/* ****************************************************************************** * * Copyright (C) 2000-2001, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: ucnvmbcs.c * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2000jul03 * created by: Markus W. Scherer * * The current code in this file replaces the previous implementation * of conversion code from multi-byte codepages to Unicode and back. * This implementation supports the following: * - legacy variable-length codepages with up to 4 bytes per character * - all Unicode code points (up to 0x10ffff) * - efficient distinction of unassigned vs. illegal byte sequences * - it is possible in fromUnicode() to directly deal with simple * stateful encodings (used for EBCDIC_STATEFUL) * - it is possible to convert Unicode code points other than U+0000 * to a single zero byte (but not as a fallback except for SBCS) * * Remaining limitations in fromUnicode: * - byte sequences must not have leading zero bytes * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte * - limitation to up to 4 bytes per character * * Change history: * * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM_U, * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE_2 * macros to ucnvmbcs.h file */ #include "unicode/utypes.h" #if !UCONFIG_NO_LEGACY_CONVERSION #include "unicode/ucnv.h" #include "unicode/ucnv_cb.h" #include "unicode/udata.h" #include "ucnv_bld.h" #include "ucnvmbcs.h" #include "ucnv_cnv.h" #include "umutex.h" #include "cmemory.h" #include "cstring.h" /* control optimizations according to the platform */ #define MBCS_UNROLL_SINGLE_TO_BMP 1 #define MBCS_UNROLL_SINGLE_FROM_BMP 0 /* * _MBCSHeader versions 4 * (Note that the _MBCSHeader version is in addition to the converter formatVersion.) * * Changes from version 3 (for performance improvements): * - new bit distribution for state table entries * - reordered action codes * - new data structure for single-byte fromUnicode * + stage 2 only contains indexes * + stage 3 stores 16 bits per character with classification bits 15..8 * - no multiplier for stage 1 entries * - stage 2 for non-single-byte codepages contains the index and the flags in * one 32-bit value * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit integers * * For more details about old versions of the MBCS data structure, see * the corresponding versions of this file. * * Converting stateless codepage data ---------------------------------------*** * (or codepage data with simple states) to Unicode. * * Data structure and algorithm for converting from complex legacy codepages * to Unicode. (Designed before 2000-may-22.) * * The basic idea is that the structure of legacy codepages can be described * with state tables. * When reading a byte stream, each input byte causes a state transition. * Some transitions result in the output of a code point, some result in * "unassigned" or "illegal" output. * This is used here for character conversion. * * The data structure begins with a state table consisting of a row * per state, with 256 entries (columns) per row for each possible input * byte value. * Each entry is 32 bits wide, with two formats distinguished by * the sign bit (bit 31): * * One format for transitional entries (bit 31 not set) for non-final bytes, and * one format for final entries (bit 31 set). * Both formats contain the number of the next state in the same bit * positions. * State 0 is the initial state. * * Most of the time, the offset values of subsequent states are added * up to a scalar value. This value will eventually be the index of * the Unicode code point in a table that follows the state table. * The effect is that the code points for final state table rows * are contiguous. The code points of final state rows follow each other * in the order of the references to those final states by previous * states, etc. * * For some terminal states, the offset is itself the output Unicode * code point (16 bits for a BMP code point or 20 bits for a supplementary * code point (stored as code point minus 0x10000 so that 20 bits are enough). * For others, the code point in the Unicode table is stored with either * one or two code units: one for BMP code points, two for a pair of * surrogates. * All code points for a final state entry take up the same number of code * units, regardless of whether they all actually _use_ the same number * of code units. This is necessary for simple array access. * * An additional feature comes in with what in ICU is called "fallback" * mappings: * * In addition to round-trippable, precise, 1:1 mappings, there are often * mappings defined between similar, though not the same, characters. * Typically, such mappings occur only in fromUnicode mapping tables because * Unicode has a superset repertoire of most other codepages. However, it * is possible to provide such mappings in the toUnicode tables, too. * In this case, the fallback mappings are partly integrated into the * general state tables because the structure of the encoding includes their * byte sequences. * For final entries in an initial state, fallback mappings are stored in * the entry itself like with roundtrip mappings. * For other final entries, they are stored in the code units table if * the entry is for a pair of code units. * For single-unit results in the code units table, there is no space to * alternatively hold a fallback mapping; in this case, the code unit * is stored as U+fffe (unassigned), and the fallback mapping needs to * be looked up by the scalar offset value in a separate table. * * "Unassigned" state entries really mean "structurally unassigned", * i.e., such a byte sequence will never have a mapping result. * * The interpretation of the bits in each entry is as follows: * * Bit 31 not set, not a terminal entry ("transitional"): * 30..24 next state * 23..0 offset delta, to be added up * * Bit 31 set, terminal ("final") entry: * 30..24 next state (regardless of action code) * 23..20 action code: * action codes 0 and 1 result in precise-mapping Unicode code points * 0 valid byte sequence * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point * never U+fffe or U+ffff * 1 valid byte sequence * 19..0 20-bit Unicode supplementary code point * never U+fffe or U+ffff * * action codes 2 and 3 result in fallback (unidirectional-mapping) Unicode code points * 2 valid byte sequence (fallback) * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point as fallback result * 3 valid byte sequence (fallback) * 19..0 20-bit Unicode supplementary code point as fallback result * * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illegal results * depending on the code units they result in * 4 valid byte sequence * 19..9 not used, 0 * 8..0 final offset delta * pointing to one 16-bit code unit which may be * fffe unassigned -- look for a fallback for this offset * ffff illegal * 5 valid byte sequence * 19..9 not used, 0 * 8..0 final offset delta * pointing to two 16-bit code units * (typically UTF-16 surrogates) * the result depends on the first code unit as follows: * 0000..d7ff roundtrip BMP code point (1st alone) * d800..dbff roundtrip surrogate pair (1st, 2nd) * dc00..dfff fallback surrogate pair (1st-400, 2nd) * e000 roundtrip BMP code point (2nd alone) * e001 fallback BMP code point (2nd alone) * fffe unassigned * ffff illegal * (the final offset deltas are at most 255 * 2, * times 2 because of storing code unit pairs) * * 6 unassigned byte sequence * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) * this does not contain a final offset delta because the main * purpose of this action code is to save scalar offset values; * therefore, fallback values cannot be assigned to byte * sequences that result in this action code * 7 illegal byte sequence * 19..16 not used, 0 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) * 8 state change only * 19..0 not used, 0 * useful for state changes in simple stateful encodings, * at Shift-In/Shift-Out codes * * * 9..15 reserved for future use * current implementations will only perform a state change * and ignore bits 19..0 * * An encoding with contiguous ranges of unassigned byte sequences, like * Shift-JIS and especially EUC-TW, can be stored efficiently by having * at least two states for the trail bytes: * One trail byte state that results in code points, and one that only * has "unassigned" and "illegal" terminal states. * * Note: partly by accident, this data structure supports simple stateless * encodings without any additional logic. * Currently, only simple Shift-In/Shift-Out schemes are handled with * appropriate state tables (especially EBCDIC_STATEFUL!). * * MBCS version 2 added: * unassigned and illegal action codes have U+fffe and U+ffff * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() * * Converting from Unicode to codepage bytes --------------------------------*** * * The conversion data structure for fromUnicode is designed for the known * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to * a sequence of 1..4 bytes, in addition to a flag that indicates if there is * a roundtrip mapping. * * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 * like in the character properties table. * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 * with the resulting bytes is at offsetFromUBytes. * * Beginning with version 4, single-byte codepages have a significantly different * trie compared to other codepages. * In all cases, the entry in stage 1 is directly the index of the block of * 64 entries in stage 2. * * Single-byte lookup: * * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. * Stage 