/* ********************************************************************** * Copyright (C) 1999-2005, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Date Name Description * 11/17/99 aliu Creation. ********************************************************************** */ #include "unicode/utypes.h" #if !UCONFIG_NO_TRANSLITERATION #include "unicode/putil.h" #include "unicode/translit.h" #include "unicode/locid.h" #include "unicode/msgfmt.h" #include "unicode/rep.h" #include "unicode/resbund.h" #include "unicode/unifilt.h" #include "unicode/uniset.h" #include "unicode/uscript.h" #include "unicode/strenum.h" #include "cpdtrans.h" #include "nultrans.h" #include "rbt_data.h" #include "rbt_pars.h" #include "rbt.h" #include "transreg.h" #include "name2uni.h" #include "nortrans.h" #include "remtrans.h" #include "titletrn.h" #include "tolowtrn.h" #include "toupptrn.h" #include "uni2name.h" #include "esctrn.h" #include "unesctrn.h" #include "tridpars.h" #include "anytrans.h" #include "util.h" #include "hash.h" #include "mutex.h" #include "ucln_in.h" #include "uassert.h" #include "cmemory.h" #include "cstring.h" #include "uinvchar.h" static const UChar TARGET_SEP = 0x002D; /*-*/ static const UChar ID_DELIM = 0x003B; /*;*/ static const UChar VARIANT_SEP = 0x002F; // '/' /** * Prefix for resource bundle key for the display name for a * transliterator. The ID is appended to this to form the key. * The resource bundle value should be a String. */ static const char RB_DISPLAY_NAME_PREFIX[] = "%Translit%%"; /** * Prefix for resource bundle key for the display name for a * transliterator SCRIPT. The ID is appended to this to form the key. * The resource bundle value should be a String. */ static const char RB_SCRIPT_DISPLAY_NAME_PREFIX[] = "%Translit%"; /** * Resource bundle key for display name pattern. * The resource bundle value should be a String forming a * MessageFormat pattern, e.g.: * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}". */ static const char RB_DISPLAY_NAME_PATTERN[] = "TransliteratorNamePattern"; /** * Resource bundle key for the list of RuleBasedTransliterator IDs. * The resource bundle value should be a String[] with each element * being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX * to obtain the class name in which the RB_RULE key will be sought. */ static const char RB_RULE_BASED_IDS[] = "RuleBasedTransliteratorIDs"; /** * The mutex controlling access to registry object. */ static UMTX registryMutex = 0; /** * System transliterator registry; non-null when initialized. */ static TransliteratorRegistry* registry = 0; // Macro to check/initialize the registry. ONLY USE WITHIN // MUTEX. Avoids function call when registry is initialized. #define HAVE_REGISTRY (registry!=0 || initializeRegistry()) // Empty string static const UChar EMPTY[] = {0}; //"" U_NAMESPACE_BEGIN UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator) /** * Return TRUE if the given UTransPosition is valid for text of * the given length. */ inline UBool positionIsValid(UTransPosition& index, int32_t len) { return !(index.contextStart < 0 || index.start < index.contextStart || index.limit < index.start || index.contextLimit < index.limit || len < index.contextLimit); } /** * Default constructor. * @param theID the string identifier for this transliterator * @param theFilter the filter. Any character for which * filter.contains() returns FALSE will not be * altered by this transliterator. If filter is * null then no filtering is applied. */ Transliterator::Transliterator(const UnicodeString& theID, UnicodeFilter* adoptedFilter) : UObject(), ID(theID), filter(adoptedFilter), maximumContextLength(0) { // NUL-terminate the ID string ID.getTerminatedBuffer(); } /** * Destructor. */ Transliterator::~Transliterator() { delete filter; } /** * Copy constructor. */ Transliterator::Transliterator(const Transliterator& other) : UObject(other), ID(other.ID), filter(0), maximumContextLength(other.maximumContextLength) { // NUL-terminate the ID string ID.getTerminatedBuffer(); if (other.filter != 0) { // We own the filter, so we must have our own copy filter = (UnicodeFilter*) other.filter->clone(); } } Transliterator* Transliterator::clone() const { return NULL; } /** * Assignment operator. */ Transliterator& Transliterator::operator=(const Transliterator& other) { ID = other.ID; // NUL-terminate the ID string ID.getTerminatedBuffer(); maximumContextLength = other.maximumContextLength; adoptFilter((other.filter == 0) ? 0 : (UnicodeFilter*) other.filter->clone()); return *this; } /** * Transliterates a segment of a string. Transliterator API. * @param text the string to be transliterated * @param start the beginning index, inclusive; 0 <= start * <= limit. * @param limit the ending index, exclusive; start <= limit * <= text.length(). * @return the new limit index, or -1 */ int32_t Transliterator::transliterate(Replaceable& text, int32_t start, int32_t limit) const { if (start < 0 || limit < start || text.length() < limit) { return -1; } UTransPosition offsets; offsets.contextStart= start; offsets.contextLimit = limit; offsets.start = start; offsets.limit = limit; filteredTransliterate(text, offsets, FALSE, TRUE); return offsets.limit; } /** * Transliterates an entire string in place. Convenience method. * @param text the string to be transliterated */ void Transliterator::transliterate(Replaceable& text) const { transliterate(text, 0, text.length()); } /** * Transliterates the portion of the text buffer that can be * transliterated unambiguosly after new text has been inserted, * typically as a result of a keyboard event. The new text in * insertion will be inserted into text * at index.contextLimit, advancing * index.contextLimit by insertion.length(). * Then the transliterator will try to transliterate characters of * text between index.start and * index.contextLimit. Characters before * index.start will not be changed. * *

