PATTERN_ENTRIES; ++i ) { if (boot[i]!=NULL ) { delete boot[i]; boot[i]=NULL; } } } // PatternMap destructor void PatternMap::add(const UnicodeString& basePattern, const PtnSkeleton& skeleton, const UnicodeString& value,// mapped pattern value UBool skeletonWasSpecified, UErrorCode &status) { UChar baseChar = basePattern.charAt(0); PtnElem *curElem, *baseElem; status = U_ZERO_ERROR; // the baseChar must be A-Z or a-z if ((baseChar >= CAP_A) && (baseChar <= CAP_Z)) { baseElem = boot[baseChar-CAP_A]; } else { if ((baseChar >=LOW_A) && (baseChar <= LOW_Z)) { baseElem = boot[26+baseChar-LOW_A]; } else { status = U_ILLEGAL_CHARACTER; return; } } if (baseElem == NULL) { if ((curElem = new PtnElem(basePattern, value)) == NULL ) { // out of memory status = U_MEMORY_ALLOCATION_ERROR; return; } if (baseChar >= LOW_A) { boot[26 + (baseChar-LOW_A)] = curElem; } else { boot[baseChar-CAP_A] = curElem; } curElem->skeleton = new PtnSkeleton(skeleton); curElem->skeletonWasSpecified = skeletonWasSpecified; } if ( baseElem != NULL ) { curElem = getDuplicateElem(basePattern, skeleton, baseElem); if (curElem == NULL) { // add new element to the list. curElem = baseElem; while( curElem -> next != NULL ) { curElem = curElem->next; } if ((curElem->next = new PtnElem(basePattern, value)) == NULL ) { // out of memory status = U_MEMORY_ALLOCATION_ERROR; return; } curElem=curElem->next; curElem->skeleton = new PtnSkeleton(skeleton); curElem->skeletonWasSpecified = skeletonWasSpecified; } else { // Pattern exists in the list already. if ( !isDupAllowed ) { return; } // Overwrite the value. curElem->pattern = value; // It was a bug that we were not doing the following previously, // though that bug hid other problems by making things partly work. curElem->skeletonWasSpecified = skeletonWasSpecified; } } } // PatternMap::add // Find the pattern from the given basePattern string. const UnicodeString * PatternMap::getPatternFromBasePattern(UnicodeString& basePattern, UBool& skeletonWasSpecified) { // key to search for PtnElem *curElem; if ((curElem=getHeader(basePattern.charAt(0)))==NULL) { return NULL; // no match } do { if ( basePattern.compare(curElem->basePattern)==0 ) { skeletonWasSpecified = curElem->skeletonWasSpecified; return &(curElem->pattern); } curElem=curElem->next; }while (curElem != NULL); return NULL; } // PatternMap::getFromBasePattern // Find the pattern from the given skeleton. // At least when this is called from getBestRaw & addPattern (in which case specifiedSkeletonPtr is non-NULL), // the comparison should be based on skeleton.original (which is unique and tied to the distance measurement in bestRaw) // and not skeleton.baseOriginal (which is not unique); otherwise we may pick a different skeleton than the one with the // optimum distance value in getBestRaw. When this is called from public getRedundants (specifiedSkeletonPtr is NULL), // for now it will continue to compare based on baseOriginal so as not to change the behavior unnecessarily. const UnicodeString * PatternMap::getPatternFromSkeleton(PtnSkeleton& skeleton, const PtnSkeleton** specifiedSkeletonPtr) { // key to search for PtnElem *curElem; if (specifiedSkeletonPtr) { *specifiedSkeletonPtr = NULL; } // find boot entry UChar baseChar='\0'; for (int32_t i=0; iskeleton->original[i].compare(skeleton.original[i]) != 0 ) { break; } } } else { // called from DateTimePatternGenerator::getRedundants, use baseOriginal for (i=0; iskeleton->baseOriginal[i].compare(skeleton.baseOriginal[i]) != 0 ) { break; } } } if (i == UDATPG_FIELD_COUNT) { if (specifiedSkeletonPtr && curElem->skeletonWasSpecified) { *specifiedSkeletonPtr = curElem->skeleton; } return &(curElem->pattern); } curElem=curElem->next; }while (curElem != NULL); return NULL; } UBool PatternMap::equals(const PatternMap& other) { if ( this==&other ) { return TRUE; } for (int32_t bootIndex=0; bootIndexbasePattern != otherElem->basePattern) || (myElem->pattern != otherElem->pattern) ) { return FALSE; } if ((myElem->skeleton!