scuffed-code/i18n/number_rounding.cpp

553 lines
20 KiB
C++

// © 2017 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "charstr.h"
#include "uassert.h"
#include "unicode/numberformatter.h"
#include "number_types.h"
#include "number_decimalquantity.h"
#include "double-conversion.h"
#include "number_roundingutils.h"
#include "number_skeletons.h"
#include "number_decnum.h"
#include "putilimp.h"
#include "string_segment.h"
using namespace icu;
using namespace icu::number;
using namespace icu::number::impl;
using double_conversion::DoubleToStringConverter;
using icu::StringSegment;
void number::impl::parseIncrementOption(const StringSegment &segment,
Precision &outPrecision,
UErrorCode &status) {
// Need to do char <-> UChar conversion...
U_ASSERT(U_SUCCESS(status));
CharString buffer;
SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
// Utilize DecimalQuantity/decNumber to parse this for us.
DecimalQuantity dq;
UErrorCode localStatus = U_ZERO_ERROR;
dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus);
if (U_FAILURE(localStatus) || dq.isNaN() || dq.isInfinite()) {
// throw new SkeletonSyntaxException("Invalid rounding increment", segment, e);
status = U_NUMBER_SKELETON_SYNTAX_ERROR;
return;
}
// Now we break apart the number into a mantissa and exponent (magnitude).
int32_t magnitude = dq.adjustToZeroScale();
// setToDecNumber drops trailing zeros, so we search for the '.' manually.
for (int32_t i=0; i<buffer.length(); i++) {
if (buffer[i] == '.') {
int32_t newMagnitude = i - buffer.length() + 1;
dq.adjustMagnitude(magnitude - newMagnitude);
magnitude = newMagnitude;
break;
}
}
outPrecision = Precision::incrementExact(dq.toLong(), magnitude);
}
namespace {
int32_t getRoundingMagnitudeFraction(int maxFrac) {
if (maxFrac == -1) {
return INT32_MIN;
}
return -maxFrac;
}
int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) {
if (maxSig == -1) {
return INT32_MIN;
}
int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
return magnitude - maxSig + 1;
}
int32_t getDisplayMagnitudeFraction(int minFrac) {
if (minFrac == 0) {
return INT32_MAX;
}
return -minFrac;
}
int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) {
int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
return magnitude - minSig + 1;
}
}
MultiplierProducer::~MultiplierProducer() = default;
Precision Precision::unlimited() {
return Precision(RND_NONE, {});
}
FractionPrecision Precision::integer() {
return constructFraction(0, 0);
}
FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) {
if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) {
return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::minFraction(int32_t minFractionPlaces) {
if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) {
return constructFraction(minFractionPlaces, -1);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) {
if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) {
return constructFraction(0, maxFractionPlaces);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) {
if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig &&
minFractionPlaces <= maxFractionPlaces) {
return constructFraction(minFractionPlaces, maxFractionPlaces);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) {
if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) {
return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::minSignificantDigits(int32_t minSignificantDigits) {
if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
return constructSignificant(minSignificantDigits, -1);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) {
if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
return constructSignificant(1, maxSignificantDigits);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) {
if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig &&
minSignificantDigits <= maxSignificantDigits) {
return constructSignificant(minSignificantDigits, maxSignificantDigits);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision Precision::trailingZeroDisplay(UNumberTrailingZeroDisplay trailingZeroDisplay) const {
Precision result(*this); // copy constructor
result.fTrailingZeroDisplay = trailingZeroDisplay;
return result;
}
IncrementPrecision Precision::increment(double roundingIncrement) {
if (roundingIncrement > 0.0) {
DecimalQuantity dq;
dq.setToDouble(roundingIncrement);
dq.roundToInfinity();
int32_t magnitude = dq.adjustToZeroScale();
return constructIncrement(dq.toLong(), magnitude);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
IncrementPrecision Precision::incrementExact(uint64_t mantissa, int16_t magnitude) {
if (mantissa > 0.0) {
return constructIncrement(mantissa, magnitude);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) {
return constructCurrency(currencyUsage);
}
Precision FractionPrecision::withSignificantDigits(
int32_t minSignificantDigits,
int32_t maxSignificantDigits,
UNumberRoundingPriority priority) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (minSignificantDigits >= 1 &&