3 contains one 16-bit word per result: * Bits 15..8 indicate the kind of result: * f roundtrip result * c fallback result from private-use code point * 8 fallback result from other code points * 0 unassigned * Bits 7..0 contain the codepage byte. A zero byte is always possible. * * Multi-byte lookup: * * Stage 2 contains a 32-bit word for each 16-block in stage 3: * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) * If this test is false, then a non-zero result will be interpreted as * a fallback mapping. * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(bytes per char) * * Stage 3 contains 2, 3, or 4 bytes per result. * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, * while 3 bytes are stored as bytes in big-endian order. * Leading zero bytes are ignored, and the number of bytes is counted. * A zero byte mapping result is possible as a roundtrip result. * For some output types, the actual result is processed from this; * see _MBCSFromUnicodeWithOffsets(). * * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), * or (version 3 and up) for BMP-only codepages, it contains 64 entries. * * In version 3, stage 2 blocks may overlap by multiples of the multiplier * for compaction. * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) * may overlap by any number of entries. * * MBCS version 2 added: * the converter checks for known output types, which allows * adding new ones without crashing an unaware converter */ /* prototypes --------------------------------------------------------------- */ static void _MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void _MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode); static UChar32 _MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode); static UChar32 _MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void _MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void _MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void _MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode); static void fromUCallback(UConverter *cnv, const void *context, UConverterFromUnicodeArgs *pArgs, UChar32 codePoint, UConverterCallbackReason reason, UErrorCode *pErrorCode); static void toUCallback(UConverter *cnv, const void *context, UConverterToUnicodeArgs *pArgs, const char *codeUnits, int32_t length, UConverterCallbackReason reason, UErrorCode *pErrorCode); /* GB 18030 data ------------------------------------------------------------ */ /* helper macros for linear values for GB 18030 four-byte sequences */ #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) /* * Some ranges of GB 18030 where both the Unicode code points and the * GB four-byte sequences are contiguous and are handled algorithmically by * the special callback functions below. * The values are start & end of Unicode & GB codes. * * Note that single surrogates are not mapped by GB 18030 * as of the re-released mapping tables from 2000-nov-30. */ static const uint32_t gb18030Ranges[13][4]={ {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, {0x0452, 0x200F, LINEAR(0x8130D330), LINEAR(0x8136A531)}, {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} }; /* bit flag for UConverter.options indicating GB 18030 special handling */ #define _MBCS_OPTION_GB18030 0x8000 /* Miscellaneous ------------------------------------------------------------ */ static uint32_t _MBCSSizeofFromUBytes(UConverterMBCSTable *mbcsTable) { /* ### TODO markus 20020911 Use _MBCSHeader.reserved to store size of fromUBytes[] */ const uint16_t *table; uint32_t st3, maxStage3; uint16_t st1, maxStage1, st2; /* Enumerate the from-Unicode trie table to find the highest stage 3 index. */ table=mbcsTable->fromUnicodeTable; maxStage3=0; if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { maxStage1=0x440; } else { maxStage1=0x40; } if(mbcsTable->outputType==MBCS_OUTPUT_1) { const uint16_t *stage2; for(st1=0; st1maxStage3) { maxStage3=st3; } } } } /* * add 16 to get the limit not start index of the last stage 3 block, * times 2 for number of bytes */ return (maxStage3+16)*2; } else { const uint32_t *stage2; for(st1=0; st1maxStage3) { maxStage3=st3; } } } } /* * add 16 to get the limit not start index of the last stage 3 block, * times 2..4 for number of bytes */ maxStage3=16*maxStage3+16; switch(mbcsTable->outputType) { case MBCS_OUTPUT_3: case MBCS_OUTPUT_4_EUC: maxStage3*=3; break; case MBCS_OUTPUT_4: maxStage3*=4; break; default: /* MBCS_OUTPUT_2... and MBCS_OUTPUT_3_EUC */ maxStage3*=2; break; } return maxStage3; } } /* EBCDIC swap LF<->NL ------------------------------------------------------ */ /* * This code modifies a standard EBCDIC<->Unicode mapping table for * OS/390 (z/OS) Unix System Services (Open Edition). * The difference is in the mapping of Line Feed and New Line control codes: * Standard EBCDIC maps * * \x25 |0 * \x15 |0 * * but OS/390 USS EBCDIC swaps the control codes for LF and NL, * mapping * * \x15 |0 * \x25 |0 * * This code modifies a loaded standard EBCDIC<->Unicode mapping table * by copying it into allocated memory and swapping the LF and NL values. * It allows to support the same EBCDIC charset in both versions without * duplicating the entire installed table. */ /* standard EBCDIC codes */ #define EBCDIC_LF 0x25 #define EBCDIC_NL 0x15 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte tables */ #define EBCDIC_RT_LF 0xf25 #define EBCDIC_RT_NL 0xf15 /* Unicode code points */ #define U_LF 0x0a #define U_NL 0x85 static UBool _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { UConverterMBCSTable *mbcsTable; const uint16_t *table, *results; const uint8_t *bytes; int32_t (*newStateTable)[256]; uint16_t *newResults; uint8_t *p; char *name; uint32_t stage2Entry; uint32_t size, sizeofFromUBytes; mbcsTable=&sharedData->table->mbcs; table=mbcsTable->fromUnicodeTable; bytes=mbcsTable->fromUnicodeBytes; results=(const uint16_t *)bytes; /* * Check that this is an EBCDIC table with SBCS portion - * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. * * If not, ignore the option. Options are always ignored if they do not apply. */ if(!( (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OUTPUT_2_SISO) && mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF) && mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL) )) { return FALSE; } if(mbcsTable->outputType==MBCS_OUTPUT_1) { if(!( EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) )) { return FALSE; } } else /* MBCS_OUTPUT_2_SISO */ { stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); if(!( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) )) { return FALSE; } stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); if(!( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) )) { return FALSE; } } /* * The table has an appropriate format. * Allocate and build * - a modified to-Unicode state table * - a modified from-Unicode output array * - a converter name string with the swap option appended */ sizeofFromUBytes=_MBCSSizeofFromUBytes(mbcsTable); size= mbcsTable->countStates*1024+ sizeofFromUBytes+ UCNV_MAX_CONVERTER_NAME_LENGTH+20; p=(uint8_t *)uprv_malloc(size); if(p==NULL) { *pErrorCode=U_MEMORY_ALLOCATION_ERROR; return FALSE; } /* copy and modify the to-Unicode state table */ newStateTable=(int32_t (*)[256])p; uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*1024); newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_NL); newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, U_LF); /* copy and modify the from-Unicode result table */ newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; uprv_memcpy(newResults, bytes, sizeofFromUBytes); /* conveniently, the table access macros work on the left side of expressions */ if(mbcsTable->outputType==MBCS_OUTPUT_1) { MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; } else /* MBCS_OUTPUT_2_SISO */ { stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; } /* set the canonical converter name */ name=(char *)newResults+sizeofFromUBytes; uprv_strcpy(name, sharedData->staticData->name); uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); /* set the pointers */ umtx_lock(NULL); if(mbcsTable->swapLFNLStateTable==NULL) { mbcsTable->swapLFNLStateTable=newStateTable; mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; mbcsTable->swapLFNLName=name; newStateTable=NULL; } umtx_unlock(NULL); /* release the allocated memory if another thread beat us to it */ if(newStateTable!=NULL) { uprv_free(newStateTable); } return TRUE; } /* MBCS setup functions ----------------------------------------------------- */ static void _MBCSLoad(UConverterSharedData *sharedData, const uint8_t *raw, UErrorCode *pErrorCode) { UDataInfo info; UConverterMBCSTable *mbcsTable=&sharedData->table->mbcs; _MBCSHeader *header=(_MBCSHeader *)raw; if(header->version[0]!=4) { *pErrorCode=U_INVALID_TABLE_FORMAT; return; } mbcsTable->countStates=(uint8_t)header->countStates; mbcsTable->countToUFallbacks=header->countToUFallbacks; mbcsTable->stateTable=(const int32_t (*)[256])(raw+sizeof(_MBCSHeader)); mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable+header->countStates); mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCodeUnits); mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTable); mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUBytes); mbcsTable->outputType=(uint8_t)header->flags; /* make sure that the output type is known */ switch(mbcsTable->outputType) { case MBCS_OUTPUT_1: case MBCS_OUTPUT_2: case MBCS_OUTPUT_3: case MBCS_OUTPUT_4: case MBCS_OUTPUT_3_EUC: case MBCS_OUTPUT_4_EUC: case MBCS_OUTPUT_2_SISO: /* OK */ break; default: *pErrorCode=U_INVALID_TABLE_FORMAT; return; } /* * converter versions 6.1 and up contain a unicodeMask that is * used here to select the most efficient function implementations */ info.size=sizeof(UDataInfo); udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVersion[1]>=1)) { /* mask off possible future extensions to be safe */ mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask&3); } else { /* for older versions, assume worst case: contains anything possible (prevent over-optimizations) */ mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; } } static void _MBCSUnload(UConverterSharedData *sharedData) { UConverterMBCSTable *mbcsTable=&sharedData->table->mbcs; if(mbcsTable->swapLFNLStateTable!