=otherElem->skeleton)&& !myElem->skeleton->equals(*(otherElem->skeleton))) { return FALSE; } myElem = myElem->next; otherElem=otherElem->next; } } return TRUE; } // find any key existing in the mapping table already. // return TRUE if there is an existing key, otherwise return FALSE. PtnElem* PatternMap::getDuplicateElem( const UnicodeString &basePattern, const PtnSkeleton &skeleton, PtnElem *baseElem) { PtnElem *curElem; if ( baseElem == (PtnElem *)NULL ) { return (PtnElem*)NULL; } else { curElem = baseElem; } do { if ( basePattern.compare(curElem->basePattern)==0 ) { UBool isEqual=TRUE; for (int32_t i=0; iskeleton->type[i] != skeleton.type[i] ) { isEqual=FALSE; break; } } if (isEqual) { return curElem; } } curElem = curElem->next; } while( curElem != (PtnElem *)NULL ); // end of the list return (PtnElem*)NULL; } // PatternMap::getDuplicateElem DateTimeMatcher::DateTimeMatcher(void) { } DateTimeMatcher::~DateTimeMatcher() {} DateTimeMatcher::DateTimeMatcher(const DateTimeMatcher& other) { copyFrom(other.skeleton); } void DateTimeMatcher::set(const UnicodeString& pattern, FormatParser* fp) { PtnSkeleton localSkeleton; return set(pattern, fp, localSkeleton); } void DateTimeMatcher::set(const UnicodeString& pattern, FormatParser* fp, PtnSkeleton& skeletonResult) { int32_t i; for (i=0; iset(pattern); for (i=0; i < fp->itemNumber; i++) { UnicodeString field = fp->items[i]; if ( field.charAt(0) == LOW_A ) { continue; // skip 'a' } if ( fp->isQuoteLiteral(field) ) { UnicodeString quoteLiteral; fp->getQuoteLiteral(quoteLiteral, &i); continue; } int32_t canonicalIndex = fp->getCanonicalIndex(field); if (canonicalIndex < 0 ) { continue; } const dtTypeElem *row = &dtTypes[canonicalIndex]; int32_t typeValue = row->field; skeletonResult.original[typeValue]=field; UChar repeatChar = row->patternChar; int32_t repeatCount = row->minLen; // #7930 removes cap at 3 while (repeatCount-- > 0) { skeletonResult.baseOriginal[typeValue] += repeatChar; } int16_t subTypeValue = row->type; if ( row->type > 0) { subTypeValue += field.length(); } skeletonResult.type[typeValue] = subTypeValue; } copyFrom(skeletonResult); } void DateTimeMatcher::getBasePattern(UnicodeString &result ) { result.remove(); // Reset the result first. for (int32_t i=0; iskeleton.type[i]=newSkeleton.type[i]; this->skeleton.original[i]=newSkeleton.original[i]; this->skeleton.baseOriginal[i]=newSkeleton.baseOriginal[i]; } } void DateTimeMatcher::copyFrom() { // same as clear for (int32_t i=0; iskeleton.type[i]=0; this->skeleton.original[i].remove(); this->skeleton.baseOriginal[i].remove(); } } UBool DateTimeMatcher::equals(const DateTimeMatcher* other) const { if (other==NULL) { return FALSE; } for (int32_t i=0; iskeleton.original[i]!=other->skeleton.original[i] ) { return FALSE; } } return TRUE; } int32_t DateTimeMatcher::getFieldMask() { int32_t result=0; for (int32_t i=0; i= pattern.length()) { return DONE; } // check the current char is between A-Z or a-z do { UChar c=pattern.charAt(curLoc); if ( (c>=CAP_A && c<=CAP_Z) || (c>=LOW_A && c<=LOW_Z) ) { curLoc++; } else { startPos = curLoc; *len=1; return ADD_TOKEN; } if ( pattern.charAt(curLoc)!= pattern.charAt(startPos) ) { break; // not the same token } } while(curLoc <= pattern.length()); *len = curLoc-startPos; return ADD_TOKEN; } void FormatParser::set(const UnicodeString& pattern) { int32_t startPos=0; TokenStatus result=START; int32_t len=0; itemNumber =0; do { result = setTokens( pattern, startPos, &len ); if ( result == ADD_TOKEN ) { items[itemNumber++] = UnicodeString(pattern, startPos, len ); startPos += len; } else { break; } } while (result==ADD_TOKEN && itemNumber < MAX_DT_TOKEN); } int32_t FormatParser::getCanonicalIndex(const UnicodeString& s, UBool strict) { int32_t len = s.length(); if (len == 0) { return -1; } UChar ch = s.charAt(0); // Verify that all are the same character. for (int32_t l = 1; l < len; l++) { if (ch != s.charAt(l)) { return -1; } } int32_t i = 0; int32_t bestRow = -1; while (dtTypes[i].patternChar != '\0') { if ( dtTypes[i].patternChar != ch ) { ++i; continue; } bestRow = i; if (dtTypes[i].patternChar != dtTypes[i+1].patternChar) { return i; } if (dtTypes[i+1].minLen <= len) { ++i; continue; } return