maxSignificantDigits >= minSignificantDigits &&
maxSignificantDigits <= kMaxIntFracSig) {
return constructFractionSignificant(
*this,
minSignificantDigits,
maxSignificantDigits,
priority,
false);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
return constructFractionSignificant(
*this,
1,
minSignificantDigits,
UNUM_ROUNDING_PRIORITY_RELAXED,
true);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
return constructFractionSignificant(*this,
1,
maxSignificantDigits,
UNUM_ROUNDING_PRIORITY_STRICT,
true);
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
// Private method on base class
Precision Precision::withCurrency(const CurrencyUnit &currency, UErrorCode &status) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
U_ASSERT(fType == RND_CURRENCY);
const char16_t *isoCode = currency.getISOCurrency();
double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status);
int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage(
isoCode, fUnion.currencyUsage, &status);
Precision retval = (increment != 0.0)
? Precision::increment(increment)
: static_cast<Precision>(Precision::fixedFraction(minMaxFrac));
retval.fTrailingZeroDisplay = fTrailingZeroDisplay;
return retval;
}
// Public method on CurrencyPrecision subclass
Precision CurrencyPrecision::withCurrency(const CurrencyUnit &currency) const {
UErrorCode localStatus = U_ZERO_ERROR;
Precision result = Precision::withCurrency(currency, localStatus);
if (U_FAILURE(localStatus)) {
return {localStatus};
}
return result;
}
Precision IncrementPrecision::withMinFraction(int32_t minFrac) const {
if (fType == RND_ERROR) { return *this; } // no-op in error state
if (minFrac >= 0 && minFrac <= kMaxIntFracSig) {
IncrementPrecision copy = *this;
copy.fUnion.increment.fMinFrac = minFrac;
return copy;
} else {
return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
}
}
FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) {
FractionSignificantSettings settings;
settings.fMinFrac = static_cast<digits_t>(minFrac);
settings.fMaxFrac = static_cast<digits_t>(maxFrac);
settings.fMinSig = -1;
settings.fMaxSig = -1;
PrecisionUnion union_;
union_.fracSig = settings;
return {RND_FRACTION, union_};
}
Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) {
FractionSignificantSettings settings;
settings.fMinFrac = -1;
settings.fMaxFrac = -1;
settings.fMinSig = static_cast<digits_t>(minSig);
settings.fMaxSig = static_cast<digits_t>(maxSig);
PrecisionUnion union_;
union_.fracSig = settings;
return {RND_SIGNIFICANT, union_};
}
Precision
Precision::constructFractionSignificant(
const FractionPrecision &base,
int32_t minSig,
int32_t maxSig,
UNumberRoundingPriority priority,
bool retain) {
FractionSignificantSettings settings = base.fUnion.fracSig;
settings.fMinSig = static_cast<digits_t>(minSig);
settings.fMaxSig = static_cast<digits_t>(maxSig);
settings.fPriority = priority;
settings.fRetain = retain;
PrecisionUnion union_;
union_.fracSig = settings;
return {RND_FRACTION_SIGNIFICANT, union_};
}
IncrementPrecision Precision::constructIncrement(uint64_t increment, digits_t magnitude) {
IncrementSettings settings;
// Note: For number formatting, fIncrement is used for RND_INCREMENT but not
// RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all
// three when constructing a skeleton.
settings.fIncrement = increment;
settings.fIncrementMagnitude = magnitude;
settings.fMinFrac = magnitude > 0 ? 0 : -magnitude;
PrecisionUnion union_;
union_.increment = settings;
if (increment == 1) {
// NOTE: In C++, we must return the correct value type with the correct union.
// It would be invalid to return a RND_FRACTION here because the methods on the
// IncrementPrecision type assume that the union is backed by increment data.
return {RND_INCREMENT_ONE, union_};
} else if (increment == 5) {
return {RND_INCREMENT_FIVE, union_};
} else {
return {RND_INCREMENT, union_};
}
}
CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) {
PrecisionUnion union_;
union_.currencyUsage = usage;
return {RND_CURRENCY, union_};
}
RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode,
const CurrencyUnit& currency, UErrorCode& status)
: fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) {
if (precision.fType == Precision::RND_CURRENCY) {
fPrecision = precision.withCurrency(currency, status);
}
}
RoundingImpl RoundingImpl::passThrough() {
return {};
}
bool RoundingImpl::isSignificantDigits() const {
return fPrecision.fType == Precision::RND_SIGNIFICANT;
}
int32_t
RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer,
UErrorCode &status) {
// Do not call this method with zero, NaN, or infinity.
U_ASSERT(!input.isZeroish());
// Perform the first attempt at rounding.
int magnitude = input.getMagnitude();
int multiplier = producer.getMultiplier(magnitude);
input.adjustMagnitude(multiplier);
apply(input, status);
// If the number rounded to zero, exit.
if (input.isZeroish() || U_FAILURE(status)) {
return multiplier;
}
// If the new magnitude after rounding is the same as it was before rounding, then we are done.