=NULL) { uprv_free(mbcsTable->swapLFNLStateTable); } } static void _MBCSReset(UConverter *cnv, UConverterResetChoice choice) { if(choice<=UCNV_RESET_TO_UNICODE) { /* toUnicode */ cnv->toUnicodeStatus=0; /* offset */ cnv->mode=0; /* state */ cnv->toULength=0; /* byteIndex */ } if(choice!=UCNV_RESET_TO_UNICODE) { /* fromUnicode */ cnv->fromUSurrogateLead=0; cnv->fromUnicodeStatus=1; /* prevLength */ } } static void _MBCSOpen(UConverter *cnv, const char *name, const char *locale, uint32_t options, UErrorCode *pErrorCode) { if((options&UCNV_OPTION_SWAP_LFNL)!=0) { if(cnv->sharedData->table->mbcs.swapLFNLStateTable==NULL) { if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { /* the option does not apply, remove it */ cnv->options&=~UCNV_OPTION_SWAP_LFNL; } } } if(uprv_strstr(name, "gb18030")!=NULL || uprv_strstr(name, "GB18030")!=NULL) { /* set a flag for GB 18030 mode, which changes the callback behavior */ cnv->options|=_MBCS_OPTION_GB18030; } _MBCSReset(cnv, UCNV_RESET_BOTH); } static const char * _MBCSGetName(const UConverter *cnv) { if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->table->mbcs.swapLFNLName!=NULL) { return cnv->sharedData->table->mbcs.swapLFNLName; } else { return cnv->sharedData->staticData->name; } } /* MBCS-to-Unicode conversion functions ------------------------------------- */ static UChar32 _MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { const _MBCSToUFallback *toUFallbacks; uint32_t i, start, limit; limit=mbcsTable->countToUFallbacks; if(limit>0) { /* do a binary search for the fallback mapping */ toUFallbacks=mbcsTable->toUFallbacks; start=0; while(startconverter; if(cnv->sharedData->table->mbcs.countStates==1) { if(!(cnv->sharedData->table->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { _MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); } else { _MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); } return; } /* set up the local pointers */ source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; target=pArgs->target; targetLimit=pArgs->targetLimit; offsets=pArgs->offsets; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=cnv->sharedData->table->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->table->mbcs.stateTable; } unicodeCodeUnits=cnv->sharedData->table->mbcs.unicodeCodeUnits; /* get the converter state from UConverter */ offset=cnv->toUnicodeStatus; state=(uint8_t)(cnv->mode); byteIndex=cnv->toULength; bytes=cnv->toUBytes; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex=byteIndex==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ while(sourcesharedData->table->mbcs, offset))!=0xfffe) { /* output fallback BMP code point */ *target++=(UChar)entry; if(offsets!=NULL) { *offsets++=sourceIndex; } } else { /* callback(unassigned) */ goto unassigned; } } else { /* callback(illegal) */ goto illegal; } } else if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } } else if(action==MBCS_STATE_VALID_16_PAIR) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset++]; if(c<0xd800) { /* output BMP code point below 0xd800 */ *target++=c; if(offsets!=NULL) { *offsets++=sourceIndex; } } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { /* output roundtrip or fallback surrogate pair */ *target++=(UChar)(c&0xdbff); if(offsets!=NULL) { *offsets++=sourceIndex; } if(targetUCharErrorBuffer[0]=unicodeCodeUnits[offset]; cnv->UCharErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; offset=0; byteIndex=0; break; } } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ *target++=unicodeCodeUnits[offset]; if(offsets!=NULL) { *offsets++=sourceIndex; } } else if(c==0xffff) { /* callback(illegal) */ goto illegal; } else { /* callback(unassigned) */ goto unassigned; } } else if(action==MBCS_STATE_VALID_DIRECT_20) { valid20: entry=MBCS_ENTRY_FINAL_VALUE(entry); /* output surrogate pair */ *target++=(UChar)(0xd800|(UChar)(entry>>10)); if(offsets!=NULL) { *offsets++=sourceIndex; } c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); if(targetUCharErrorBuffer[0]=c; cnv->UCharErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; offset=0; byteIndex=0; break; } } else if(action==MBCS_STATE_CHANGE_ONLY) { /* * This serves as a state change without any output. * It is useful for reading simple stateful encodings, * for example using just Shift-In/Shift-Out codes. * The 21 unused bits may later be used for more sophisticated * state transitions. */ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ goto unassigned; } /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ goto unassigned; } goto valid20; } else if(action==MBCS_STATE_UNASSIGNED) { /* callback(unassigned) */ goto unassigned; } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ goto illegal; } else { /* reserved, must never occur */ } /* normal end of action codes: prepare for a new character */ offset=0; byteIndex=0; sourceIndex=nextSourceIndex; continue; illegal: reason=UCNV_ILLEGAL; *pErrorCode=U_ILLEGAL_CHAR_FOUND; goto callback; unassigned: reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; callback: /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; /* set the converter state in UConverter to deal with the next character */ cnv->toUnicodeStatus=0; cnv->mode=state; cnv->toULength=0; /* call the callback function */ toUCallback(cnv, cnv->toUContext, pArgs, (const char *)bytes, byteIndex, reason, pErrorCode); /* get the converter state from UConverter */ offset=cnv->toUnicodeStatus; state=(uint8_t)cnv->mode; byteIndex=cnv->toULength; /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, pArgs->target-target, sourceIndex); target=pArgs->target; /* update the source pointer and index */ sourceIndex=nextSourceIndex+((const uint8_t *)pArgs->source-source); source=(const uint8_t *)pArgs->source; /* * If the callback overflowed the target, then we need to * stop here with an overflow indication. */ if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { break; } else if(U_FAILURE(*pErrorCode)) { /* break on error */ offset=0; state=0; byteIndex=0; break; } else if(cnv->UCharErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } /* * We do not need to repeat the statements from the normal * end of the action codes because we already updated all the * necessary variables. */ } } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } if(pArgs->flush && source>=sourceLimit) { /* reset the state for the next conversion */ if(byteIndex>0 && U_SUCCESS(*pErrorCode)) { /* a character byte sequence remains incomplete */ *pErrorCode=U_TRUNCATED_CHAR_FOUND; } cnv->toUnicodeStatus=0; cnv->mode=0; cnv->toULength=0; } else { /* set the converter state back into UConverter */ cnv->toUnicodeStatus=offset; cnv->mode=state; cnv->toULength=byteIndex; } /* write back the updated pointers */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; } /* This version of _MBCSToUnicodeWithOffsets() is optimized for single-byte, single-state codepages. */ static void _MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const uint8_t *source, *sourceLimit; UChar *target; const UChar *targetLimit; int32_t *offsets; const int32_t (*stateTable)[256]; int32_t sourceIndex, nextSourceIndex; int32_t entry; UChar c; uint8_t action; UConverterCallbackReason reason; /* set up the local pointers */ cnv=pArgs->converter; source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; target=pArgs->target; targetLimit=pArgs->targetLimit; offsets=pArgs->offsets; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=cnv->sharedData->table->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->table->mbcs.stateTable; } /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex=0; nextSourceIndex=0; /* conversion loop */ while(source>10)); if(offsets!=NULL) { *offsets++=sourceIndex; } c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); if(targetUCharErrorBuffer[0]=c; cnv->UCharErrorBufferLength=1; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ goto unassigned; } /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); if(offsets!