i; } return strict ? -1 : bestRow; } UBool FormatParser::isQuoteLiteral(const UnicodeString& s) { return (UBool)(s.charAt(0)==SINGLE_QUOTE); } // This function aussumes the current itemIndex points to the quote literal. // Please call isQuoteLiteral prior to this function. void FormatParser::getQuoteLiteral(UnicodeString& quote, int32_t *itemIndex) { int32_t i=*itemIndex; quote.remove(); if (items[i].charAt(0)==SINGLE_QUOTE) { quote += items[i]; ++i; } while ( i < itemNumber ) { if ( items[i].charAt(0)==SINGLE_QUOTE ) { if ( (i+1patternMap=&newPatternMap; } PtnSkeleton* PatternMapIterator::getSkeleton() { if ( nodePtr == NULL ) { return NULL; } else { return nodePtr->skeleton; } } UBool PatternMapIterator::hasNext() { int32_t headIndex=bootIndex; PtnElem *curPtr=nodePtr; if (patternMap==NULL) { return FALSE; } while ( headIndex < MAX_PATTERN_ENTRIES ) { if ( curPtr != NULL ) { if ( curPtr->next != NULL ) { return TRUE; } else { headIndex++; curPtr=NULL; continue; } } else { if ( patternMap->boot[headIndex] != NULL ) { return TRUE; } else { headIndex++; continue; } } } return FALSE; } DateTimeMatcher& PatternMapIterator::next() { while ( bootIndex < MAX_PATTERN_ENTRIES ) { if ( nodePtr != NULL ) { if ( nodePtr->next != NULL ) { nodePtr = nodePtr->next; break; } else { bootIndex++; nodePtr=NULL; continue; } } else { if ( patternMap->boot[bootIndex] != NULL ) { nodePtr = patternMap->boot[bootIndex]; break; } else { bootIndex++; continue; } } } if (nodePtr!=NULL) { matcher->copyFrom(*nodePtr->skeleton); } else { matcher->copyFrom(); } return *matcher; } PtnSkeleton::PtnSkeleton() { } PtnSkeleton::PtnSkeleton(const PtnSkeleton& other) { for (int32_t i=0; itype[i]=other.type[i]; this->original[i]=other.original[i]; this->baseOriginal[i]=other.baseOriginal[i]; } } UBool PtnSkeleton::equals(const PtnSkeleton& other) { for (int32_t i=0; ibasePattern; break; case DT_PATTERN: s=curElem->pattern; break; case DT_SKELETON: curSkeleton=curElem->skeleton; s=curSkeleton->getSkeleton(); break; } if ( !isCanonicalItem(s) ) { fSkeletons->addElement(new UnicodeString(s), status); if (U_FAILURE(status)) { delete fSkeletons; fSkeletons = NULL; return; } } curElem = curElem->next; } } if ((bootIndex==MAX_PATTERN_ENTRIES) && (curElem!=NULL) ) { status = U_BUFFER_OVERFLOW_ERROR; } } const UnicodeString* DTSkeletonEnumeration::snext(UErrorCode& status) { if (U_SUCCESS(status) && pos < fSkeletons->size()) { return (const UnicodeString*)fSkeletons->elementAt(pos++); } return NULL; } void DTSkeletonEnumeration::reset(UErrorCode& /*status*/) { pos=0; } int32_t DTSkeletonEnumeration::count(UErrorCode& /*status*/) const { return (fSkeletons==NULL) ? 0 : fSkeletons->size(); } UBool DTSkeletonEnumeration::isCanonicalItem(const UnicodeString& item) { if ( item.length() != 1 ) { return FALSE; } for (int32_t i=0; isize(); ++i) { if ((s=(UnicodeString *)fSkeletons->elementAt(i))!=NULL) { delete s; } } delete fSkeletons; } DTRedundantEnumeration::DTRedundantEnumeration() { pos=0; fPatterns = NULL; } void DTRedundantEnumeration::add(const UnicodeString& pattern, UErrorCode& status) { if (U_FAILURE(status)) return; if (fPatterns == NULL) { fPatterns = new UVector(status); if (U_FAILURE(status)) { delete fPatterns; fPatterns = NULL; return; } } fPatterns->addElement(new UnicodeString(pattern), status); if (U_FAILURE(status)) { delete fPatterns; fPatterns = NULL; return; } } const UnicodeString* DTRedundantEnumeration::snext(UErrorCode& status) { if (U_SUCCESS(status) && pos < fPatterns->size()) { return (const UnicodeString*)fPatterns->elementAt(pos++); } return NULL; } void DTRedundantEnumeration::reset(UErrorCode& /*status*/) { pos=0; } int32_t DTRedundantEnumeration::count(UErrorCode& /*status*/) const { return (fPatterns==NULL) ? 0 : fPatterns->size(); } UBool DTRedundantEnumeration::isCanonicalItem(const UnicodeString& item) { if ( item.length() != 1 ) { return FALSE; } for (int32_t i=0; isize(); ++i) { if ((s=(UnicodeString *)fPatterns->elementAt(i))!=NULL) { delete s; } } delete fPatterns; } U_NAMESPACE_END #endif /* #if !UCONFIG_NO_FORMATTING */ //eof