// This case applies to most numbers.
if (input.getMagnitude() == magnitude + multiplier) {
return multiplier;
}
// If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000:
// The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't,
// we do not need to make any more adjustments.
int _multiplier = producer.getMultiplier(magnitude + 1);
if (multiplier == _multiplier) {
return multiplier;
}
// We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000".
// Fix the magnitude and re-apply the rounding strategy.
input.adjustMagnitude(_multiplier - multiplier);
apply(input, status);
return _multiplier;
}
/** This is the method that contains the actual rounding logic. */
void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const {
if (U_FAILURE(status)) {
return;
}
if (fPassThrough) {
return;
}
int32_t resolvedMinFraction = 0;
switch (fPrecision.fType) {
case Precision::RND_BOGUS:
case Precision::RND_ERROR:
// Errors should be caught before the apply() method is called
status = U_INTERNAL_PROGRAM_ERROR;
break;
case Precision::RND_NONE:
value.roundToInfinity();
break;
case Precision::RND_FRACTION:
value.roundToMagnitude(
getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac),
fRoundingMode,
status);
resolvedMinFraction =
uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac));
break;
case Precision::RND_SIGNIFICANT:
value.roundToMagnitude(
getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig),
fRoundingMode,
status);
resolvedMinFraction =
uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig));
// Make sure that digits are displayed on zero.
if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) {
value.setMinInteger(1);
}
break;
case Precision::RND_FRACTION_SIGNIFICANT: {
// From ECMA-402:
/*
Let sResult be ToRawPrecision(...).
Let fResult be ToRawFixed(...).
If intlObj.[[RoundingType]] is morePrecision, then
If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
Let result be sResult.
Else,
Let result be fResult.
Else,
Assert: intlObj.[[RoundingType]] is lessPrecision.
If sResult.[[RoundingMagnitude]] ≤ fResult.[[RoundingMagnitude]], then
Let result be fResult.
Else,
Let result be sResult.
*/
int32_t roundingMag1 = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac);
int32_t roundingMag2 = getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig);
int32_t roundingMag;
if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) {
roundingMag = uprv_min(roundingMag1, roundingMag2);
} else {
roundingMag = uprv_max(roundingMag1, roundingMag2);
}
if (!value.isZeroish()) {
int32_t upperMag = value.getMagnitude();
value.roundToMagnitude(roundingMag, fRoundingMode, status);
if (!value.isZeroish() && value.getMagnitude() != upperMag && roundingMag1 == roundingMag2) {
// roundingMag2 needs to be the magnitude after rounding
roundingMag2 += 1;
}
}
int32_t displayMag1 = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac);
int32_t displayMag2 = getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig);
int32_t displayMag;
if (fPrecision.fUnion.fracSig.fRetain) {
// withMinDigits + withMaxDigits
displayMag = uprv_min(displayMag1, displayMag2);
} else if (fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_RELAXED) {
if (roundingMag2 <= roundingMag1) {
displayMag = displayMag2;
} else {
displayMag = displayMag1;
}
} else {
U_ASSERT(fPrecision.fUnion.fracSig.fPriority == UNUM_ROUNDING_PRIORITY_STRICT);
if (roundingMag2 <= roundingMag1) {
displayMag = displayMag1;
} else {
displayMag = displayMag2;
}
}
resolvedMinFraction = uprv_max(0, -displayMag);
break;
}
case Precision::RND_INCREMENT:
value.roundToIncrement(
fPrecision.fUnion.increment.fIncrement,
fPrecision.fUnion.increment.fIncrementMagnitude,
fRoundingMode,
status);
resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
break;
case Precision::RND_INCREMENT_ONE:
value.roundToMagnitude(
fPrecision.fUnion.increment.fIncrementMagnitude,
fRoundingMode,
status);
resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
break;
case Precision::RND_INCREMENT_FIVE:
value.roundToNickel(
fPrecision.fUnion.increment.fIncrementMagnitude,
fRoundingMode,
status);
resolvedMinFraction = fPrecision.fUnion.increment.fMinFrac;
break;
case Precision::RND_CURRENCY:
// Call .withCurrency() before .apply()!
UPRV_UNREACHABLE_EXIT;
default:
UPRV_UNREACHABLE_EXIT;
}
if (fPrecision.fTrailingZeroDisplay == UNUM_TRAILING_ZERO_AUTO ||
// PLURAL_OPERAND_T returns fraction digits as an integer
value.getPluralOperand(PLURAL_OPERAND_T) != 0) {
value.setMinFraction(resolvedMinFraction);
}
}
void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) {
// This method is intended for the one specific purpose of helping print "00.000E0".
// Question: Is it useful to look at trailingZeroDisplay here?
U_ASSERT(isSignificantDigits());
U_ASSERT(value.isZeroish());
value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt);
}
#endif /* #if !UCONFIG_NO_FORMATTING */