Upon return, values in index will be updated. * index.contextStart will be advanced to the first * character that future calls to this method will read. * index.start and index.contextLimit will * be adjusted to delimit the range of text that future calls to * this method may change. * *

Typical usage of this method begins with an initial call * with index.contextStart and index.contextLimit * set to indicate the portion of text to be * transliterated, and index.start == index.contextStart. * Thereafter, index can be used without * modification in future calls, provided that all changes to * text are made via this method. * *

This method assumes that future calls may be made that will * insert new text into the buffer. As a result, it only performs * unambiguous transliterations. After the last call to this * method, there may be untransliterated text that is waiting for * more input to resolve an ambiguity. In order to perform these * pending transliterations, clients should call {@link * #finishKeyboardTransliteration} after the last call to this * method has been made. * * @param text the buffer holding transliterated and untransliterated text * @param index an array of three integers. * *

* * @param insertion text to be inserted and possibly * transliterated into the translation buffer at * index.contextLimit. If null then no text * is inserted. * @see #START * @see #LIMIT * @see #CURSOR * @see #handleTransliterate * @exception IllegalArgumentException if index * is invalid */ void Transliterator::transliterate(Replaceable& text, UTransPosition& index, const UnicodeString& insertion, UErrorCode &status) const { _transliterate(text, index, &insertion, status); } /** * Transliterates the portion of the text buffer that can be * transliterated unambiguosly after a new character has been * inserted, typically as a result of a keyboard event. This is a * convenience method; see {@link * #transliterate(Replaceable, int[], String)} for details. * @param text the buffer holding transliterated and * untransliterated text * @param index an array of three integers. See {@link * #transliterate(Replaceable, int[], String)}. * @param insertion text to be inserted and possibly * transliterated into the translation buffer at * index.contextLimit. * @see #transliterate(Replaceable, int[], String) */ void Transliterator::transliterate(Replaceable& text, UTransPosition& index, UChar32 insertion, UErrorCode& status) const { UnicodeString str(insertion); _transliterate(text, index, &str, status); } /** * Transliterates the portion of the text buffer that can be * transliterated unambiguosly. This is a convenience method; see * {@link #transliterate(Replaceable, int[], String)} for * details. * @param text the buffer holding transliterated and * untransliterated text * @param index an array of three integers. See {@link * #transliterate(Replaceable, int[], String)}. * @see #transliterate(Replaceable, int[], String) */ void Transliterator::transliterate(Replaceable& text, UTransPosition& index, UErrorCode& status) const { _transliterate(text, index, 0, status); } /** * Finishes any pending transliterations that were waiting for * more characters. Clients should call this method as the last * call after a sequence of one or more calls to * transliterate(). * @param text the buffer holding transliterated and * untransliterated text. * @param index the array of indices previously passed to {@link * #transliterate} */ void Transliterator::finishTransliteration(Replaceable& text, UTransPosition& index) const { if (!positionIsValid(index, text.length())) { return; } filteredTransliterate(text, index, FALSE, TRUE); } /** * This internal method does keyboard transliteration. If the * 'insertion' is non-null then we append it to 'text' before * proceeding. This method calls through to the pure virtual * framework method handleTransliterate() to do the actual * work. */ void Transliterator::_transliterate(Replaceable& text, UTransPosition& index, const UnicodeString* insertion, UErrorCode &status) const { if (U_FAILURE(status)) { return; } if (!positionIsValid(index, text.length())) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } // int32_t originalStart = index.contextStart; if (insertion != 0) { text.handleReplaceBetween(index.limit, index.limit, *insertion); index.limit += insertion->length(); index.contextLimit += insertion->length(); } if (index.limit > 0 && UTF_IS_LEAD(text.charAt(index.limit - 1))) { // Oops, there is a dangling lead surrogate in the buffer. // This will break most transliterators, since they will // assume it is part of a pair. Don't transliterate until // more text comes in. return; } filteredTransliterate(text, index, TRUE, TRUE); #if 0 // TODO // I CAN'T DO what I'm attempting below now that the Kleene star // operator is supported. For example, in the rule // ([:Lu:]+) { x } > $1; // what is the maximum context length? getMaximumContextLength() // will return 1, but this is just the length of the ante context // part of the pattern string -- 1 character, which is a standin // for a Quantifier, which contains a StringMatcher, which // contains a UnicodeSet. // There is a complicated way to make this work again, and that's // to add a "maximum left context" protocol into the // UnicodeMatcher hierarchy. At present I'm not convinced this is // worth it. // --- // The purpose of the code below is to keep the context small // while doing incremental transliteration. When part of the left // context (between contextStart and start) is no longer needed, // we try to advance contextStart past that portion. We use the // maximum context