=NULL) { *offsets++=sourceIndex; } } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ goto unassigned; } goto valid20; } else if(action==MBCS_STATE_UNASSIGNED) { /* callback(unassigned) */ goto unassigned; } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ reason=UCNV_ILLEGAL; *pErrorCode=U_ILLEGAL_CHAR_FOUND; goto callback; } else { /* reserved, must never occur */ } /* normal end of action codes: prepare for a new character */ sourceIndex=nextSourceIndex; continue; unassigned: reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; callback: /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; /* call the callback function */ toUCallback(cnv, cnv->toUContext, pArgs, (const char *)(source-1), 1, reason, pErrorCode); /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, pArgs->target-target, sourceIndex); target=pArgs->target; /* update the source pointer and index */ sourceIndex=nextSourceIndex+((const uint8_t *)pArgs->source-source); source=(const uint8_t *)pArgs->source; /* * If the callback overflowed the target, then we need to * stop here with an overflow indication. */ if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { break; } else if(U_FAILURE(*pErrorCode)) { /* break on error */ break; } else if(cnv->UCharErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } /* * We do not need to repeat the statements from the normal * end of the action codes because we already updated all the * necessary variables. */ } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } /* write back the updated pointers */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; } /* * This version of _MBCSSingleToUnicodeWithOffsets() is optimized for single-byte, single-state codepages * that only map to and from the BMP. * In addition to single-byte optimizations, the offset calculations * become much easier. */ static void _MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const uint8_t *source, *sourceLimit, *lastSource; UChar *target; int32_t targetCapacity, length; int32_t *offsets; const int32_t (*stateTable)[256]; int32_t sourceIndex; int32_t entry; uint8_t action; UConverterCallbackReason reason; /* set up the local pointers */ cnv=pArgs->converter; source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; target=pArgs->target; targetCapacity=pArgs->targetLimit-pArgs->target; offsets=pArgs->offsets; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=cnv->sharedData->table->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->table->mbcs.stateTable; } /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex=0; lastSource=source; /* * since the conversion here is 1:1 UChar:uint8_t, we need only one counter * for the minimum of the sourceLength and targetCapacity */ length=sourceLimit-source; if(length=16) { int32_t count, loops, oredEntries; loops=count=targetCapacity>>4; do { oredEntries=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); oredEntries|=entry=stateTable[0][*source++]; *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); /* were all 16 entries really valid? */ if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { /* no, return to the first of these 16 */ source-=16; target-=16; break; } } while(--count>0); count=loops-count; targetCapacity-=16*count; if(offsets!=NULL) { lastSource+=16*count; while(count>0) { *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; --count; } } } #endif /* conversion loop */ while(targetCapacity>0) { entry=stateTable[0][*source++]; /* MBCS_ENTRY_IS_FINAL(entry) */ /* test the most common case first */ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); --targetCapacity; continue; } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; } /* output BMP code point */ *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); --targetCapacity; continue; } else if(action==MBCS_STATE_UNASSIGNED) { /* callback(unassigned) */ reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ reason=UCNV_ILLEGAL; *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved, must never occur */ continue; } /* call the callback function with all the preparations and post-processing */ /* set offsets since the start or the last callback */ if(offsets!=NULL) { int32_t count=(int32_t)(source-lastSource); /* predecrement: do not set the offset for the callback-causing character */ while(--count>0) { *offsets++=sourceIndex++; } /* offset and sourceIndex are now set for the current character */ } /* update the arguments structure */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; /* call the callback function */ toUCallback(cnv, cnv->toUContext, pArgs, (const char *)(source-1), 1, reason, pErrorCode); /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, pArgs->target-target, sourceIndex); target=pArgs->target; /* update the source pointer and index */ sourceIndex+=1+((const uint8_t *)pArgs->source-source); source=lastSource=(const uint8_t *)pArgs->source; targetCapacity=pArgs->targetLimit-target; length=sourceLimit-source; if(lengthUCharErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } #if MBCS_UNROLL_SINGLE_TO_BMP /* unrolling makes it faster on Pentium III/Windows 2000 */ goto unrolled; #endif } if(U_SUCCESS(*pErrorCode) && source=pArgs->targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; } /* set offsets since the start or the last callback */ if(offsets!=NULL) { size_t count=source-lastSource; while(count>0) { *offsets++=sourceIndex++; --count; } } /* write back the updated pointers */ pArgs->source=(const char *)source; pArgs->target=target; pArgs->offsets=offsets; } static UChar32 _MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UChar buffer[UTF_MAX_CHAR_LENGTH]; UConverter *cnv; const uint8_t *source, *sourceLimit; const int32_t (*stateTable)[256]; const uint16_t *unicodeCodeUnits; uint32_t offset; uint8_t state; int8_t byteIndex; uint8_t *bytes; int32_t entry; UChar32 c; uint8_t action; UConverterCallbackReason reason; /* use optimized function if possible */ cnv=pArgs->converter; if(cnv->sharedData->table->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { /* * Calling the inefficient, generic getNextUChar() lets us deal correctly * with the rare case of a codepage that maps single surrogates * without adding the complexity to this already complicated function here. */ return ucnv_getNextUCharFromToUImpl(pArgs, _MBCSToUnicodeWithOffsets, TRUE, pErrorCode); } else if(cnv->sharedData->table->mbcs.countStates==1) { return _MBCSSingleGetNextUChar(pArgs, pErrorCode); } /* set up the local pointers */ source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=cnv->sharedData->table->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->table->mbcs.stateTable; } unicodeCodeUnits=cnv->sharedData->table->mbcs.unicodeCodeUnits; /* get the converter state from UConverter */ offset=cnv->toUnicodeStatus; state=(uint8_t)(cnv->mode); byteIndex=cnv->toULength; bytes=cnv->toUBytes; /* conversion loop */ while(sourcesharedData->table->mbcs, offset))!=0xfffe) { goto finish; } /* callback(unassigned) */ goto unassigned; } else { /* callback(illegal) */ goto illegal; } } else if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); goto finish; } else if(action==MBCS_STATE_VALID_16_PAIR) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); c=unicodeCodeUnits[offset++]; if(c<0xd800) { /* output BMP code point below 0xd800 */ goto finish; } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { /* output roundtrip or fallback supplementary code point */ c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); goto finish; } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ c=unicodeCodeUnits[offset]; goto finish; } else if(c==0xffff) { /* callback(illegal) */ goto illegal; } else { /* callback(unassigned) */ goto unassigned; } } else if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); goto finish; } else if(action==MBCS_STATE_CHANGE_ONLY) { /* * This serves as a state change without any output. * It is useful for reading simple stateful encodings, * for example using just Shift-In/Shift-Out codes. * The 21 unused bits may later be used for more sophisticated * state transitions. */ } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ goto unassigned; } /* output BMP code point */ c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); goto finish; } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ goto unassigned; } /* output supplementary code point */ c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); goto finish; } else if(action==MBCS_STATE_UNASSIGNED) { /* callback(unassigned) */ goto unassigned; } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ goto illegal; } else { /* reserved, must never occur */ } /* normal end of action codes: prepare for a new character */ offset=0; byteIndex=0; continue; illegal: reason=UCNV_ILLEGAL; *pErrorCode=U_ILLEGAL_CHAR_FOUND; goto callback; unassigned: reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; callback: /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->source=(const char *)source; pArgs->target=buffer; pArgs->targetLimit=buffer+UTF_MAX_CHAR_LENGTH; /* set the converter state in UConverter to deal with the next character */ cnv->toUnicodeStatus=0; cnv->mode=state; cnv->toULength=0; /* call the callback function */ toUCallback(cnv, cnv->toUContext, pArgs, (const char *)bytes, byteIndex, reason, pErrorCode); /* get the converter state from UConverter */ offset=cnv->toUnicodeStatus; state=(uint8_t)cnv->mode; byteIndex=cnv->toULength; /* update the source pointer */ source=(const uint8_t *)pArgs->source; /* * return the first character if the callback wrote some * we do not need to goto finish because the converter state is already set */ if(U_SUCCESS(*pErrorCode)) { entry=pArgs->target-buffer; if(entry>0) { return ucnv_getUChar32KeepOverflow(cnv, buffer, entry); } /* else (callback did not write anything) continue */ } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { *pErrorCode=U_ZERO_ERROR; return ucnv_getUChar32KeepOverflow(cnv, buffer, UTF_MAX_CHAR_LENGTH); } else { /* break on error */ /* ### what if a callback set an error but _also_ generated output?! */ state=0; c=0xffff; goto finish; } /* * We do not need to repeat the statements from the normal * end of the action codes because we already updated all the * necessary variables. */ } } if(byteIndex>0) { /* incomplete character byte sequence */ *pErrorCode=U_TRUNCATED_CHAR_FOUND; state=0; } else { /* no output because of empty