/* * Copyright (C) 2016 and later: Unicode, Inc. and others. * License & terms of use: http://www.unicode.org/copyright.html ****************************************************************************** * * File INDIANCAL.CPP ***************************************************************************** */ #include "indiancal.h" #include #if !UCONFIG_NO_FORMATTING #include "mutex.h" #include #include "gregoimp.h" // Math #include "astro.h" // CalendarAstronomer #include "uhash.h" // Debugging #ifdef U_DEBUG_INDIANCAL #include #include #endif U_NAMESPACE_BEGIN // Implementation of the IndianCalendar class //------------------------------------------------------------------------- // Constructors... //------------------------------------------------------------------------- Calendar* IndianCalendar::clone() const { return new IndianCalendar(*this); } IndianCalendar::IndianCalendar(const Locale& aLocale, UErrorCode& success) : Calendar(TimeZone::createDefault(), aLocale, success) { setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. } IndianCalendar::IndianCalendar(const IndianCalendar& other) : Calendar(other) { } IndianCalendar::~IndianCalendar() { } const char *IndianCalendar::getType() const { return "indian"; } static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { // Minimum Greatest Least Maximum // Minimum Maximum { 0, 0, 0, 0}, // ERA { -5000000, -5000000, 5000000, 5000000}, // YEAR { 0, 0, 11, 11}, // MONTH { 1, 1, 52, 53}, // WEEK_OF_YEAR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH { 1, 1, 30, 31}, // DAY_OF_MONTH { 1, 1, 365, 366}, // DAY_OF_YEAR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH }; static const double JULIAN_EPOCH = 1721425.5; static const int32_t INDIAN_ERA_START = 78; static const int32_t INDIAN_YEAR_START = 80; int32_t IndianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { return LIMITS[field][limitType]; } /* * Determine whether the given gregorian year is a Leap year */ static UBool isGregorianLeap(int32_t year) { return ((year % 4) == 0) && (!(((year % 100) == 0) && ((year % 400) != 0))); } //---------------------------------------------------------------------- // Calendar framework //---------------------------------------------------------------------- /* * Return the length (in days) of the given month. * * @param eyear The year in Saka Era * @param month The month(0-based) in Indian calendar */ int32_t IndianCalendar::handleGetMonthLength(int32_t eyear, int32_t month) const { if (month < 0 || month > 11) { eyear += ClockMath::floorDivide(month, 12, month); } if (isGregorianLeap(eyear + INDIAN_ERA_START) && month == 0) { return 31; } if (month >= 1 && month <= 5) { return 31; } return 30; } /* * Return the number of days in the given Indian year * * @param eyear The year in Saka Era. */ int32_t IndianCalendar::handleGetYearLength(int32_t eyear) const { return isGregorianLeap(eyear + INDIAN_ERA_START) ? 366 : 365; } /* * Returns the Julian Day corresponding to gregorian date * * @param year The Gregorian year * @param month The month in Gregorian Year * @param date The date in Gregorian day in month */ static double gregorianToJD(int32_t year, int32_t month, int32_t date) { double julianDay = (JULIAN_EPOCH - 1) + (365 * (year - 1)) + uprv_floor((year - 1) / 4) + (-uprv_floor((year - 1) / 100)) + uprv_floor((year - 1) / 400) + uprv_floor((((367 * month) - 362) / 12) + ((month <= 2) ? 0 : (isGregorianLeap(year) ? -1 : -2) ) + date); return julianDay; } /* * Returns the Gregorian Date corresponding to a given Julian Day * @param jd The Julian Day */ static int32_t* jdToGregorian(double jd, int32_t gregorianDate[3]) { double wjd, depoch, quadricent, dqc, cent, dcent, quad, dquad, yindex, yearday, leapadj; int32_t year, month, day; wjd = uprv_floor(jd - 0.5) + 0.5; depoch = wjd - JULIAN_EPOCH; quadricent = uprv_floor(depoch / 146097); dqc = (int32_t)uprv_floor(depoch) % 146097; cent = uprv_floor(dqc / 36524); dcent = (int32_t)uprv_floor(dqc) % 36524; quad = uprv_floor(dcent / 1461); dquad = (int32_t)uprv_floor(dcent) % 1461; yindex = uprv_floor(dquad / 365); year = (int32_t)((quadricent * 400) + (cent * 100) + (quad * 4) + yindex); if (!((cent == 4) || (yindex == 4))) { year++; } yearday = wjd - gregorianToJD(year, 1, 1); leapadj = ((wjd < gregorianToJD(year, 3, 1)) ? 0 : (isGregorianLeap(year) ? 1 : 2) ); month = (int32_t)uprv_floor((((yearday + leapadj) * 12) + 373) / 367); day = (int32_t)(wjd - gregorianToJD(year, month, 1)) + 1; gregorianDate[0] = year; gregorianDate[1] = month; gregorianDate[2] = day; return gregorianDate; } //------------------------------------------------------------------------- // Functions for converting from field values to milliseconds.... //------------------------------------------------------------------------- static double IndianToJD(int32_t year, int32_t month, int32_t date) { int32_t leapMonth, gyear, m; double start, jd; gyear = year + INDIAN_ERA_START; if(isGregorianLeap(gyear)) { leapMonth = 31; start = gregorianToJD(gyear, 3, 21); } else { leapMonth = 30; start = gregorianToJD(gyear, 3, 22); } if (month == 1) { jd = start + (date - 1); } else { jd = start + leapMonth; m = month - 2; //m = Math.min(m, 5); if (m > 5) { m = 5; } jd += m * 31; if (month >= 8) { m = month - 7; jd += m * 30; } jd += date - 1; } return jd; } /* * Return JD of start of given month/year of Indian Calendar * @param eyear The year in Indian Calendar measured from Saka Era (78 AD). * @param month The month in Indian calendar */ int32_t IndianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /* useMonth */ ) const { //month is 0 based; converting it to 1-based int32_t imonth; // If the month is out of range, adjust it into range, and adjust the extended eyar accordingly if (month < 0 || month > 11) { eyear += (int32_t)ClockMath::floorDivide(month, 12, month); } if(month == 12){ imonth = 1; } else { imonth = month + 1; } double jd = IndianToJD(eyear ,imonth, 1); return (int32_t)jd; } //------------------------------------------------------------------------- // Functions for converting from milliseconds to field values //------------------------------------------------------------------------- int32_t IndianCalendar::handleGetExtendedYear() { int32_t year; if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 } else { year = internalGet(UCAL_YEAR, 1); // Default to year 1 } return year; } /* * Override Calendar to compute several fields specific to the Indian * calendar system. These are: * *
  • ERA *
  • YEAR *
  • MONTH *
  • DAY_OF_MONTH *
  • EXTENDED_YEAR
* * The DAY_OF_WEEK and DOW_LOCAL fields are already set when this * method is called. The getGregorianXxx() methods return Gregorian * calendar equivalents for the given Julian day. */ void IndianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& /* status */) { double jdAtStartOfGregYear; int32_t leapMonth, IndianYear, yday, IndianMonth, IndianDayOfMonth, mday; int32_t gregorianYear; // Stores gregorian date corresponding to Julian day; int32_t gd[3]; gregorianYear = jdToGregorian(julianDay, gd)[0]; // Gregorian date for Julian day IndianYear = gregorianYear - INDIAN_ERA_START; // Year in Saka era jdAtStartOfGregYear = gregorianToJD(gregorianYear, 1, 1); // JD at start of Gregorian year yday = (int32_t)(julianDay - jdAtStartOfGregYear); // Day number in Gregorian year (starting from 0) if (yday < INDIAN_YEAR_START) { // Day is at the end of the preceding Saka year IndianYear -= 1; leapMonth = isGregorianLeap(gregorianYear - 1) ? 31 : 30; // Days in leapMonth this year, previous Gregorian year yday += leapMonth + (31 * 5) + (30 * 3) + 10; } else { leapMonth = isGregorianLeap(gregorianYear) ? 31 : 30; // Days in leapMonth this year yday -= INDIAN_YEAR_START; } if (yday < leapMonth) { IndianMonth = 0; IndianDayOfMonth = yday + 1; } else { mday = yday - leapMonth; if (mday < (31 * 5)) { IndianMonth = (int32_t)uprv_floor(mday / 31) + 1; IndianDayOfMonth = (mday % 31) + 1; } else { mday -= 31 * 5; IndianMonth = (int32_t)uprv_floor(mday / 30) + 6; IndianDayOfMonth = (mday % 30) + 1; } } internalSet(UCAL_ERA, 0); internalSet(UCAL_EXTENDED_YEAR, IndianYear); internalSet(UCAL_YEAR, IndianYear); internalSet(UCAL_MONTH, IndianMonth); internalSet(UCAL_DAY_OF_MONTH, IndianDayOfMonth); internalSet(UCAL_DAY_OF_YEAR, yday + 1); // yday is 0-based } UBool IndianCalendar::inDaylightTime(UErrorCode& status) const { // copied from GregorianCalendar if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) { return FALSE; } // Force an update of the state of the Calendar. ((IndianCalendar*)this)->complete(status); // cast away const return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); } // default century const UDate IndianCalendar::fgSystemDefaultCentury = DBL_MIN; const int32_t IndianCalendar::fgSystemDefaultCenturyYear = -1; UDate IndianCalendar::fgSystemDefaultCenturyStart = DBL_MIN; int32_t IndianCalendar::fgSystemDefaultCenturyStartYear = -1; UBool IndianCalendar::haveDefaultCentury() const { return TRUE; } UDate IndianCalendar::defaultCenturyStart() const { return internalGetDefaultCenturyStart(); } int32_t IndianCalendar::defaultCenturyStartYear() const { return internalGetDefaultCenturyStartYear(); } UDate IndianCalendar::internalGetDefaultCenturyStart() const { // lazy-evaluate systemDefaultCenturyStart UBool needsUpdate; { Mutex m; needsUpdate = (fgSystemDefaultCenturyStart == fgSystemDefaultCentury); } if (needsUpdate) { initializeSystemDefaultCentury(); } // use defaultCenturyStart unless it's the flag value; // then use systemDefaultCenturyStart return fgSystemDefaultCenturyStart; } int32_t IndianCalendar::internalGetDefaultCenturyStartYear() const { // lazy-evaluate systemDefaultCenturyStartYear UBool needsUpdate; { Mutex m; needsUpdate = (fgSystemDefaultCenturyStart == fgSystemDefaultCentury); } if (needsUpdate) { initializeSystemDefaultCentury(); } // use defaultCenturyStart unless it's the flag value; // then use systemDefaultCenturyStartYear return fgSystemDefaultCenturyStartYear; } void IndianCalendar::initializeSystemDefaultCentury() { // initialize systemDefaultCentury and systemDefaultCenturyYear based // on the current time. They'll be set to 80 years before // the current time. // No point in locking as it should be idempotent. if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) { UErrorCode status = U_ZERO_ERROR; IndianCalendar calendar(Locale("@calendar=Indian"),status); if (U_SUCCESS(status)) { calendar.setTime(Calendar::getNow(), status); calendar.add(UCAL_YEAR, -80, status); UDate newStart = calendar.getTime(status); int32_t newYear = calendar.get(UCAL_YEAR, status); { Mutex m; fgSystemDefaultCenturyStart = newStart; fgSystemDefaultCenturyStartYear = newYear; } } // We have no recourse upon failure unless we want to propagate the failure // out. } } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IndianCalendar) U_NAMESPACE_END #endif