/* ******************************************************************************* * * Copyright (C) 1999-2001, International Business Machines * Corporation and others. All Rights Reserved. * ******************************************************************************* * file name: gennames.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 1999sep30 * created by: Markus W. Scherer * * This program reads the Unicode character database text file, * parses it, and extracts the character code, * the "modern" character name, and optionally the * Unicode 1.0 character name. * It then tokenizes and compresses the names and builds * compact binary tables for random-access lookup * in a u_charName() API function. * * unames.dat file format (after UDataInfo header etc. - see udata.c) * (all data is static const) * * UDataInfo fields: * dataFormat "unam" * formatVersion 1.0 * dataVersion = Unicode version from -u or --unicode command line option, defaults to 3.0.0 * * -- data-based names * uint32_t tokenStringOffset, * groupsOffset, * groupStringOffset, * algNamesOffset; * * uint16_t tokenCount; * uint16_t tokenTable[tokenCount]; * * char tokenStrings[]; -- padded to even count * * -- strings (groupStrings) are tokenized as follows: * for each character c * if(c>=tokenCount) write that character c directly * else * token=tokenTable[c]; * if(token==0xfffe) -- lead byte of double-byte token * token=tokenTable[c<<8|next character]; * if(token==-1) * write c directly * else * tokenString=tokenStrings+token; (tokenStrings=start of names data + tokenStringOffset;) * append zero-terminated tokenString; * * uint16_t groupCount; * struct { * uint16_t groupMSB; -- for a group of 32 character names stored, this is code point>>5 * uint16_t offsetHigh; -- group strings are at start of names data + groupStringsOffset + this 32 bit-offset * uint16_t offsetLow; * } groupTable[groupCount]; * * char groupStrings[]; -- padded to 4-count * * -- The actual, tokenized group strings are not zero-terminated because * that would take up too much space. * Instead, they are preceeded by their length, written in a variable-length sequence: * For each of the 32 group strings, one or two nibbles are stored for its length. * Nibbles (4-bit values, half-bytes) are read MSB first. * A nibble with a value of 0..11 directly indicates the length of the name string. * A nibble n with a value of 12..15 is a lead nibble and forms a value with the following nibble m * by (((n-12)<<4)|m)+12, reaching values of 12..75. * These lengths are sequentially for each tokenized string, not for the de-tokenized result. * For the de-tokenizing, see token description above; the strings immediately follow the * 32 lengths. * * -- algorithmic names * * typedef struct AlgorithmicRange { * uint32_t rangeStart, rangeEnd; * uint8_t algorithmType, algorithmVariant; * uint16_t rangeSize; * } AlgorithmicRange; * * uint32_t algRangesCount; -- number of data blocks for ranges of * algorithmic names (Unicode 3.0.0: 3, hardcoded in gennames) * * struct { * AlgorithmicRange algRange; * uint8_t algRangeData[]; -- padded to 4-count except in last range * } algRanges[algNamesCount]; * -- not a real array because each part has a different size * of algRange.rangeSize (including AlgorithmicRange) * * -- algorithmic range types: * * 0 Names are formed from a string prefix that is stored in * the algRangeData (zero-terminated), followed by the Unicode code point * of the character in hexadecimal digits; * algRange.algorithmVariant digits are written * * 1 Names are formed by calculating modulo-factors of the code point value as follows: * algRange.algorithmVariant is the count of modulo factors * algRangeData contains * uint16_t factors[algRange.algorithmVariant]; * char strings[]; * the first zero-terminated string is written as the prefix; then: * * The rangeStart is subtracted; with the difference, here "code": * for(i=algRange.algorithmVariant-1 to 0 step -1) * index[i]=code%factor[i]; * code/=factor[i]; * * The strings after the prefix are short pieces that are then appended to