length to do so. int32_t newCS = index.start; int32_t n = getMaximumContextLength(); while (newCS > originalStart && n-- > 0) { --newCS; newCS -= UTF_CHAR_LENGTH(text.char32At(newCS)) - 1; } index.contextStart = uprv_max(newCS, originalStart); #endif } /** * This method breaks up the input text into runs of unfiltered * characters. It passes each such run to * .handleTransliterate(). Subclasses that can handle the * filter logic more efficiently themselves may override this method. * * All transliteration calls in this class go through this method. */ void Transliterator::filteredTransliterate(Replaceable& text, UTransPosition& index, UBool incremental, UBool rollback) const { // Short circuit path for transliterators with no filter in // non-incremental mode. if (filter == 0 && !rollback) { handleTransliterate(text, index, incremental); return; } //---------------------------------------------------------------------- // This method processes text in two groupings: // // RUNS -- A run is a contiguous group of characters which are contained // in the filter for this transliterator (filter.contains(ch) == TRUE). // Text outside of runs may appear as context but it is not modified. // The start and limit Position values are narrowed to each run. // // PASSES (incremental only) -- To make incremental mode work correctly, // each run is broken up into n passes, where n is the length (in code // points) of the run. Each pass contains the first n characters. If a // pass is completely transliterated, it is committed, and further passes // include characters after the committed text. If a pass is blocked, // and does not transliterate completely, then this method rolls back // the changes made during the pass, extends the pass by one code point, // and tries again. //---------------------------------------------------------------------- // globalLimit is the limit value for the entire operation. We // set index.limit to the end of each unfiltered run before // calling handleTransliterate(), so we need to maintain the real // value of index.limit here. After each transliteration, we // update globalLimit for insertions or deletions that have // happened. int32_t globalLimit = index.limit; // If there is a non-null filter, then break the input text up. Say the // input text has the form: // xxxabcxxdefxx // where 'x' represents a filtered character (filter.contains('x') == // false). Then we break this up into: // xxxabc xxdef xx // Each pass through the loop consumes a run of filtered // characters (which are ignored) and a subsequent run of // unfiltered characters (which are transliterated). for (;;) { if (filter != NULL) { // Narrow the range to be transliterated to the first segment // of unfiltered characters at or after index.start. // Advance past filtered chars UChar32 c; while (index.start < globalLimit && !filter->contains(c=text.char32At(index.start))) { index.start += UTF_CHAR_LENGTH(c); } // Find the end of this run of unfiltered chars index.limit = index.start; while (index.limit < globalLimit && filter->contains(c=text.char32At(index.limit))) { index.limit += UTF_CHAR_LENGTH(c); } } // Check to see if the unfiltered run is empty. This only // happens at the end of the string when all the remaining // characters are filtered. if (index.limit == index.start) { // assert(index.start == globalLimit); break; } // Is this run incremental? If there is additional // filtered text (if limit < globalLimit) then we pass in // an incremental value of FALSE to force the subclass to // complete the transliteration for this run. UBool isIncrementalRun = (index.limit < globalLimit ? FALSE : incremental); int32_t delta; // Implement rollback. To understand the need for rollback, // consider the following transliterator: // // "t" is "a > A;" // "u" is "A > b;" // "v" is a compound of "t; NFD; u" with a filter [:Ll:] // // Now apply "c" to the input text "a". The result is "b". But if // the transliteration is done incrementally, then the NFD holds // things up after "t" has already transformed "a" to "A". When // finishTransliterate() is called, "A" is _not_ processed because // it gets excluded by the [:Ll:] filter, and the end result is "A" // -- incorrect. The problem is that the filter is applied to a // partially-transliterated result, when we only want it to apply to // input text. Although this example hinges on a compound // transliterator containing NFD and a specific filter, it can // actually happen with any transliterator which may do a partial // transformation in incremental mode into characters outside its // filter. // // To handle this, when in incremental mode we supply characters to // handleTransliterate() in several passes. Each pass adds one more // input character to the input text. That is, for input "ABCD", we // first try "A", then "AB", then "ABC", and finally "ABCD". If at // any point we block (upon return, start < limit) then we roll // back. If at any point we complete the run (upon return start == // limit) then we commit that run. if (rollback && isIncrementalRun) { int32_t runStart = index.start; int32_t runLimit = index.limit; int32_t runLength = runLimit - runStart; // Make a rollback copy at the end of the string int32_t rollbackOrigin = text.length(); text.copy(runStart, runLimit, rollbackOrigin); // Variables reflecting the commitment of completely // transliterated text. passStart is the runStart, advanced // past committed text. rollbackStart is the rollbackOrigin, // advanced past rollback text that corresponds to committed // text. int32_t passStart = runStart; int32_t rollbackStart = rollbackOrigin; // The limit for each pass; we advance by one code point with // each iteration. int32_t passLimit = index.start; // Total length, in 16-bit