input or only state changes and skipping callbacks */ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; } c=0xffff; finish: /* set the converter state back into UConverter, ready for a new character */ cnv->toUnicodeStatus=0; cnv->mode=state; cnv->toULength=0; /* write back the updated pointer */ pArgs->source=(const char *)source; return c; } /* * This version of _MBCSGetNextUChar() is optimized for single-byte, single-state codepages. * We still need a conversion loop in case a skipping callback is called. */ static UChar32 _MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UChar buffer[UTF_MAX_CHAR_LENGTH]; UConverter *cnv; const int32_t (*stateTable)[256]; const uint8_t *source, *sourceLimit; int32_t entry; uint8_t action; UConverterCallbackReason reason; /* set up the local pointers */ cnv=pArgs->converter; source=(const uint8_t *)pArgs->source; sourceLimit=(const uint8_t *)pArgs->sourceLimit; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { stateTable=cnv->sharedData->table->mbcs.swapLFNLStateTable; } else { stateTable=cnv->sharedData->table->mbcs.stateTable; } /* conversion loop */ while(sourcesource=(const char *)source; if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; } else { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!UCNV_TO_U_USE_FALLBACK(cnv)) { /* callback(unassigned) */ reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; } else { /* output supplementary code point */ return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); } } else if(action==MBCS_STATE_UNASSIGNED) { /* callback(unassigned) */ reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; } else if(action==MBCS_STATE_ILLEGAL) { /* callback(illegal) */ reason=UCNV_ILLEGAL; *pErrorCode=U_ILLEGAL_CHAR_FOUND; } else { /* reserved, must never occur */ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0xffff; } /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->target=buffer; pArgs->targetLimit=buffer+UTF_MAX_CHAR_LENGTH; /* call the callback function */ toUCallback(cnv, cnv->toUContext, pArgs, (const char *)(source-1), 1, reason, pErrorCode); /* update the source pointer */ source=(const uint8_t *)pArgs->source; /* * return the first character if the callback wrote some * we do not need to goto finish because the converter state is already set */ if(U_SUCCESS(*pErrorCode)) { entry=pArgs->target-buffer; if(entry>0) { return ucnv_getUChar32KeepOverflow(cnv, buffer, entry); } /* else (callback did not write anything) continue */ } else if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { *pErrorCode=U_ZERO_ERROR; return ucnv_getUChar32KeepOverflow(cnv, buffer, UTF_MAX_CHAR_LENGTH); } else { /* break on error */ /* ### what if a callback set an error but _also_ generated output?! */ return 0xffff; } } /* no output because of empty input or only state changes and skipping callbacks */ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; return 0xffff; } /* * This is a simple version of getNextUChar() that is used * by other converter implementations. * It does not use state from the converter, nor error codes. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * * Return value: * U+fffe unassigned * U+ffff illegal * otherwise the Unicode code point */ U_CFUNC UChar32 _MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, const char **pSource, const char *sourceLimit, UBool useFallback) { const uint8_t *source; const int32_t (*stateTable)[256]; const uint16_t *unicodeCodeUnits; uint32_t offset; uint8_t state, action; int32_t entry; /* set up the local pointers */ source=(const uint8_t *)*pSource; if(source>=(const uint8_t *)sourceLimit) { /* no input at all: "illegal" */ return 0xffff; } /* use optimized function if possible */ if(sharedData->table->mbcs.countStates==1) { return _MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)(*(*pSource)++), useFallback); } stateTable=sharedData->table->mbcs.stateTable; unicodeCodeUnits=sharedData->table->mbcs.unicodeCodeUnits; /* converter state */ offset=0; state=0; /* conversion loop */ do { entry=stateTable[state][*source++]; if(MBCS_ENTRY_IS_TRANSITION(entry)) { state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); } else { *pSource=(const char *)source; /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_16) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); entry=unicodeCodeUnits[offset]; if(entry!=0xfffe) { return (UChar32)entry; } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { return _MBCSGetFallback(&sharedData->table->mbcs, offset); } else { return 0xfffe; } } else if(action==MBCS_STATE_VALID_DIRECT_16) { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } else if(action==MBCS_STATE_VALID_16_PAIR) { offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); entry=unicodeCodeUnits[offset++]; if(entry<0xd800) { /* output BMP code point below 0xd800 */ return (UChar32)entry; } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? entry<=0xdfff : entry<=0xdbff) { /* output roundtrip or fallback supplementary code point */ return (UChar32)(((entry&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00)); } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (entry&0xfffe)==0xe000 : entry==0xe000) { /* output roundtrip BMP code point above 0xd800 or fallback BMP code point */ return unicodeCodeUnits[offset]; } else if(entry==0xffff) { return 0xffff; } else { return 0xfffe; } } else if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!TO_U_USE_FALLBACK(useFallback)) { return 0xfffe; } /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!TO_U_USE_FALLBACK(useFallback)) { return 0xfffe; } /* output supplementary code point */ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } else if(action==MBCS_STATE_CHANGE_ONLY) { /* * This serves as a state change without any output. * It is useful for reading simple stateful encodings, * for example using just Shift-In/Shift-Out codes. * The 21 unused bits may later be used for more sophisticated * state transitions. */ if(source==(const uint8_t *)sourceLimit) { /* if there are only state changes, then return "unassigned" */ return 0xfffe; } } else if(action==MBCS_STATE_UNASSIGNED) { return 0xfffe; } else if(action==MBCS_STATE_ILLEGAL) { return 0xffff; } else { /* reserved, must never occur */ } /* state change only - prepare for a new character */ state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ offset=0; } } while(source<(const uint8_t *)sourceLimit); *pSource=(const char *)source; return 0xffff; } /** * This version of _MBCSSimpleGetNextUChar() is optimized for single-byte, single-state codepages. * It does not handle the EBCDIC swaplfnl option (set in UConverter). */ U_CFUNC UChar32 _MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, uint8_t b, UBool useFallback) { int32_t entry; uint8_t action; entry=sharedData->table->mbcs.stateTable[0][b]; /* MBCS_ENTRY_IS_FINAL(entry) */ if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } /* * An if-else-if chain provides more reliable performance for * the most common cases compared to a switch. */ action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); if(action==MBCS_STATE_VALID_DIRECT_20) { /* output supplementary code point */ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { if(!TO_U_USE_FALLBACK(useFallback)) { return 0xfffe; } /* output BMP code point */ return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { if(!TO_U_USE_FALLBACK(useFallback)) { return 0xfffe; } /* output supplementary code point */ return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); } else if(action==MBCS_STATE_UNASSIGNED) { return 0xfffe; } else if(action==MBCS_STATE_ILLEGAL) { return 0xffff; } else { /* reserved, must never occur */ return 0xffff; } } /* MBCS-from-Unicode conversion functions ----------------------------------- */ U_CFUNC void _MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; int32_t *offsets; const uint16_t *table; const uint8_t *p, *bytes; uint8_t outputType; UChar32 c; int32_t sourceIndex, nextSourceIndex; UConverterCallbackReason reason; uint32_t stage2Entry; uint32_t value; int32_t length, prevLength; uint8_t unicodeMask; /* use optimized function if possible */ cnv=pArgs->converter; outputType=cnv->sharedData->table->mbcs.outputType; unicodeMask=cnv->sharedData->table->mbcs.unicodeMask; if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { _MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); } else { _MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); } return; } else if(outputType==MBCS_OUTPUT_2) { _MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); return; } /* set up the local pointers */ source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=pArgs->targetLimit-pArgs->target; offsets=pArgs->offsets; table=cnv->sharedData->table->mbcs.fromUnicodeTable; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { bytes=cnv->sharedData->table->mbcs.swapLFNLFromUnicodeBytes; } else { bytes=cnv->sharedData->table->mbcs.fromUnicodeBytes; } /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; prevLength=cnv->fromUnicodeStatus; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ /* * This is another piece of ugly code: * A goto into the loop if the converter state contains a first surrogate * from the previous function call. * It saves me to check in each loop iteration a check of if(c==0) * and duplicating the trail-surrogate-handling code in the else * branch of that check. * I could not find any other way to get around this other than * using a function call for the conversion and callback, which would * be even more inefficient. * * Markus Scherer 2000-jul-19 */ if(c!