the result * according to index[0..algRange.algorithmVariant-1]. */ #include #include #include "unicode/utypes.h" #include "unicode/putil.h" #include "cmemory.h" #include "cstring.h" #include "unicode/udata.h" #include "unewdata.h" #include "uoptions.h" #include "uparse.h" #define STRING_STORE_SIZE 1000000 #define GROUP_STORE_SIZE 5000 #define GROUP_SHIFT 5 #define LINES_PER_GROUP (1UL<=2 ? argv[1] : "-", store10Names); compress(); generateData(options[5].value); return 0; } static void init() { int i; for(i=0; i<256; ++i) { tokens[i]=0; } } /* parsing ------------------------------------------------------------------ */ static void lineFn(void *context, char *fields[][2], int32_t fieldCount, UErrorCode *pErrorCode) { static uint32_t prevCode=0; uint32_t code=0; char *name1Start, *name2Start; int16_t name1Length, name2Length; if(U_FAILURE(*pErrorCode)) { return; } /* get the character code */ code=uprv_strtoul(fields[0][0], NULL, 16); /* get the character name */ name1Start=fields[1][0]; if(fields[1][0][0]!='<') { name1Length=(int16_t)(fields[1][1]-name1Start); } else { /* do not store pseudo-names in <> brackets */ name1Length=0; } /* store 1.0 names */ /* get the second character name, the one from Unicode 1.0 */ /* do not store pseudo-names in <> brackets */ name2Start=fields[10][0]; if(*(UBool *)context && fields[10][0][0]!='<') { name2Length=(int16_t)(fields[10][1]-name2Start); } else { name2Length=0; } if(name1Length+name2Length==0) { return; } /* check for non-character code points */ if((code&0xfffe)==0xfffe || (uint32_t)(code-0xfdd0)<0x20) { fprintf(stderr, "gennames: error - properties for non-character code point U+%04lx\n", (unsigned long)code); *pErrorCode=U_PARSE_ERROR; exit(U_PARSE_ERROR); } /* check that the code points (code) are in ascending order */ if(code<=prevCode && code>0) { fprintf(stderr, "gennames: error - UnicodeData entries out of order, U+%04lx after U+%04lx\n", (unsigned long)code, (unsigned long)prevCode); *pErrorCode=U_PARSE_ERROR; exit(U_PARSE_ERROR); } prevCode=code; /* printf("%lx:%.*s(%.*s)\n", code, name1Length, line+name1Start, name2Length, line+name2Start); */ parseName(name1Start, name1Length); parseName(name2Start, name2Length); addLine(code, name1Start, name1Length, name2Start, name2Length); } static void parseDB(const char *filename, UBool store10Names) { char *fields[11][2]; UErrorCode errorCode=U_ZERO_ERROR; /* parsing the 11 fields 0..10 is enough for gennames */ u_parseDelimitedFile(filename, ';', fields, 11, lineFn, &store10Names, &errorCode); if(U_FAILURE(errorCode)) { exit(errorCode); } if(!beQuiet) { printf("size of all names in the database: %lu\n", (unsigned long)lineTop); printf("number of named Unicode characters: %lu\n", (unsigned long)lineCount); printf("number of words in the dictionary from these names: %lu\n", (unsigned long)wordCount); } } static void parseName(char *name, int16_t length) { int16_t start=0, limit, wordLength/*, prevStart=-1*/; Word *word; while(start1) { word=findWord(name+start, wordLength); if(word==NULL) { word=addWord(name+start, wordLength); } countWord(word); } #if 0 /* * if there was a word before this * (with no noise in between), then add the pair of words, too */ if(prevStart!=-1) { wordLength=limit-prevStart; word=findWord(name+prevStart, wordLength); if(word==NULL) { word=addWord(name+prevStart, wordLength); } countWord(word); } #endif /*prevStart=start;*/ start=limit; } } static int16_t skipNoise(char *line, int16_t start, int16_t limit) { char c; /* skip anything that is not part of a word in this sense */ while(start0 && words[wordCount-1].weight<1) { --wordCount; } /* count the letters in the token range */ letterCount=0; for(i=LEADBYTE_LIMIT; i<256; ++i) { if(tokens[i]==-1) { ++letterCount; } } if(!beQuiet) { printf("number of letters used in the names: %d\n", letterCount); } /* do we need double-byte tokens? */ if(wordCount+letterCount<=256) { /* no, single-byte tokens are enough */ leadByteCount=0; for(i=0, wordNumber=0; wordNumber<(int16_t)wordCount; ++i) { if(tokens[i]!=-1) { tokens[i]=wordNumber; if(beVerbose) { printf("tokens[0x%03x]: word%8ld \"%.*s\"\n", i, (long)words[wordNumber].weight, words[wordNumber].length, words[wordNumber].s); } ++wordNumber; } } tokenCount=i; } else { /* * The tokens that need two token bytes * get their weight reduced by their count * because they save less. */ tokenCount=256-letterCount; for(i=tokenCount; i0 && words[wordCount-1].weight<1) { --wordCount; } /* how many tokens and lead bytes do we have now? */ tokenCount=wordCount+letterCount+(LEADBYTE_LIMIT-1); leadByteCount=(int16_t)(tokenCount>>8); if(leadByteCountcode; /* segment the lines to groups of 32 */ if(inLine>>GROUP_SHIFT!=groupMSB) { /* finish the current group with empty lines */ while((++outLine&GROUP_MASK)!=0) { appendLineLength(0); } /* store the group like a line */ if(groupTop>0) { if(groupTop>GROUP_STORE_SIZE) { fprintf(stderr, "gennames: group store overflow\n"); exit(U_BUFFER_OVERFLOW_ERROR); } addGroup(groupMSB, groupStore, groupTop); if(lineTop>(uint32_t)(line->s-stringStore)) { fprintf(stderr, "gennames: group store runs into string store\n"); exit(U_INTERNAL_PROGRAM_ERROR); } } /* start the new group */ lineLengthsTop=0; groupTop=0; groupMSB=inLine>>GROUP_SHIFT; outLine=(inLine&~GROUP_MASK)-1; } /* write empty lines between the previous line in the group and this one */ while(++outLines, line->length, &groupTop)); } /* finish and store the last group */ if(line && groupMSB!=0xffff) { /* finish the current group with empty lines */ while((++outLine&GROUP_MASK)!=0) { appendLineLength(0); } /* store the group like a line */ if(groupTop>0) { if(groupTop>GROUP_STORE_SIZE) { fprintf(stderr, "gennames: group store overflow\n"); exit(U_BUFFER_OVERFLOW_ERROR); } addGroup(groupMSB, groupStore, groupTop); if(lineTop>(uint32_t)(line->s-stringStore)) { fprintf(stderr, "gennames: group store runs into string store\n"); exit(U_INTERNAL_PROGRAM_ERROR); } } } if(!beQuiet) { printf("number of groups: %lu\n", (unsigned long)lineCount); } } static int16_t compressLine(uint8_t *s, int16_t length, int16_t *pGroupTop) { int16_t start, limit, token, groupTop=*pGroupTop; start=0; do { /* write any "noise" characters */ limit=skipNoise((char *)s, start, length); while(start0xff) { groupStore[groupTop++]=(uint8_t)(token>>8); } groupStore[groupTop++]=(uint8_t)token; start=limit; } else { while(startweight-((Word *)word1)->weight; } /* generate output data ----------------------------------------------------- */ static void generateData(const char *dataDir) { UNewDataMemory *pData; UErrorCode errorCode=U_ZERO_ERROR; uint16_t groupWords[3]; uint32_t i, groupTop=lineTop, offset, size, tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset; long dataLength; int16_t token; pData=udata_create(dataDir, DATA_TYPE, DATA_NAME, &dataInfo, haveCopyright ? U_COPYRIGHT_STRING : NULL, &errorCode); if(U_FAILURE(errorCode)) { fprintf(stderr, "gennames: unable to create data memory, error %d\n", errorCode); exit(errorCode); } /* first, see how much space we need, and prepare the token strings */ for(i=0; i>16); groupWords[2]=(uint16_t)(offset); udata_writeBlock(pData, groupWords, 6); } /* group strings */ udata_writeBlock(pData, stringStore, groupTop); /* 4-align the algorithmic names data */ udata_writePadding(pData, algNamesOffset-(groupStringOffset+groupTop)); generateAlgorithmicData(pData); /* finish up */ dataLength=udata_finish(pData, &errorCode); if(U_FAILURE(errorCode)) { fprintf(stderr, "gennames: error %d writing the output file\n", errorCode); exit(errorCode); } if(dataLength!=(long)size) { fprintf(stderr, "gennames: data length %ld != calculated size %lu\n", dataLength, (unsigned long)size); exit(U_INTERNAL_PROGRAM_ERROR); } } /* the structure for algorithmic names needs to be 4-aligned */ typedef struct AlgorithmicRange { uint32_t rangeStart, rangeEnd; uint8_t algorithmType, algorithmVariant; uint16_t rangeSize; } AlgorithmicRange; static uint32_t generateAlgorithmicData(UNewDataMemory *pData) { static char prefix[] = "CJK UNIFIED IDEOGRAPH-"; # define PREFIX_LENGTH 23 # define PREFIX_LENGTH_4 24 static AlgorithmicRange cjkExtA={ 0x3400, 0x4db5, 0, 4, sizeof(AlgorithmicRange)+PREFIX_LENGTH_4 }; static AlgorithmicRange cjk={ 0x4e00, 0x9fa5, 0, 4, sizeof(AlgorithmicRange)+PREFIX_LENGTH_4 }; static char jamo[]= "HANGUL SYLLABLE \0" "G\0GG\0N\0D\0DD\0R\0M\0B\0BB\0" "S\0SS\0\0J\0JJ\0C\0K\0T\0P\0H\0" "A\0AE\0YA\0YAE\0EO\0E\0YEO\0YE\0O\0" "WA\0WAE\0OE\0YO\0U\0WEO\0WE\0WI\0" "YU\0EU\0YI\0I\0" "\0G\0GG\0GS\0N\0NJ\0NH\0D\0L\0LG\0LM\0" "LB\0LS\0LT\0LP\0LH\0M\0B\0BS\0" "S\0SS\0NG\0J\0C\0K\0T\0P\0H" ; static AlgorithmicRange hangul={ 0xac00, 0xd7a3, 1, 3, sizeof(AlgorithmicRange)+6+sizeof(jamo) }; /* modulo factors, maximum 8 */ /* 3 factors: 19, 21, 28, most-to-least-significant */ static uint16_t hangulFactors[3]={ 19, 21, 28 }; uint32_t size; size=0; /* number of ranges of algorithmic names */ if(pData!=NULL) { udata_write32(pData, 3); } else { size+=4; } /* * each range: * uint32_t rangeStart * uint32_t rangeEnd * uint8_t algorithmType * uint8_t algorithmVariant * uint16_t size of range data * uint8_t[size] data */ /* range 0: cjk extension a */ if(pData!=NULL) { udata_writeBlock(pData, &cjkExtA, sizeof(AlgorithmicRange)); udata_writeString(pData, prefix, PREFIX_LENGTH); if(PREFIX_LENGTHweight=-(length+1+2); word->count=0; word->length=length; word->s=stringStart; ++wordCount; return word; } static void countWord(Word *word) { /* add to the weight the savings: the length of the word minus 1 byte for the token */ word->weight+=word->length-1; ++word->count; } static void addLine(uint32_t code, char *name1, int16_t name1Length, char *name2, int16_t name2Length) { uint8_t *stringStart; Line *line; int16_t length; if(lineCount==MAX_LINE_COUNT) { fprintf(stderr, "gennames: too many lines\n"); exit(U_BUFFER_OVERFLOW_ERROR); } length=name1Length; if(name2Length>0) { length=(int16_t)(length+1+name2Length); } stringStart=allocLine(length); if(name1Length>0) { uprv_memcpy(stringStart, name1, name1Length); } if(name2Length>0) { stringStart[name1Length]=NAME_SEPARATOR_CHAR; uprv_memcpy(stringStart+name1Length+1, name2, name2Length); } line=lines+lineCount; line->code=code; line->length=length; line->s=stringStart; ++lineCount; /* prevent a character value that is actually in a name from becoming a token */ while(length>0) { tokens[stringStart[--length]]=-1; } } static void addGroup(uint32_t groupMSB, uint8_t *strings, int16_t length) { uint8_t *stringStart; Line *line; if(lineCount==MAX_LINE_COUNT) { fprintf(stderr, "gennames: too many groups\n"); exit(U_BUFFER_OVERFLOW_ERROR); } /* store the line lengths first, then the strings */ lineLengthsTop=(lineLengthsTop+1)/2; stringStart=allocLine(lineLengthsTop+length); uprv_memcpy(stringStart, lineLengths, lineLengthsTop); uprv_memcpy(stringStart+lineLengthsTop, strings, length); line=lines+lineCount; line->code=groupMSB; line->length=length; line->s=stringStart; ++lineCount; } static uint32_t addToken(uint8_t *s, int16_t length) { uint8_t *stringStart; stringStart=allocLine(length+1); uprv_memcpy(stringStart, s, length); stringStart[length]=0; return stringStart-stringStore; } static void appendLineLength(int16_t length) { if(length>=76) { fprintf(stderr, "gennames: compressed line too long\n"); exit(U_BUFFER_OVERFLOW_ERROR); } if(length>=12) { length-=12; appendLineLengthNibble((uint8_t)((length>>4)|12)); } appendLineLengthNibble((uint8_t)length); } static void appendLineLengthNibble(uint8_t nibble) { if((lineLengthsTop&1)==0) { lineLengths[lineLengthsTop/2]=(uint8_t)(nibble<<4); } else { lineLengths[lineLengthsTop/2]|=nibble&0xf; } ++lineLengthsTop; } static uint8_t * allocLine(uint32_t length) { uint32_t top=lineTop+length; uint8_t *p; if(top>wordBottom) { fprintf(stderr, "gennames: out of memory\n"); exit(U_MEMORY_ALLOCATION_ERROR); } p=stringStore+lineTop; lineTop=top; return p; } static uint8_t * allocWord(uint32_t length) { uint32_t bottom=wordBottom-length; if(lineTop>bottom) { fprintf(stderr, "gennames: out of memory\n"); exit(U_MEMORY_ALLOCATION_ERROR); } wordBottom=bottom; return stringStore+bottom; } /* * Hey, Emacs, please set the following: * * Local Variables: * indent-tabs-mode: nil * End: * */