code units, of uncommitted text. // This is the length to be rolled back. int32_t uncommittedLength = 0; // Total delta (change in length) for all passes int32_t totalDelta = 0; // PASS MAIN LOOP -- Start with a single character, and extend // the text by one character at a time. Roll back partial // transliterations and commit complete transliterations. for (;;) { // Length of additional code point, either one or two int32_t charLength = UTF_CHAR_LENGTH(text.char32At(passLimit)); passLimit += charLength; if (passLimit > runLimit) { break; } uncommittedLength += charLength; index.limit = passLimit; // Delegate to subclass for actual transliteration. Upon // return, start will be updated to point after the // transliterated text, and limit and contextLimit will be // adjusted for length changes. handleTransliterate(text, index, TRUE); delta = index.limit - passLimit; // change in length // We failed to completely transliterate this pass. // Roll back the text. Indices remain unchanged; reset // them where necessary. if (index.start != index.limit) { // Find the rollbackStart, adjusted for length changes // and the deletion of partially transliterated text. int32_t rs = rollbackStart + delta - (index.limit - passStart); // Delete the partially transliterated text text.handleReplaceBetween(passStart, index.limit, EMPTY); // Copy the rollback text back text.copy(rs, rs + uncommittedLength, passStart); // Restore indices to their original values index.start = passStart; index.limit = passLimit; index.contextLimit -= delta; } // We did completely transliterate this pass. Update the // commit indices to record how far we got. Adjust indices // for length change. else { // Move the pass indices past the committed text. passStart = passLimit = index.start; // Adjust the rollbackStart for length changes and move // it past the committed text. All characters we've // processed to this point are committed now, so zero // out the uncommittedLength. rollbackStart += delta + uncommittedLength; uncommittedLength = 0; // Adjust indices for length changes. runLimit += delta; totalDelta += delta; } } // Adjust overall limit and rollbackOrigin for insertions and // deletions. Don't need to worry about contextLimit because // handleTransliterate() maintains that. rollbackOrigin += totalDelta; globalLimit += totalDelta; // Delete the rollback copy text.handleReplaceBetween(rollbackOrigin, rollbackOrigin + runLength, EMPTY); // Move start past committed text index.start = passStart; } else { // Delegate to subclass for actual transliteration. int32_t limit = index.limit; handleTransliterate(text, index, isIncrementalRun); delta = index.limit - limit; // change in length // In a properly written transliterator, start == limit after // handleTransliterate() returns when incremental is false. // Catch cases where the subclass doesn't do this, and throw // an exception. (Just pinning start to limit is a bad idea, // because what's probably happening is that the subclass // isn't transliterating all the way to the end, and it should // in non-incremental mode.) if (!incremental && index.start != index.limit) { // We can't throw an exception, so just fudge things index.start = index.limit; } // Adjust overall limit for insertions/deletions. Don't need // to worry about contextLimit because handleTransliterate() // maintains that. globalLimit += delta; } if (filter == NULL || isIncrementalRun) { break; } // If we did completely transliterate this // run, then repeat with the next unfiltered run. } // Start is valid where it is. Limit needs to be put back where // it was, modulo adjustments for deletions/insertions. index.limit = globalLimit; } void Transliterator::filteredTransliterate(Replaceable& text, UTransPosition& index, UBool incremental) const { filteredTransliterate(text, index, incremental, FALSE); } /** * Method for subclasses to use to set the maximum context length. * @see #getMaximumContextLength */ void Transliterator::setMaximumContextLength(int32_t maxContextLength) { maximumContextLength = maxContextLength; } /** * Returns a programmatic identifier for this transliterator. * If this identifier is passed to getInstance(), it * will return this object, if it has been registered. * @see #registerInstance * @see #getAvailableIDs */ const UnicodeString& Transliterator::getID(void) const { return ID; } /** * Returns a name for this transliterator that is appropriate for * display to the user in the default locale. See {@link * #getDisplayName(Locale)} for details. */ UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& ID, UnicodeString& result) { return getDisplayName(ID, Locale::getDefault(), result); } /** * Returns a name for this transliterator that is appropriate for * display to the user in the given locale. This name is taken * from the locale resource data in the standard manner of the * java.text package. * *

If no localized names exist in the system resource bundles, * a name is synthesized using a localized * MessageFormat pattern from the resource data. The * arguments to this pattern are an integer followed by one or two * strings. The integer is the number of strings, either 1 or 2. * The strings are formed by splitting the ID for this * transliterator at the first TARGET_SEP. If there is no TARGET_SEP, then the * entire ID forms the only string. * @param inLocale the Locale in which the display name should be * localized. * @see java.text.MessageFormat */ UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& id, const Locale& inLocale, UnicodeString& result) { UErrorCode status = U_ZERO_ERROR; ResourceBundle bundle(U_ICUDATA_TRANSLIT, inLocale, status); // Suspend checking status until later... result.truncate(0); // Normalize the ID UnicodeString source, target, variant; UBool