=0 && targetCapacity>0) { goto getTrail; } while(source0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; ++nextSourceIndex; /* * This also tests if the codepage maps single surrogates. * If it does, then surrogates are not paired but mapped separately. * Note that in this case unmatched surrogates are not detected. */ if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { if(UTF_IS_SURROGATE_FIRST(c)) { getTrail: if(sourcefromUnicodeStatus=prevLength; /* save the old state */ value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); if(value<=0xff) { if(prevLength==1) { length=1; } else { /* change from double-byte mode to single-byte */ value|=(uint32_t)UCNV_SI<<8; length=2; prevLength=1; } } else { if(prevLength==2) { length=2; } else { /* change from single-byte mode to double-byte */ value|=(uint32_t)UCNV_SO<<16; length=3; prevLength=2; } } break; case MBCS_OUTPUT_3: p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else { length=3; } break; case MBCS_OUTPUT_4: value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if(value<=0xffffff) { length=3; } else { length=4; } break; case MBCS_OUTPUT_3_EUC: value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); /* EUC 16-bit fixed-length representation */ if(value<=0xff) { length=1; } else if((value&0x8000)==0) { value|=0x8e8000; length=3; } else if((value&0x80)==0) { value|=0x8f0080; length=3; } else { length=2; } break; case MBCS_OUTPUT_4_EUC: p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; /* EUC 16-bit fixed-length representation applied to the first two bytes */ if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if((value&0x800000)==0) { value|=0x8e800000; length=4; } else if((value&0x8000)==0) { value|=0x8f008000; length=4; } else { length=3; } break; default: /* must not occur */ /* * To avoid compiler warnings that value & length may be * used without having been initialized, we set them here. * In reality, this is unreachable code. * Not having a default branch also causes warnings with * some compilers. */ value=0; length=0; break; } /* is this code point assigned, or do we use fallbacks? */ if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || (UCNV_FROM_U_USE_FALLBACK(cnv, c) && (value!=0 || c==0))) ) { /* * We allow a 0 byte output if the Unicode code point is * U+0000 and also if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * for other than U+0000 to be a zero byte. */ /* callback(unassigned) */ goto unassigned; } /* write the output character bytes from value and length */ /* from the first if in the loop we know that targetCapacity>0 */ if(length<=targetCapacity) { if(offsets==NULL) { switch(length) { /* each branch falls through to the next one */ case 4: *target++=(uint8_t)(value>>24); case 3: *target++=(uint8_t)(value>>16); case 2: *target++=(uint8_t)(value>>8); case 1: *target++=(uint8_t)value; default: /* will never occur */ break; } } else { switch(length) { /* each branch falls through to the next one */ case 4: *target++=(uint8_t)(value>>24); *offsets++=sourceIndex; case 3: *target++=(uint8_t)(value>>16); *offsets++=sourceIndex; case 2: *target++=(uint8_t)(value>>8); *offsets++=sourceIndex; case 1: *target++=(uint8_t)value; *offsets++=sourceIndex; default: /* will never occur */ break; } } targetCapacity-=length; } else { uint8_t *charErrorBuffer; /* * We actually do this backwards here: * In order to save an intermediate variable, we output * first to the overflow buffer what does not fit into the * regular target. */ /* we know that 1<=targetCapacitycharErrorBuffer; switch(length) { /* each branch falls through to the next one */ case 3: *charErrorBuffer++=(uint8_t)(value>>16); case 2: *charErrorBuffer++=(uint8_t)(value>>8); case 1: *charErrorBuffer=(uint8_t)value; default: /* will never occur */ break; } cnv->charErrorBufferLength=(int8_t)length; /* now output what fits into the regular target */ value>>=8*length; /* length was reduced by targetCapacity */ switch(targetCapacity) { /* each branch falls through to the next one */ case 3: *target++=(uint8_t)(value>>16); if(offsets!=NULL) { *offsets++=sourceIndex; } case 2: *target++=(uint8_t)(value>>8); if(offsets!=NULL) { *offsets++=sourceIndex; } case 1: *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; } default: /* will never occur */ break; } /* target overflow */ targetCapacity=0; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; c=0; break; } /* normal end of conversion: prepare for a new character */ c=0; sourceIndex=nextSourceIndex; continue; /* * This is the same ugly trick as in ToUnicode(), for the * same reasons... */ unassigned: reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; callback: /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; /* set the converter state in UConverter to deal with the next character */ cnv->fromUSurrogateLead=0; /* * Do not save the prevLength SISO state because prevLength is set for * the character that is now not output because it is unassigned or it is * a fallback that is not taken. * The above branch for MBCS_OUTPUT_2_SISO has saved the previous state already. * See comments there. */ /* call the callback function */ fromUCallback(cnv, cnv->fromUContext, pArgs, c, reason, pErrorCode); /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; prevLength=cnv->fromUnicodeStatus; /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, ((uint8_t *)pArgs->target)-target, sourceIndex); target=(uint8_t *)pArgs->target; /* update the source pointer and index */ sourceIndex=nextSourceIndex+(pArgs->source-source); source=pArgs->source; targetCapacity=(uint8_t *)pArgs->targetLimit-target; /* * If the callback overflowed the target, then we need to * stop here with an overflow indication. */ if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { break; } else if(U_FAILURE(*pErrorCode)) { /* break on error */ c=0; break; } else if(cnv->charErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } /* * We do not need to repeat the statements from the normal * end of the conversion because we already updated all the * necessary variables. */ } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } if(pArgs->flush && source>=sourceLimit) { /* reset the state for the next conversion */ if(c!=0 && U_SUCCESS(*pErrorCode)) { /* a Unicode code point remains incomplete (only a first surrogate) */ *pErrorCode=U_TRUNCATED_CHAR_FOUND; } cnv->fromUSurrogateLead=0; cnv->fromUnicodeStatus=1; } else { /* set the converter state back into UConverter */ cnv->fromUSurrogateLead=(UChar)c; cnv->fromUnicodeStatus=prevLength; } /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* This version of _MBCSFromUnicodeWithOffsets() is optimized for double-byte codepages. */ static void _MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; int32_t *offsets; const uint16_t *table; const uint8_t *bytes; UChar32 c; int32_t sourceIndex, nextSourceIndex; UConverterCallbackReason reason; uint32_t stage2Entry; uint32_t value; int32_t length, prevLength; uint8_t unicodeMask; /* use optimized function if possible */ cnv=pArgs->converter; unicodeMask=cnv->sharedData->table->mbcs.unicodeMask; /* set up the local pointers */ source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=pArgs->targetLimit-pArgs->target; offsets=pArgs->offsets; table=cnv->sharedData->table->mbcs.fromUnicodeTable; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { bytes=cnv->sharedData->table->mbcs.swapLFNLFromUnicodeBytes; } else { bytes=cnv->sharedData->table->mbcs.fromUnicodeBytes; } /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; prevLength=cnv->fromUnicodeStatus; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ if(c!=0 && targetCapacity>0) { goto getTrail; } while(source0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; ++nextSourceIndex; /* * This also tests if the codepage maps single surrogates. * If it does, then surrogates are not paired but mapped separately. * Note that in this case unmatched surrogates are not detected. */ if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { if(UTF_IS_SURROGATE_FIRST(c)) { getTrail: if(source0 */ if(length==1) { /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; } --targetCapacity; } else /* length==2 */ { *target++=(uint8_t)(value>>8); if(2<=targetCapacity) { *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; *offsets++=sourceIndex; } targetCapacity-=2; } else { if(offsets!=NULL) { *offsets++=sourceIndex; } cnv->charErrorBuffer[0]=(char)value; cnv->charErrorBufferLength=1; /* target overflow */ targetCapacity=0; *pErrorCode=U_BUFFER_OVERFLOW_ERROR; c=0; break; } } /* normal end of conversion: prepare for a new character */ c=0; sourceIndex=nextSourceIndex; continue; /* * This is the same ugly trick as in ToUnicode(), for the * same reasons... */ unassigned: reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; callback: /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; /* set the converter state in UConverter to deal with the next character */ cnv->fromUSurrogateLead=0; cnv->fromUnicodeStatus=prevLength; /* call the callback function */ fromUCallback(cnv, cnv->fromUContext, pArgs, c, reason, pErrorCode); /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; prevLength=cnv->fromUnicodeStatus; /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, ((uint8_t *)pArgs->target)-target, sourceIndex); target=(uint8_t *)pArgs->target; /* update the source pointer and index */ sourceIndex=nextSourceIndex+(pArgs->source-source); source=pArgs->source; targetCapacity=(uint8_t *)pArgs->targetLimit-target; /* * If the callback overflowed the target, then we need to * stop here with an overflow indication. */ if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { break; } else if(U_FAILURE(*pErrorCode)) { /* break on error */ c=0; break; } else if(cnv->charErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } /* * We do not need to repeat the statements from the normal * end of the conversion because we already updated all the * necessary variables. */ } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } if(pArgs->flush && source>=sourceLimit) { /* reset the state for the next conversion */ if(c!