/* ******************************************************************************* * Copyright (C) 2016 and later: Unicode, Inc. and others. * License & terms of use: http://www.unicode.org/copyright.html ******************************************************************************* * utf8collationiterator.cpp * * created on: 2012nov12 (from utf16collationiterator.cpp & uitercollationiterator.cpp) * created by: Markus W. Scherer */ #include "unicode/utypes.h" #if !UCONFIG_NO_COLLATION #include "unicode/utf8.h" #include "charstr.h" #include "cmemory.h" #include "collation.h" #include "collationdata.h" #include "collationfcd.h" #include "collationiterator.h" #include "normalizer2impl.h" #include "uassert.h" #include "utf8collationiterator.h" U_NAMESPACE_BEGIN UTF8CollationIterator::~UTF8CollationIterator() {} void UTF8CollationIterator::resetToOffset(int32_t newOffset) { reset(); pos = newOffset; } int32_t UTF8CollationIterator::getOffset() const { return pos; } uint32_t UTF8CollationIterator::handleNextCE32(UChar32 &c, UErrorCode & /*errorCode*/) { if(pos == length) { c = U_SENTINEL; return Collation::FALLBACK_CE32; } // Optimized combination of U8_NEXT_OR_FFFD() and UTRIE2_U8_NEXT32(). c = u8[pos++]; if(c < 0xc0) { // ASCII 00..7F; trail bytes 80..BF map to error values. return trie->data32[c]; } uint8_t t1, t2; if(c < 0xe0 && pos != length && (t1 = (u8[pos] - 0x80)) <= 0x3f) { // U+0080..U+07FF; 00..7F map to error values. uint32_t ce32 = trie->data32[trie->index[(UTRIE2_UTF8_2B_INDEX_2_OFFSET - 0xc0) + c] + t1]; c = ((c & 0x1f) << 6) | t1; ++pos; return ce32; } else if(c <= 0xef && ((pos + 1) < length || length < 0) && (t1 = (u8[pos] - 0x80)) <= 0x3f && (c != 0xe0 || t1 >= 0x20) && (t2 = (u8[pos + 1] - 0x80)) <= 0x3f ) { // U+0800..U+FFFF; caller maps surrogates to error values. c = (UChar)((c << 12) | (t1 << 6) | t2); pos += 2; return UTRIE2_GET32_FROM_U16_SINGLE_LEAD(trie, c); } else { // Function call for supplementary code points and error cases. // Illegal byte sequences yield U+FFFD. c = utf8_nextCharSafeBody(u8, &pos, length, c, -3); return data->getCE32(c); } } UBool UTF8CollationIterator::foundNULTerminator() { if(length < 0) { length = --pos; return TRUE; } else { return FALSE; } } UBool UTF8CollationIterator::forbidSurrogateCodePoints() const { return TRUE; } UChar32 UTF8CollationIterator::nextCodePoint(UErrorCode & /*errorCode*/) { if(pos == length) { return U_SENTINEL; } if(u8[pos] == 0 && length < 0) { length = pos; return U_SENTINEL; } UChar32 c; U8_NEXT_OR_FFFD(u8, pos, length, c); return c; } UChar32 UTF8CollationIterator::previousCodePoint(UErrorCode & /*errorCode*/) { if(pos == 0) { return U_SENTINEL; } UChar32 c; U8_PREV_OR_FFFD(u8, 0, pos, c); return c; } void UTF8CollationIterator::forwardNumCodePoints(int32_t num, UErrorCode & /*errorCode*/) { U8_FWD_N(u8, pos, length, num); } void UTF8CollationIterator::backwardNumCodePoints(int32_t num, UErrorCode & /*errorCode*/) { U8_BACK_N(u8, 0, pos, num); } // FCDUTF8CollationIterator ------------------------------------------------ *** FCDUTF8CollationIterator::~FCDUTF8CollationIterator() {} void FCDUTF8CollationIterator::resetToOffset(int32_t newOffset) { reset(); start = pos = newOffset; state = CHECK_FWD; } int32_t FCDUTF8CollationIterator::getOffset() const { if(state != IN_NORMALIZED) { return pos; } else if(pos == 0) { return start; } else { return limit; } } uint32_t FCDUTF8CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) { for(;;) { if(state == CHECK_FWD) { // Combination of UTF8CollationIterator::handleNextCE32() with FCD check fastpath. if(pos == length) { c = U_SENTINEL; return Collation::FALLBACK_CE32; } c = u8[pos++]; if(c < 0xc0) { // ASCII 00..7F; trail bytes 80..BF map to error values. return trie->data32[c]; } uint8_t t1, t2; if(c < 0xe0 && pos != length && (t1 = (u8[pos] - 0x80)) <= 0x3f) { // U+0080..U+07FF; 00..7F map to error values. uint32_t ce32 = trie->data32[trie->index[(UTRIE2_UTF8_2B_INDEX_2_OFFSET - 0xc0) + c] + t1]; c = ((c & 0x1f) << 6) | t1; ++pos; if(CollationFCD::hasTccc(c) && pos != length && nextHasLccc()) { pos -= 2; } else { return ce32; } } else if(c <= 0xef && ((pos + 1) < length || length < 0) && (t1 = (u8[pos] - 0x80)) <= 0x3f && (c != 0xe0 || t1 >= 0x20) && (t2 = (u8[pos + 1] - 0x80)) <= 0x3f ) { // U+0800..U+FFFF; caller maps surrogates to error values. c = (UChar)((c << 12) | (t1 << 6) | t2); pos += 2; if(CollationFCD::hasTccc(c) && (CollationFCD::maybeTibetanCompositeVowel(c) || (pos != length && nextHasLccc()))) { pos -= 3; } else { break; // return CE32(BMP) } } else { // Function call for supplementary code points and error cases. // Illegal byte sequences yield U+FFFD. c = utf8_nextCharSafeBody(u8, &pos, length, c, -3); if(c == 0xfffd) { return Collation::FFFD_CE32; } else { U_ASSERT(c > 0xffff); if(CollationFCD::hasTccc(U16_LEAD(c)) && pos != length && nextHasLccc()) { pos -= 4; } else { return data->getCE32FromSupplementary(c); } } } if(!nextSegment(errorCode)) { c = U_SENTINEL; return Collation::FALLBACK_CE32; } continue; } else if(state == IN_FCD_SEGMENT && pos != limit) { return UTF8CollationIterator::handleNextCE32(c, errorCode); } else if(state == IN_NORMALIZED && pos != normalized.length()) { c = normalized[pos++]; break; } else { switchToForward(); } } return UTRIE2_GET32_FROM_U16_SINGLE_LEAD(trie, c); } UBool FCDUTF8CollationIterator::nextHasLccc() const { U_ASSERT(state == CHECK_FWD && pos != length); // The lowest code point with ccc!=0 is U+0300 which is CC 80 in UTF-8. // CJK U+4000..U+DFFF except U+Axxx are also FCD-inert. (Lead bytes E4..ED except EA.) UChar32 c = u8[pos]; if(c < 0xcc || (0xe4 <= c && c <= 0xed && c != 0xea)) { return FALSE; } int32_t i = pos; U8_NEXT_OR_FFFD(u8, i, length, c); if(c > 0xffff) { c = U16_LEAD(c); } return CollationFCD::hasLccc(c); } UBool FCDUTF8CollationIterator::previousHasTccc() const { U_ASSERT(state == CHECK_BWD && pos != 0); UChar32 c = u8[pos - 1]; if(c < 0x80) { return FALSE; } int32_t i = pos; U8_PREV_OR_FFFD(u8, 0, i, c); if(c > 0xffff) { c = U16_LEAD(c); } return CollationFCD::hasTccc(c); } UChar FCDUTF8CollationIterator::handleGetTrailSurrogate() { if(state != IN_NORMALIZED) { return 0; } U_ASSERT(pos < normalized.length()); UChar trail; if(U16_IS_TRAIL(trail = normalized[pos])) { ++pos; } return trail; } UBool FCDUTF8CollationIterator::foundNULTerminator() { if(state == CHECK_FWD && length < 0) { length = --pos; return TRUE; } else { return FALSE; } } UChar32 FCDUTF8CollationIterator::nextCodePoint(UErrorCode &errorCode) { UChar32 c; for(;;) { if(state == CHECK_FWD) { if(pos == length || ((c = u8[pos]) == 0 && length < 0)) { return U_SENTINEL; } if(c < 0x80) { ++pos; return c; } U8_NEXT_OR_FFFD(u8, pos, length, c); if(CollationFCD::hasTccc(c <= 0xffff ? c : U16_LEAD(c)) && (CollationFCD::maybeTibetanCompositeVowel(c) || (pos != length && nextHasLccc()))) { // c is not FCD-inert, therefore it is not U+FFFD and it has a valid byte sequence // and we can use U8_LENGTH() rather than a previous-position variable. pos -= U8_LENGTH(c); if(!nextSegment(errorCode)) { return U_SENTINEL; } continue; } return c; } else if(state == IN_FCD_SEGMENT && pos != limit) { U8_NEXT_OR_FFFD(u8, pos, length, c); return c; } else if(state == IN_NORMALIZED && pos != normalized.length()) { c = normalized.char32At(pos); pos += U16_LENGTH(c); return c; } else { switchToForward(); } } } UChar32 FCDUTF8CollationIterator::previousCodePoint(UErrorCode &errorCode) { UChar32 c; for(;;) { if(state == CHECK_BWD) { if(pos == 0) { return U_SENTINEL; } if((c = u8[pos - 1]) < 0x80) { --pos; return c; } U8_PREV_OR_FFFD(u8, 0, pos, c); if(CollationFCD::hasLccc(c <= 0xffff ? c : U16_LEAD(c)) && (CollationFCD::maybeTibetanCompositeVowel(c) || (pos != 0 && previousHasTccc()))) { // c is not FCD-inert, therefore it is not U+FFFD and it has a valid byte sequence // and we can use U8_LENGTH() rather than a previous-position variable. pos += U8_LENGTH(c); if(!previousSegment(errorCode)) { return U_SENTINEL; } continue; } return c; } else if(state == IN_FCD_SEGMENT && pos != start) { U8_PREV_OR_FFFD(u8, 0, pos, c); return c; } else if(state >= IN_NORMALIZED && pos != 0) { c = normalized.char32At(pos - 1); pos -= U16_LENGTH(c); return c; } else { switchToBackward(); } } } void FCDUTF8CollationIterator::forwardNumCodePoints(int32_t num, UErrorCode &errorCode) { // Specify the class to avoid a virtual-function indirection. // In Java, we would declare this class final. while(num > 0 && FCDUTF8CollationIterator::nextCodePoint(errorCode) >= 0) { --num; } } void FCDUTF8CollationIterator::backwardNumCodePoints(int32_t num, UErrorCode &errorCode) { // Specify the class to avoid a virtual-function indirection. // In Java, we would declare this class final. while(num > 0 && FCDUTF8CollationIterator::previousCodePoint(errorCode) >= 0) { --num; } } void FCDUTF8CollationIterator::switchToForward() { U_ASSERT(state == CHECK_BWD || (state == IN_FCD_SEGMENT && pos == limit) || (state == IN_NORMALIZED && pos == normalized.length())); if(state == CHECK_BWD) { // Turn around from backward checking. start = pos; if(pos == limit) { state = CHECK_FWD; // Check forward. } else { // pos < limit state = IN_FCD_SEGMENT; // Stay in FCD segment. } } else { // Reached the end of the FCD segment. if(state == IN_FCD_SEGMENT) { // The input text segment is FCD, extend it forward. } else { // The input text segment needed to be normalized. // Switch to checking forward from it. start = pos = limit; } state = CHECK_FWD; } } UBool FCDUTF8CollationIterator::nextSegment(UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } U_ASSERT(state == CHECK_FWD && pos != length); // The input text [start..pos[ passes the FCD check. int32_t segmentStart = pos; // Collect the characters being checked, in case they need to be normalized. UnicodeString s; uint8_t prevCC = 0; for(;;) { // Fetch the next character and its fcd16 value. int32_t cpStart = pos; UChar32 c; U8_NEXT_OR_FFFD(u8, pos, length, c); uint16_t fcd16 = nfcImpl.getFCD16(c); uint8_t leadCC = (uint8_t)(fcd16 >> 8); if(leadCC == 0 && cpStart != segmentStart) { // FCD boundary before this character. pos = cpStart; break; } s.append(c); if(leadCC != 0 && (prevCC > leadCC || CollationFCD::isFCD16OfTibetanCompositeVowel(fcd16))) { // Fails FCD check. Find the next FCD boundary and normalize. while(pos != length) { cpStart = pos; U8_NEXT_OR_FFFD(u8, pos, length, c); if(nfcImpl.getFCD16(c) <= 0xff) { pos = cpStart; break; } s.append(c); } if(!normalize(s, errorCode)) { return FALSE; } start = segmentStart; limit = pos; state = IN_NORMALIZED; pos = 0; return TRUE; } prevCC = (uint8_t)fcd16; if(pos == length || prevCC == 0) { // FCD boundary after the last character. break; } } limit = pos; pos = segmentStart; U_ASSERT(pos != limit); state = IN_FCD_SEGMENT; return TRUE; } void FCDUTF8CollationIterator::switchToBackward() { U_ASSERT(state == CHECK_FWD || (state == IN_FCD_SEGMENT && pos == start) || (state >= IN_NORMALIZED && pos == 0)); if(state == CHECK_FWD) { // Turn around from forward checking. limit = pos; if(pos == start) { state = CHECK_BWD; // Check backward. } else { // pos > start state = IN_FCD_SEGMENT; // Stay in FCD segment. } } else { // Reached the start of the FCD segment. if(state == IN_FCD_SEGMENT) { // The input text segment is FCD, extend it backward. } else { // The input text segment needed to be normalized. // Switch to checking backward from it. limit = pos = start; } state = CHECK_BWD; } } UBool FCDUTF8CollationIterator::previousSegment(UErrorCode &errorCode) { if(U_FAILURE(errorCode)) { return FALSE; } U_ASSERT(state == CHECK_BWD && pos != 0); // The input text [pos..limit[ passes the FCD check. int32_t segmentLimit = pos; // Collect the characters being checked, in case they need to be normalized. UnicodeString s; uint8_t nextCC = 0; for(;;) { // Fetch the previous character and its fcd16 value. int32_t cpLimit = pos; UChar32 c; U8_PREV_OR_FFFD(u8, 0, pos, c); uint16_t fcd16 = nfcImpl.getFCD16(c); uint8_t trailCC = (uint8_t)fcd16; if(trailCC == 0 && cpLimit != segmentLimit) { // FCD boundary after this character. pos = cpLimit; break; } s.append(c); if(trailCC != 0 && ((nextCC != 0 && trailCC > nextCC) || CollationFCD::isFCD16OfTibetanCompositeVowel(fcd16))) { // Fails FCD check. Find the previous FCD boundary and normalize. while(fcd16 > 0xff && pos != 0) { cpLimit = pos; U8_PREV_OR_FFFD(u8, 0, pos, c); fcd16 = nfcImpl.getFCD16(c); if(fcd16 == 0) { pos = cpLimit; break; } s.append(c); } s.reverse(); if(!normalize(s, errorCode)) { return FALSE; } limit = segmentLimit; start = pos; state = IN_NORMALIZED; pos = normalized.length(); return TRUE; } nextCC = (uint8_t)(fcd16 >> 8); if(pos == 0 || nextCC == 0) { // FCD boundary before the following character. break; } } start = pos; pos = segmentLimit; U_ASSERT(pos != start); state = IN_FCD_SEGMENT; return TRUE; } UBool FCDUTF8CollationIterator::normalize(const UnicodeString &s, UErrorCode &errorCode) { // NFD without argument checking. U_ASSERT(U_SUCCESS(errorCode)); nfcImpl.decompose(s, normalized, errorCode); return U_SUCCESS(errorCode); } U_NAMESPACE_END #endif // !UCONFIG_NO_COLLATION