sawSource; TransliteratorIDParser::IDtoSTV(id, source, target, variant, sawSource); if (target.length() < 1) { // No target; malformed id return result; } if (variant.length() > 0) { // Change "Foo" to "/Foo" variant.insert(0, VARIANT_SEP); } UnicodeString ID(source); ID.append(TARGET_SEP).append(target).append(variant); // build the char* key if (uprv_isInvariantUString(ID.getBuffer(), ID.length())) { char key[200]; uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX); int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX); ID.extract(0, (int32_t)(sizeof(key)-length), key+length, (int32_t)(sizeof(key)-length), US_INV); // Try to retrieve a UnicodeString from the bundle. UnicodeString resString = bundle.getStringEx(key, status); if (U_SUCCESS(status) && resString.length() != 0) { return result = resString; // [sic] assign & return } #if !UCONFIG_NO_FORMATTING // We have failed to get a name from the locale data. This is // typical, since most transliterators will not have localized // name data. The next step is to retrieve the MessageFormat // pattern from the locale data and to use it to synthesize the // name from the ID. status = U_ZERO_ERROR; resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status); if (U_SUCCESS(status) && resString.length() != 0) { MessageFormat msg(resString, inLocale, status); // Suspend checking status until later... // We pass either 2 or 3 Formattable objects to msg. Formattable args[3]; int32_t nargs; args[0].setLong(2); // # of args to follow args[1].setString(source); args[2].setString(target); nargs = 3; // Use display names for the scripts, if they exist UnicodeString s; length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX); for (int j=1; j<=2; ++j) { status = U_ZERO_ERROR; uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX); args[j].getString(s); if (uprv_isInvariantUString(s.getBuffer(), s.length())) { s.extract(0, sizeof(key)-length-1, key+length, (int32_t)sizeof(key)-length-1, US_INV); resString = bundle.getStringEx(key, status); if (U_SUCCESS(status)) { args[j] = resString; } } } status = U_ZERO_ERROR; FieldPosition pos; // ignored by msg msg.format(args, nargs, result, pos, status); if (U_SUCCESS(status)) { result.append(variant); return result; } } #endif } // We should not reach this point unless there is something // wrong with the build or the RB_DISPLAY_NAME_PATTERN has // been deleted from the root RB_LOCALE_ELEMENTS resource. result = ID; return result; } /** * Returns the filter used by this transliterator, or null * if this transliterator uses no filter. Caller musn't delete * the result! */ const UnicodeFilter* Transliterator::getFilter(void) const { return filter; } /** * Returns the filter used by this transliterator, or * NULL if this transliterator uses no filter. The * caller must eventually delete the result. After this call, * this transliterator's filter is set to NULL. */ UnicodeFilter* Transliterator::orphanFilter(void) { UnicodeFilter *result = filter; filter = NULL; return result; } /** * Changes the filter used by this transliterator. If the filter * is set to null then no filtering will occur. * *

Callers must take care if a transliterator is in use by * multiple threads. The filter should not be changed by one * thread while another thread may be transliterating. */ void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) { delete filter; filter = filterToAdopt; } /** * Returns this transliterator's inverse. See the class * documentation for details. This implementation simply inverts * the two entities in the ID and attempts to retrieve the * resulting transliterator. That is, if getID() * returns "A-B", then this method will return the result of * getInstance("B-A"), or null if that * call fails. * *

This method does not take filtering into account. The * returned transliterator will have no filter. * *

Subclasses with knowledge of their inverse may wish to * override this method. * * @return a transliterator that is an inverse, not necessarily * exact, of this transliterator, or null if no such * transliterator is registered. * @see #registerInstance */ Transliterator* Transliterator::createInverse(UErrorCode& status) const { UParseError parseError; return Transliterator::createInstance(ID, UTRANS_REVERSE,parseError,status); } Transliterator* U_EXPORT2 Transliterator::createInstance(const UnicodeString& ID, UTransDirection dir, UErrorCode& status) { UParseError parseError; return createInstance(ID, dir, parseError, status); } /** * Returns a Transliterator object given its ID. * The ID must be either a system transliterator ID or a ID registered * using registerInstance(). * * @param ID a valid ID, as enumerated by getAvailableIDs() * @return A Transliterator object with the given ID * @see #registerInstance * @see #getAvailableIDs * @see #getID */ Transliterator* U_EXPORT2 Transliterator::createInstance(const UnicodeString& ID, UTransDirection dir, UParseError& parseError, UErrorCode& status) { if (U_FAILURE(status)) { return 0; } UnicodeString canonID; UVector list(status); if (U_FAILURE(status)) { return NULL; } UnicodeSet* globalFilter; // TODO add code for parseError...currently unused, but // later may be used by parsing code... if (!TransliteratorIDParser::parseCompoundID(ID, dir, canonID, list, globalFilter)) { status = U_INVALID_ID; return NULL; } TransliteratorIDParser::instantiateList(list, status); if (U_FAILURE(status)) { return NULL; } U_ASSERT(list.size() > 0); Transliterator* t = NULL; if (list.size() > 1 || canonID.indexOf(ID_DELIM) >= 0) { // [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only // has one child transliterator. This is so that toRules() will return the right thing // (without any inactive ID), but our main ID still comes out correct. That is, if we // instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;" // even though the ID is "(Lower);Latin-Greek;". t = new CompoundTransliterator(list, parseError, status); } else { t = (Transliterator*)list.elementAt(0); } t->setID(canonID); if (globalFilter != NULL) { t->adoptFilter(globalFilter); } return t; } /** * Create a transliterator from a basic ID. This is an ID * containing only the forward direction source, target, and * variant. * @param id a basic ID of the form S-T or S-T/V. * @return a newly created Transliterator or null if the ID is * invalid. */ Transliterator* Transliterator::createBasicInstance(const UnicodeString& id, const UnicodeString* canon) { UParseError pe; UErrorCode ec = U_ZERO_ERROR; TransliteratorAlias* alias = 0; Transliterator* t = 0; umtx_init(®istryMutex); umtx_lock(®istryMutex); if (HAVE_REGISTRY) { t = registry->get(id, alias, ec); } umtx_unlock(®istryMutex); if (U_FAILURE(ec)) { delete t; delete alias; return 0; } // We may have not gotten a transliterator: Because we can't // instantiate a transliterator from inside TransliteratorRegistry:: // get() (that would deadlock), we sometimes pass back an alias. This // contains the data we need to finish the instantiation outside the // registry mutex. The alias may, in turn, generate another alias, so // we handle aliases in a loop. The max times through the loop is two. // [alan] while (alias != 0) { U_ASSERT(t==0); // Rule-based aliases are handled with TransliteratorAlias:: // parse(), followed by TransliteratorRegistry::reget(). // Other aliases are handled with TransliteratorAlias::create(). if (alias->isRuleBased()) { // Step 1. parse TransliteratorParser parser; alias->parse(parser, pe, ec); delete alias; alias = 0; // Step 2. reget umtx_lock(®istryMutex); if (HAVE_REGISTRY) { t = registry->reget(id, parser, alias, ec); } umtx_unlock(®istryMutex); // Step 3. Loop back around! } else { t = alias->create(pe, ec); delete alias; alias = 0; break; } if (U_FAILURE(ec)) { delete t; delete alias; t = NULL; break; } } if (t != NULL && canon != NULL) { t->setID(*canon); } return t; } /** * Returns a Transliterator object constructed from * the given rule string. This will be a RuleBasedTransliterator, * if the rule string contains only rules, or a * CompoundTransliterator, if it contains ID blocks, or a * NullTransliterator, if it contains ID blocks which parse as * empty for the given direction. */ Transliterator* U_EXPORT2 Transliterator::createFromRules(const UnicodeString& ID, const UnicodeString& rules, UTransDirection dir, UParseError& parseError, UErrorCode& status) { Transliterator* t = NULL; TransliteratorParser parser; parser.parse(rules, dir, parseError, status); if (U_FAILURE(status)) { return 0; } // NOTE: The logic here matches that in TransliteratorRegistry. if (parser.idBlockVector->size() == 0 && parser.dataVector->size() == 0) { t = new NullTransliterator(); } else if (parser.idBlockVector->size() == 0 && parser.dataVector->size() == 1) { t = new RuleBasedTransliterator(ID, (TransliterationRuleData*)parser.dataVector->orphanElementAt(0), TRUE); } else if (parser.idBlockVector->size() == 1 && parser.dataVector->size() == 0) { // idBlock, no data -- this is an alias. The ID has // been munged from reverse into forward mode, if // necessary, so instantiate the ID in the forward // direction. if (parser.compoundFilter != NULL) { UnicodeString filterPattern; parser.compoundFilter->toPattern(filterPattern, FALSE); t = createInstance(filterPattern + UnicodeString(ID_DELIM) + *((UnicodeString*)parser.idBlockVector->elementAt(0)), UTRANS_FORWARD, parseError, status); } else t = createInstance(*((UnicodeString*)parser.idBlockVector->elementAt(0)), UTRANS_FORWARD, parseError, status); if (t != NULL) { t->setID(ID); } } else { UVector transliterators(status); int32_t passNumber = 1; int32_t limit = parser.idBlockVector->size(); if (parser.dataVector->size() > limit) limit = parser.dataVector->size(); for (int32_t i = 0; i < limit; i++) { if (i < parser.idBlockVector->size()) { UnicodeString* idBlock = (UnicodeString*)parser.idBlockVector->elementAt(i); if (!idBlock->isEmpty()) { Transliterator* temp = createInstance(*idBlock, UTRANS_FORWARD, parseError, status); if (temp != NULL && temp->getDynamicClassID() != NullTransliterator::getStaticClassID()) transliterators.addElement(temp, status); else delete temp; } } if (!parser.dataVector->isEmpty()) { TransliterationRuleData* data = (TransliterationRuleData*)parser.dataVector->orphanElementAt(0); transliterators.addElement( new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING) + (passNumber++), data, TRUE), status); } } t = new CompoundTransliterator(transliterators, passNumber - 1, parseError, status); t->setID(ID); t->adoptFilter(parser.orphanCompoundFilter()); } return t; } UnicodeString& Transliterator::toRules(UnicodeString& rulesSource, UBool escapeUnprintable) const { // The base class implementation of toRules munges the ID into // the correct format. That is: foo => ::foo if (escapeUnprintable) { rulesSource.truncate(0); UnicodeString id = getID(); for (int32_t i=0; igetDynamicClassID() == CompoundTransliterator::getStaticClassID()) ? ((const CompoundTransliterator*) this)->getCount() : 0; } const Transliterator& Transliterator::getElement(int32_t index, UErrorCode& ec) const { if (U_FAILURE(ec)) { return *this; } const CompoundTransliterator* cpd = (this->getDynamicClassID() == CompoundTransliterator::getStaticClassID()) ? (const CompoundTransliterator*) this : 0; int32_t n = (cpd == NULL) ? 1 : cpd->getCount(); if (index < 0 || index >= n) { ec = U_INDEX_OUTOFBOUNDS_ERROR; return *this; } else { return (n == 1) ? *this : cpd->getTransliterator(index); } } UnicodeSet& Transliterator::getSourceSet(UnicodeSet& result) const { handleGetSourceSet(result); if (filter != NULL) { UnicodeSet* filterSet; UBool deleteFilterSet = FALSE; // Most, but not all filters will be UnicodeSets. Optimize for // the high-runner case. if (filter->getDynamicClassID() == UnicodeSet::getStaticClassID()) { filterSet = (UnicodeSet*) filter; } else { filterSet = new UnicodeSet(); deleteFilterSet = TRUE; filter->addMatchSetTo(*filterSet); } result.retainAll(*filterSet); if (deleteFilterSet) { delete filterSet; } } return result; } void Transliterator::handleGetSourceSet(UnicodeSet& result) const { result.clear(); } UnicodeSet& Transliterator::getTargetSet(UnicodeSet& result) const { return result.clear(); } // For public consumption void U_EXPORT2 Transliterator::registerFactory(const UnicodeString& id, Transliterator::Factory factory, Transliterator::Token context) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { _registerFactory(id, factory, context); } } // To be called only by Transliterator subclasses that are called // to register themselves by initializeRegistry(). void Transliterator::_registerFactory(const UnicodeString& id, Transliterator::Factory factory, Transliterator::Token context) { registry->put(id, factory, context, TRUE); } // To be called only by Transliterator subclasses that are called // to register themselves by initializeRegistry(). void Transliterator::_registerSpecialInverse(const UnicodeString& target, const UnicodeString& inverseTarget, UBool bidirectional) { UErrorCode status = U_ZERO_ERROR; TransliteratorIDParser::registerSpecialInverse(target, inverseTarget, bidirectional, status); } /** * Registers a instance obj of a subclass of * Transliterator with the system. This object must * implement the clone() method. When * getInstance() is called with an ID string that is * equal to obj.getID(), then obj.clone() is * returned. * * @param obj an instance of subclass of * Transliterator that defines clone() * @see #getInstance * @see #unregister */ void U_EXPORT2 Transliterator::registerInstance(Transliterator* adoptedPrototype) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { _registerInstance(adoptedPrototype); } } void Transliterator::_registerInstance(Transliterator* adoptedPrototype) { registry->put(adoptedPrototype, TRUE); } void U_EXPORT2 Transliterator::registerAlias(const UnicodeString& aliasID, const UnicodeString& realID) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { _registerAlias(aliasID, realID); } } void Transliterator::_registerAlias(const UnicodeString& aliasID, const UnicodeString& realID) { registry->put(aliasID, realID, TRUE); } /** * Unregisters a transliterator or class. This may be either * a system transliterator or a user transliterator or class. * * @param ID the ID of the transliterator or class * @see #registerInstance */ void U_EXPORT2 Transliterator::unregister(const UnicodeString& ID) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { registry->remove(ID); } } /** * == OBSOLETE - remove in ICU 3.4 == * Return the number of IDs currently registered with the system. * To retrieve the actual IDs, call getAvailableID(i) with * i from 0 to countAvailableIDs() - 1. */ int32_t U_EXPORT2 Transliterator::countAvailableIDs(void) { umtx_init(®istryMutex); Mutex lock(®istryMutex); return HAVE_REGISTRY ? registry->countAvailableIDs() : 0; } /** * == OBSOLETE - remove in ICU 3.4 == * Return the index-th available ID. index must be between 0 * and countAvailableIDs() - 1, inclusive. If index is out of * range, the result of getAvailableID(0) is returned. */ const UnicodeString& U_EXPORT2 Transliterator::getAvailableID(int32_t index) { const UnicodeString* result = NULL; umtx_init(®istryMutex); umtx_lock(®istryMutex); if (HAVE_REGISTRY) { result = ®istry->getAvailableID(index); } umtx_unlock(®istryMutex); U_ASSERT(result != NULL); // fail if no registry return *result; } StringEnumeration* U_EXPORT2 Transliterator::getAvailableIDs(UErrorCode& ec) { if (U_FAILURE(ec)) return NULL; StringEnumeration* result = NULL; umtx_init(®istryMutex); umtx_lock(®istryMutex); if (HAVE_REGISTRY) { result = registry->getAvailableIDs(); } umtx_unlock(®istryMutex); if (result == NULL) { ec = U_INTERNAL_TRANSLITERATOR_ERROR; } return result; } int32_t U_EXPORT2 Transliterator::countAvailableSources(void) { umtx_init(®istryMutex); Mutex lock(®istryMutex); return HAVE_REGISTRY ? _countAvailableSources() : 0; } UnicodeString& U_EXPORT2 Transliterator::getAvailableSource(int32_t index, UnicodeString& result) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { _getAvailableSource(index, result); } return result; } int32_t U_EXPORT2 Transliterator::countAvailableTargets(const UnicodeString& source) { umtx_init(®istryMutex); Mutex lock(®istryMutex); return HAVE_REGISTRY ? _countAvailableTargets(source) : 0; } UnicodeString& U_EXPORT2 Transliterator::getAvailableTarget(int32_t index, const UnicodeString& source, UnicodeString& result) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { _getAvailableTarget(index, source, result); } return result; } int32_t U_EXPORT2 Transliterator::countAvailableVariants(const UnicodeString& source, const UnicodeString& target) { umtx_init(®istryMutex); Mutex lock(®istryMutex); return HAVE_REGISTRY ? _countAvailableVariants(source, target) : 0; } UnicodeString& U_EXPORT2 Transliterator::getAvailableVariant(int32_t index, const UnicodeString& source, const UnicodeString& target, UnicodeString& result) { umtx_init(®istryMutex); Mutex lock(®istryMutex); if (HAVE_REGISTRY) { _getAvailableVariant(index, source, target, result); } return result; } int32_t Transliterator::_countAvailableSources(void) { return registry->countAvailableSources(); } UnicodeString& Transliterator::_getAvailableSource(int32_t index, UnicodeString& result) { return registry->getAvailableSource(index, result); } int32_t Transliterator::_countAvailableTargets(const UnicodeString& source) { return registry->countAvailableTargets(source); } UnicodeString& Transliterator::_getAvailableTarget(int32_t index, const UnicodeString& source, UnicodeString& result) { return registry->getAvailableTarget(index, source, result); } int32_t Transliterator::_countAvailableVariants(const UnicodeString& source, const UnicodeString& target) { return registry->countAvailableVariants(source, target); } UnicodeString& Transliterator::_getAvailableVariant(int32_t index, const UnicodeString& source, const UnicodeString& target, UnicodeString& result) { return registry->getAvailableVariant(index, source, target, result); } #ifdef U_USE_DEPRECATED_TRANSLITERATOR_API /** * Method for subclasses to use to obtain a character in the given * string, with filtering. * @deprecated the new architecture provides filtering at the top * level. This method will be removed Dec 31 2001. */ UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const { UChar c; const UnicodeFilter* localFilter = getFilter(); return (localFilter == 0) ? text.charAt(i) : (localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE); } #endif /** * If the registry is initialized, return TRUE. If not, initialize it * and return TRUE. If the registry cannot be initialized, return * FALSE (rare). * * IMPORTANT: Upon entry, registryMutex must be LOCKED. The entirely * initialization is done with the lock held. There is NO REASON to * unlock, since no other thread that is waiting on the registryMutex * cannot itself proceed until the registry is initialized. */ UBool Transliterator::initializeRegistry() { if (registry != 0) { return TRUE; } UErrorCode status = U_ZERO_ERROR; registry = new TransliteratorRegistry(status); if (registry == 0 || U_FAILURE(status)) { delete registry; registry = 0; return FALSE; // can't create registry, no recovery } /* The following code parses the index table located in * icu/data/translit/root.txt. The index is an n x 4 table * that follows this format: * { * file{ * resource{""} * direction{""} * } * } * { * internal{ * resource{""} * direction{"{ * alias{" is the ID of the system transliterator being defined. These * are public IDs enumerated by Transliterator.getAvailableIDs(), * unless the second field is "internal". * * is a ResourceReader resource name. Currently these refer * to file names under com/ibm/text/resources. This string is passed * directly to ResourceReader, together with . * * is either "FORWARD" or "REVERSE". * * is a string to be passed directly to * Transliterator.getInstance(). The returned Transliterator object * then has its ID changed to and is returned. * * The extra blank field on "alias" lines is to make the array square. */ //static const char translit_index[] = "translit_index"; UResourceBundle *bundle, *transIDs, *colBund; bundle = ures_open(U_ICUDATA_TRANSLIT, NULL/*open root bundle*/, &status); transIDs = ures_getByKey(bundle, RB_RULE_BASED_IDS, 0, &status); int32_t row, maxRows; if (U_SUCCESS(status)) { maxRows = ures_getSize(transIDs); for (row = 0; row < maxRows; row++) { colBund = ures_getByIndex(transIDs, row, 0, &status); if (U_SUCCESS(status)) { UnicodeString id(ures_getKey(colBund), -1, US_INV); UResourceBundle* res = ures_getNextResource(colBund, NULL, &status); const char* typeStr = ures_getKey(res); UChar type; u_charsToUChars(typeStr, &type, 1); if (U_SUCCESS(status)) { int32_t len = 0; const UChar *resString; switch (type) { case 0x66: // 'f' case 0x69: // 'i' // 'file' or 'internal'; // row[2]=resource, row[3]=direction { resString = ures_getStringByKey(res, "resource", &len, &status); UBool visible = (type == 0x0066 /*f*/); UTransDirection dir = (ures_getUnicodeStringByKey(res, "direction", &status).charAt(0) == 0x0046 /*F*/) ? UTRANS_FORWARD : UTRANS_REVERSE; registry->put(id, UnicodeString(TRUE, resString, len), dir, visible); } break; case 0x61: // 'a' // 'alias'; row[2]=createInstance argument resString = ures_getString(res, &len, &status); registry->put(id, UnicodeString(TRUE, resString, len), TRUE); break; } } ures_close(res); } ures_close(colBund); } } ures_close(transIDs); ures_close(bundle); // Manually add prototypes that the system knows about to the // cache. This is how new non-rule-based transliterators are // added to the system. registry->put(new NullTransliterator(), TRUE); registry->put(new LowercaseTransliterator(), TRUE); registry->put(new UppercaseTransliterator(), TRUE); registry->put(new TitlecaseTransliterator(), TRUE); registry->put(new UnicodeNameTransliterator(), TRUE); registry->put(new NameUnicodeTransliterator(), TRUE); RemoveTransliterator::registerIDs(); // Must be within mutex EscapeTransliterator::registerIDs(); UnescapeTransliterator::registerIDs(); NormalizationTransliterator::registerIDs(); AnyTransliterator::registerIDs(); _registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"), UNICODE_STRING_SIMPLE("Null"), FALSE); _registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"), UNICODE_STRING_SIMPLE("Lower"), TRUE); _registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"), UNICODE_STRING_SIMPLE("Lower"), FALSE); ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR, transliterator_cleanup); return TRUE; } U_NAMESPACE_END // Defined in ucln_in.h: /** * Release all static memory held by transliterator. This will * necessarily invalidate any rule-based transliterators held by the * user, because RBTs hold pointers to common data objects. */ U_CFUNC UBool transliterator_cleanup(void) { TransliteratorIDParser::cleanup(); if (registry) { delete registry; registry = NULL; } umtx_destroy(®istryMutex); return TRUE; } #endif /* #if !UCONFIG_NO_TRANSLITERATION */ //eof