=0 && U_SUCCESS(*pErrorCode)) { /* a Unicode code point remains incomplete (only a first surrogate) */ *pErrorCode=U_TRUNCATED_CHAR_FOUND; } cnv->fromUSurrogateLead=0; cnv->fromUnicodeStatus=1; } else { /* set the converter state back into UConverter */ cnv->fromUSurrogateLead=(UChar)c; cnv->fromUnicodeStatus=prevLength; } /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* This version of _MBCSFromUnicodeWithOffsets() is optimized for single-byte codepages. */ static void _MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit; uint8_t *target; int32_t targetCapacity; int32_t *offsets; const uint16_t *table; const uint16_t *results; UChar32 c; int32_t sourceIndex, nextSourceIndex; UConverterCallbackReason reason; uint16_t value, minValue; UBool hasSupplementary; /* set up the local pointers */ cnv=pArgs->converter; source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=pArgs->targetLimit-pArgs->target; offsets=pArgs->offsets; table=cnv->sharedData->table->mbcs.fromUnicodeTable; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { results=(uint16_t *)cnv->sharedData->table->mbcs.swapLFNLFromUnicodeBytes; } else { results=(uint16_t *)cnv->sharedData->table->mbcs.fromUnicodeBytes; } if(cnv->useFallback) { /* use all roundtrip and fallback results */ minValue=0x800; } else { /* use only roundtrips and fallbacks from private-use characters */ minValue=0xc00; } hasSupplementary=(UBool)(cnv->sharedData->table->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY); /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; nextSourceIndex=0; /* conversion loop */ if(c!=0 && targetCapacity>0) { goto getTrail; } while(source0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; ++nextSourceIndex; if(UTF_IS_SURROGATE(c)) { if(UTF_IS_SURROGATE_FIRST(c)) { getTrail: if(source=minValue) { /* assigned, write the output character bytes from value and length */ /* length==1 */ /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; if(offsets!=NULL) { *offsets++=sourceIndex; } --targetCapacity; /* normal end of conversion: prepare for a new character */ c=0; sourceIndex=nextSourceIndex; continue; } else { /* unassigned */ /* * We allow a 0 byte output if the Unicode code point is * U+0000 and also if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * for other than U+0000 to be a zero byte. */ /* callback(unassigned) */ } unassigned: reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; callback: /* call the callback function with all the preparations and post-processing */ /* update the arguments structure */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; /* set the converter state in UConverter to deal with the next character */ cnv->fromUSurrogateLead=0; /* call the callback function */ fromUCallback(cnv, cnv->fromUContext, pArgs, c, reason, pErrorCode); /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, ((uint8_t *)pArgs->target)-target, sourceIndex); target=(uint8_t *)pArgs->target; /* update the source pointer and index */ sourceIndex=nextSourceIndex+(pArgs->source-source); source=pArgs->source; targetCapacity=(uint8_t *)pArgs->targetLimit-target; /* * If the callback overflowed the target, then we need to * stop here with an overflow indication. */ if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { break; } else if(U_FAILURE(*pErrorCode)) { /* break on error */ c=0; break; } else if(cnv->charErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } /* * We do not need to repeat the statements from the normal * end of the conversion because we already updated all the * necessary variables. */ } else { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } } if(pArgs->flush && source>=sourceLimit) { /* reset the state for the next conversion */ if(c!=0 && U_SUCCESS(*pErrorCode)) { /* a Unicode code point remains incomplete (only a first surrogate) */ *pErrorCode=U_TRUNCATED_CHAR_FOUND; } cnv->fromUSurrogateLead=0; } else { /* set the converter state back into UConverter */ cnv->fromUSurrogateLead=(UChar)c; } /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* * This version of _MBCSFromUnicode() is optimized for single-byte codepages * that map only to and from the BMP. * In addition to single-byte/state optimizations, the offset calculations * become much easier. */ static void _MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, UErrorCode *pErrorCode) { UConverter *cnv; const UChar *source, *sourceLimit, *lastSource; uint8_t *target; int32_t targetCapacity, length; int32_t *offsets; const uint16_t *table; const uint16_t *results; UChar32 c; int32_t sourceIndex; UConverterCallbackReason reason; uint16_t value, minValue; /* set up the local pointers */ cnv=pArgs->converter; source=pArgs->source; sourceLimit=pArgs->sourceLimit; target=(uint8_t *)pArgs->target; targetCapacity=pArgs->targetLimit-pArgs->target; offsets=pArgs->offsets; table=cnv->sharedData->table->mbcs.fromUnicodeTable; if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { results=(uint16_t *)cnv->sharedData->table->mbcs.swapLFNLFromUnicodeBytes; } else { results=(uint16_t *)cnv->sharedData->table->mbcs.fromUnicodeBytes; } if(cnv->useFallback) { /* use all roundtrip and fallback results */ minValue=0x800; } else { /* use only roundtrips and fallbacks from private-use characters */ minValue=0xc00; } /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; /* sourceIndex=-1 if the current character began in the previous buffer */ sourceIndex= c==0 ? 0 : -1; lastSource=source; /* * since the conversion here is 1:1 UChar:uint8_t, we need only one counter * for the minimum of the sourceLength and targetCapacity */ length=sourceLimit-source; if(length0) { goto getTrail; } #if MBCS_UNROLL_SINGLE_FROM_BMP /* unrolling makes it slower on Pentium III/Windows 2000?! */ /* unroll the loop with the most common case */ unrolled: if(targetCapacity>=4) { int32_t count, loops; uint16_t andedValues; loops=count=targetCapacity>>2; do { c=*source++; andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; c=*source++; andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; c=*source++; andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; c=*source++; andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); *target++=(uint8_t)value; /* were all 4 entries really valid? */ if(andedValues0); count=loops-count; targetCapacity-=4*count; if(offsets!=NULL) { lastSource+=4*count; while(count>0) { *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; *offsets++=sourceIndex++; --count; } } c=0; } #endif while(targetCapacity>0) { /* * Get a correct Unicode code point: * a single UChar for a BMP code point or * a matched surrogate pair for a "supplementary code point". */ c=*source++; /* * Do not immediately check for single surrogates: * Assume that they are unassigned and check for them in that case. * This speeds up the conversion of assigned characters. */ /* convert the Unicode code point in c into codepage bytes */ value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); /* is this code point assigned, or do we use fallbacks? */ if(value>=minValue) { /* assigned, write the output character bytes from value and length */ /* length==1 */ /* this is easy because we know that there is enough space */ *target++=(uint8_t)value; --targetCapacity; /* normal end of conversion: prepare for a new character */ c=0; continue; } else if(!UTF_IS_SURROGATE(c)) { /* normal, unassigned BMP character */ /* * We allow a 0 byte output if the Unicode code point is * U+0000 and also if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * for other than U+0000 to be a zero byte. */ /* callback(unassigned) */ reason=UCNV_UNASSIGNED; *pErrorCode=U_INVALID_CHAR_FOUND; } else if(UTF_IS_SURROGATE_FIRST(c)) { getTrail: if(source0) { *offsets++=sourceIndex++; --count; } /* offset and sourceIndex are now set for the current character */ } /* update the arguments structure */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; /* set the converter state in UConverter to deal with the next character */ cnv->fromUSurrogateLead=0; /* call the callback function */ fromUCallback(cnv, cnv->fromUContext, pArgs, c, reason, pErrorCode); /* get the converter state from UConverter */ c=cnv->fromUSurrogateLead; /* update target and deal with offsets if necessary */ offsets=ucnv_updateCallbackOffsets(offsets, ((uint8_t *)pArgs->target)-target, sourceIndex); target=(uint8_t *)pArgs->target; /* update the source pointer and index */ sourceIndex+=length+(pArgs->source-source); source=lastSource=pArgs->source; targetCapacity=(uint8_t *)pArgs->targetLimit-target; length=sourceLimit-source; if(lengthcharErrorBufferLength>0) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; break; } #if MBCS_UNROLL_SINGLE_FROM_BMP /* unrolling makes it slower on Pentium III/Windows 2000?! */ goto unrolled; #endif } if(U_SUCCESS(*pErrorCode) && source=(uint8_t *)pArgs->targetLimit) { /* target is full */ *pErrorCode=U_BUFFER_OVERFLOW_ERROR; } /* set offsets since the start or the last callback */ if(offsets!=NULL) { size_t count=source-lastSource; while(count>0) { *offsets++=sourceIndex++; --count; } } if(pArgs->flush && source>=sourceLimit) { /* reset the state for the next conversion */ if(c!=0 && U_SUCCESS(*pErrorCode)) { /* a Unicode code point remains incomplete (only a first surrogate) */ *pErrorCode=U_TRUNCATED_CHAR_FOUND; } cnv->fromUSurrogateLead=0; } else { /* set the converter state back into UConverter */ cnv->fromUSurrogateLead=(UChar)c; } /* write back the updated pointers */ pArgs->source=source; pArgs->target=(char *)target; pArgs->offsets=offsets; } /* * This is another simple conversion function for internal use by other * conversion implementations. * It does not use the converter state nor call callbacks. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * * It converts one single Unicode code point into codepage bytes, encoded * as one 32-bit value. The function returns the number of bytes in *pValue: * 1..4 the number of bytes in *pValue * 0 unassigned (*pValue undefined) * -1 illegal (currently not used, *pValue undefined) * * *pValue will contain the resulting bytes with the last byte in bits 7..0, * the second to last byte in bits 15..8, etc. * Currently, the function assumes but does not check that 0<=c<=0x10ffff. */ U_CFUNC int32_t _MBCSFromUChar32(UConverterSharedData *sharedData, UChar32 c, uint32_t *pValue, UBool useFallback) { const uint16_t *table=sharedData->table->mbcs.fromUnicodeTable; const uint8_t *p; uint32_t stage2Entry; uint32_t value; int32_t length; /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ if(c>=0x10000 && !(sharedData->table->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { return 0; } /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ if(sharedData->table->mbcs.outputType==MBCS_OUTPUT_1) { value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->table->mbcs.fromUnicodeBytes, c); /* is this code point assigned, or do we use fallbacks? */ if(useFallback ? value>=0x800 : value>=0xc00) { *pValue=value&0xff; return 1; } else { return 0; } } stage2Entry=MBCS_STAGE_2_FROM_U(table, c); /* get the bytes and the length for the output */ switch(sharedData->table->mbcs.outputType) { case MBCS_OUTPUT_2: value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->table->mbcs.fromUnicodeBytes, stage2Entry, c); if(value<=0xff) { length=1; } else { length=2; } break; case MBCS_OUTPUT_3: p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->table->mbcs.fromUnicodeBytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else { length=3; } break; case MBCS_OUTPUT_4: value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->table->mbcs.fromUnicodeBytes, stage2Entry, c); if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if(value<=0xffffff) { length=3; } else { length=4; } break; case MBCS_OUTPUT_3_EUC: value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->table->mbcs.fromUnicodeBytes, stage2Entry, c); /* EUC 16-bit fixed-length representation */ if(value<=0xff) { length=1; } else if((value&0x8000)==0) { value|=0x8e8000; length=3; } else if((value&0x80)==0) { value|=0x8f0080; length=3; } else { length=2; } break; case MBCS_OUTPUT_4_EUC: p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->table->mbcs.fromUnicodeBytes, stage2Entry, c); value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; /* EUC 16-bit fixed-length representation applied to the first two bytes */ if(value<=0xff) { length=1; } else if(value<=0xffff) { length=2; } else if((value&0x800000)==0) { value|=0x8e800000; length=4; } else if((value&0x8000)==0) { value|=0x8f008000; length=4; } else { length=3; } break; default: /* must not occur */ return -1; } /* is this code point assigned, or do we use fallbacks? */ if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || (FROM_U_USE_FALLBACK(useFallback, c) && (value!=0 || c==0)) ) { /* * We allow a 0 byte output if the Unicode code point is * U+0000 and also if the "assigned" bit is set for this entry. * There is no way with this data structure for fallback output * for other than U+0000 to be a zero byte. */ /* assigned */ *pValue=value; return length; } else { return 0; } } /** * This version of _MBCSFromUChar32() is optimized for single-byte codepages. * It does not handle the EBCDIC swaplfnl option (set in UConverter). * * It returns the codepage byte for the code point, or -1 if it is unassigned. */ U_CFUNC int32_t _MBCSSingleFromUChar32(UConverterSharedData *sharedData, UChar32 c, UBool useFallback) { const uint16_t *table; int32_t value; /* BMP-only codepages are stored without stage 1 entries for supplementary code points */ if(c>=0x10000 && !(sharedData->table->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { return -1; } /* convert the Unicode code point in c into codepage bytes (same as in _MBCSFromUnicodeWithOffsets) */ table=sharedData->table->mbcs.fromUnicodeTable; /* get the byte for the output */ value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->table->mbcs.fromUnicodeBytes, c); /* is this code point assigned, or do we use fallbacks? */ if(useFallback ? value>=0x800 : value>=0xc00) { return value&0xff; } else { return -1; } } /* miscellaneous ------------------------------------------------------------ */ static void _MBCSGetStarters(const UConverter* cnv, UBool starters[256], UErrorCode *pErrorCode) { const int32_t *state0=cnv->sharedData->table->mbcs.stateTable[0]; int i; for(i=0; i<256; ++i) { /* all bytes that cause a state transition from state 0 are lead bytes */ starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); } } /* * This is an internal function that allows other converter implementations * to check whether a byte is a lead byte. */ U_CFUNC UBool _MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->table->mbcs.stateTable[0][(uint8_t)byte]); } static void _MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, int32_t offsetIndex, UErrorCode *pErrorCode) { UConverter *cnv=pArgs->converter; char *p, *subchar; char buffer[4]; int32_t length; /* first, select between subChar and subChar1 */ if(cnv->subChar1!=0 && cnv->invalidUCharBuffer[0]<=0xff) { /* select subChar1 if it is set (not 0) and the unmappable Unicode code point is up to U+00ff (IBM MBCS behavior) */ subchar=(char *)&cnv->subChar1; length=1; } else { /* select subChar in all other cases */ subchar=(char *)cnv->subChar; length=cnv->subCharLen; } switch(cnv->sharedData->table->mbcs.outputType) { case MBCS_OUTPUT_2_SISO: p=buffer; /* fromUnicodeStatus contains prevLength */ switch(length) { case 1: if(cnv->fromUnicodeStatus==2) { /* DBCS mode and SBCS sub char: change to SBCS */ cnv->fromUnicodeStatus=1; *p++=UCNV_SI; } *p++=subchar[0]; break; case 2: if(cnv->fromUnicodeStatus==1) { /* SBCS mode and DBCS sub char: change to DBCS */ cnv->fromUnicodeStatus=2; *p++=UCNV_SO; } *p++=subchar[0]; *p++=subchar[1]; break; default: *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; return; } ucnv_cbFromUWriteBytes(pArgs, buffer, (int32_t)(p-buffer), offsetIndex, pErrorCode); break; default: ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); break; } } U_CFUNC UConverterType _MBCSGetType(const UConverter* converter) { /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a little */ if(converter->sharedData->table->mbcs.countStates==1) { return (UConverterType)UCNV_SBCS; } else if((converter->sharedData->table->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO) { return (UConverterType)UCNV_EBCDIC_STATEFUL; } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter->sharedData->staticData->maxBytesPerChar==2) { return (UConverterType)UCNV_DBCS; } return (UConverterType)UCNV_MBCS; } static const UConverterImpl _MBCSImpl={ UCNV_MBCS, _MBCSLoad, _MBCSUnload, _MBCSOpen, NULL, _MBCSReset, _MBCSToUnicodeWithOffsets, _MBCSToUnicodeWithOffsets, _MBCSFromUnicodeWithOffsets, _MBCSFromUnicodeWithOffsets, _MBCSGetNextUChar, _MBCSGetStarters, _MBCSGetName, _MBCSWriteSub }; /* Static data is in tools/makeconv/ucnvstat.c for data-based * converters. Be sure to update it as well. */ const UConverterSharedData _MBCSData={ sizeof(UConverterSharedData), 1, NULL, NULL, NULL, FALSE, &_MBCSImpl, 0 }; /* GB 18030 special handling ------------------------------------------------ */ /* definition of LINEAR macros and gb18030Ranges see near the beginning of the file */ /* the callback functions handle GB 18030 specially */ static void fromUCallback(UConverter *cnv, const void *context, UConverterFromUnicodeArgs *pArgs, UChar32 codePoint, UConverterCallbackReason reason, UErrorCode *pErrorCode) { int32_t i; if((cnv->options&_MBCS_OPTION_GB18030)!=0 && reason==UCNV_UNASSIGNED) { const uint32_t *range; range=gb18030Ranges[0]; for(i=0; iinvalidUCharBuffer, i, codePoint); cnv->invalidUCharLength=(int8_t)i; /* call the normal callback function */ cnv->fromUCharErrorBehaviour(context, pArgs, cnv->invalidUCharBuffer, i, codePoint, reason, pErrorCode); } static void toUCallback(UConverter *cnv, const void *context, UConverterToUnicodeArgs *pArgs, const char *codeUnits, int32_t length, UConverterCallbackReason reason, UErrorCode *pErrorCode) { int32_t i; if((cnv->options&_MBCS_OPTION_GB18030)!=0 && reason==UCNV_UNASSIGNED && length==4) { const uint32_t *range; uint32_t linear; linear=LINEAR_18030((uint8_t)codeUnits[0], (uint8_t)codeUnits[1], (uint8_t)codeUnits[2], (uint8_t)codeUnits[3]); range=gb18030Ranges[0]; for(i=0; iinvalidCharBuffer[i]=codeUnits[i]; } cnv->invalidCharLength=(int8_t)length; /* call the normal callback function */ cnv->fromCharErrorBehaviour(context, pArgs, codeUnits, length, reason, pErrorCode); } #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */