d046d1a2a5
X-SVN-Rev: 5465
818 lines
30 KiB
C++
818 lines
30 KiB
C++
/*
|
|
**********************************************************************
|
|
* Copyright (C) 1999-2001, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
* Date Name Description
|
|
* 11/17/99 aliu Creation.
|
|
**********************************************************************
|
|
*/
|
|
#include "rbt_rule.h"
|
|
#include "unicode/rep.h"
|
|
#include "rbt_data.h"
|
|
#include "unicode/unifilt.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/unicode.h"
|
|
#include "cmemory.h"
|
|
|
|
const UChar TransliterationRule::ETHER = 0xFFFF;
|
|
|
|
static const UChar APOSTROPHE = 0x0027; // '
|
|
static const UChar BACKSLASH = 0x005C; // \
|
|
|
|
// To process segments we need to allocate arrays of integers. We use
|
|
// stack storage as long as the segment count is <= MAX_STATIC_SEGS.
|
|
// Otherwise, we allocate heap space.
|
|
#define MAX_STATIC_SEGS 20
|
|
|
|
// Macros for accessing the array of integers encoding the position of
|
|
// the segments. See rbt_pars.cpp::Segments for more details.
|
|
#define FIRST_SEG_POS_INDEX 2
|
|
#define SEGMENTS_COUNT segments[0]
|
|
#define SEGMENTS_LEN (SEGMENTS_COUNT*2+4)
|
|
#define SEGMENTS_POS(i) segments[FIRST_SEG_POS_INDEX+i]
|
|
#define SEGMENTS_NUM(i) segments[segments[1]+i]
|
|
|
|
/**
|
|
* Construct a new rule with the given input, output text, and other
|
|
* attributes. A cursor position may be specified for the output text.
|
|
* @param input input string, including key and optional ante and
|
|
* post context
|
|
* @param anteContextPos offset into input to end of ante context, or -1 if
|
|
* none. Must be <= input.length() if not -1.
|
|
* @param postContextPos offset into input to start of post context, or -1
|
|
* if none. Must be <= input.length() if not -1, and must be >=
|
|
* anteContextPos.
|
|
* @param output output string
|
|
* @param cursorPosition offset into output at which cursor is located, or -1 if
|
|
* none. If less than zero, then the cursor is placed after the
|
|
* <code>output</code>; that is, -1 is equivalent to
|
|
* <code>output.length()</code>. If greater than
|
|
* <code>output.length()</code> then an exception is thrown.
|
|
* @param adoptedSegs array of 2n integers. Each of n pairs consists of offset,
|
|
* limit for a segment of the input string. Characters in the output string
|
|
* refer to these segments if they are in a special range determined by the
|
|
* associated RuleBasedTransliterator.Data object. May be null if there are
|
|
* no segments.
|
|
* @param anchorStart TRUE if the the rule is anchored on the left to
|
|
* the context start
|
|
* @param anchorEnd TRUE if the rule is anchored on the right to the
|
|
* context limit
|
|
*/
|
|
TransliterationRule::TransliterationRule(const UnicodeString& input,
|
|
int32_t anteContextPos, int32_t postContextPos,
|
|
const UnicodeString& outputStr,
|
|
int32_t cursorPosition, int32_t cursorOffset,
|
|
int32_t* adoptedSegs,
|
|
UBool anchorStart, UBool anchorEnd,
|
|
const TransliterationRuleData& theData,
|
|
UErrorCode& status) :
|
|
data(theData) {
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
// Do range checks only when warranted to save time
|
|
if (anteContextPos < 0) {
|
|
anteContextLength = 0;
|
|
} else {
|
|
if (anteContextPos > input.length()) {
|
|
// throw new IllegalArgumentException("Invalid ante context");
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
anteContextLength = anteContextPos;
|
|
}
|
|
if (postContextPos < 0) {
|
|
keyLength = input.length() - anteContextLength;
|
|
} else {
|
|
if (postContextPos < anteContextLength ||
|
|
postContextPos > input.length()) {
|
|
// throw new IllegalArgumentException("Invalid post context");
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
keyLength = postContextPos - anteContextLength;
|
|
}
|
|
if (cursorPosition < 0) {
|
|
cursorPosition = outputStr.length();
|
|
} else {
|
|
if (cursorPosition > outputStr.length()) {
|
|
// throw new IllegalArgumentException("Invalid cursor position");
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
this->cursorPos = cursorPosition + cursorOffset;
|
|
this->output = outputStr;
|
|
// We don't validate the segments array. The caller must
|
|
// guarantee that the segments are well-formed.
|
|
this->segments = adoptedSegs;
|
|
// Find the position of the first segment index that is after the
|
|
// anteContext (in the key). Note that this may be a start or a
|
|
// limit index. If all segments are in the ante context,
|
|
// firstKeySeg should point past the last segment -- that is, it
|
|
// should point at the end marker, which is -1. This allows the
|
|
// code to back up by one to obtain the last ante context segment.
|
|
firstKeySeg = -1;
|
|
if (segments != 0) {
|
|
firstKeySeg = FIRST_SEG_POS_INDEX;
|
|
while (segments[firstKeySeg] >= 0 &&
|
|
segments[firstKeySeg] < anteContextLength) {
|
|
++firstKeySeg;
|
|
}
|
|
}
|
|
|
|
pattern = input;
|
|
flags = 0;
|
|
if (anchorStart) {
|
|
flags |= ANCHOR_START;
|
|
}
|
|
if (anchorEnd) {
|
|
flags |= ANCHOR_END;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Copy constructor.
|
|
*/
|
|
TransliterationRule::TransliterationRule(TransliterationRule& other) :
|
|
pattern(other.pattern),
|
|
output(other.output),
|
|
anteContextLength(other.anteContextLength),
|
|
keyLength(other.keyLength),
|
|
cursorPos(other.cursorPos),
|
|
flags(other.flags),
|
|
firstKeySeg(other.firstKeySeg),
|
|
data(other.data) {
|
|
|
|
segments = 0;
|
|
if (other.segments != 0) {
|
|
int32_t len = SEGMENTS_LEN;
|
|
segments = new int32_t[len];
|
|
uprv_memcpy(segments, other.segments, len*sizeof(segments[0]));
|
|
}
|
|
}
|
|
|
|
TransliterationRule::~TransliterationRule() {
|
|
delete[] segments;
|
|
}
|
|
|
|
/**
|
|
* Return the position of the cursor within the output string.
|
|
* @return a value from 0 to <code>getOutput().length()</code>, inclusive.
|
|
*/
|
|
int32_t TransliterationRule::getCursorPos(void) const {
|
|
return cursorPos;
|
|
}
|
|
|
|
/**
|
|
* Return the preceding context length. This method is needed to
|
|
* support the <code>Transliterator</code> method
|
|
* <code>getMaximumContextLength()</code>. Internally, this is
|
|
* implemented as the anteContextLength, optionally plus one if
|
|
* there is a start anchor. The one character anchor gap is
|
|
* needed to make repeated incremental transliteration with
|
|
* anchors work.
|
|
*/
|
|
int32_t TransliterationRule::getContextLength(void) const {
|
|
return anteContextLength + ((flags & ANCHOR_START) ? 1 : 0);
|
|
}
|
|
|
|
/**
|
|
* Internal method. Returns 8-bit index value for this rule.
|
|
* This is the low byte of the first character of the key,
|
|
* unless the first character of the key is a set. If it's a
|
|
* set, or otherwise can match multiple keys, the index value is -1.
|
|
*/
|
|
int16_t TransliterationRule::getIndexValue() const {
|
|
if (anteContextLength == pattern.length()) {
|
|
// A pattern with just ante context {such as foo)>bar} can
|
|
// match any key.
|
|
return -1;
|
|
}
|
|
UChar32 c = pattern.char32At(anteContextLength);
|
|
return (int16_t)(data.lookup(c) == NULL ? (c & 0xFF) : -1);
|
|
}
|
|
|
|
/**
|
|
* Internal method. Returns true if this rule matches the given
|
|
* index value. The index value is an 8-bit integer, 0..255,
|
|
* representing the low byte of the first character of the key.
|
|
* It matches this rule if it matches the first character of the
|
|
* key, or if the first character of the key is a set, and the set
|
|
* contains any character with a low byte equal to the index
|
|
* value. If the rule contains only ante context, as in foo)>bar,
|
|
* then it will match any key.
|
|
*/
|
|
UBool TransliterationRule::matchesIndexValue(uint8_t v) const {
|
|
if (anteContextLength == pattern.length()) {
|
|
// A pattern with just ante context {such as foo)>bar} can
|
|
// match any key.
|
|
return TRUE;
|
|
}
|
|
UChar32 c = pattern.char32At(anteContextLength);
|
|
const UnicodeMatcher* matcher = data.lookup(c);
|
|
return matcher == NULL ? (uint8_t(c) == v) :
|
|
matcher->matchesIndexValue(v);
|
|
}
|
|
|
|
/**
|
|
* Return true if this rule masks another rule. If r1 masks r2 then
|
|
* r1 matches any input string that r2 matches. If r1 masks r2 and r2 masks
|
|
* r1 then r1 == r2. Examples: "a>x" masks "ab>y". "a>x" masks "a[b]>y".
|
|
* "[c]a>x" masks "[dc]a>y".
|
|
*/
|
|
UBool TransliterationRule::masks(const TransliterationRule& r2) const {
|
|
/* Rule r1 masks rule r2 if the string formed of the
|
|
* antecontext, key, and postcontext overlaps in the following
|
|
* way:
|
|
*
|
|
* r1: aakkkpppp
|
|
* r2: aaakkkkkpppp
|
|
* ^
|
|
*
|
|
* The strings must be aligned at the first character of the
|
|
* key. The length of r1 to the left of the alignment point
|
|
* must be <= the length of r2 to the left; ditto for the
|
|
* right. The characters of r1 must equal (or be a superset
|
|
* of) the corresponding characters of r2. The superset
|
|
* operation should be performed to check for UnicodeSet
|
|
* masking.
|
|
*
|
|
* Anchors: Two patterns that differ only in anchors only
|
|
* mask one another if they are exactly equal, and r2 has
|
|
* all the anchors r1 has (optionally, plus some). Here Y
|
|
* means the row masks the column, N means it doesn't.
|
|
*
|
|
* ab ^ab ab$ ^ab$
|
|
* ab Y Y Y Y
|
|
* ^ab N Y N Y
|
|
* ab$ N N Y Y
|
|
* ^ab$ N N N Y
|
|
*
|
|
* Post context: {a}b masks ab, but not vice versa, since {a}b
|
|
* matches everything ab matches, and {a}b matches {|a|}b but ab
|
|
* does not. Pre context is different (a{b} does not align with
|
|
* ab).
|
|
*/
|
|
|
|
/* LIMITATION of the current mask algorithm: Some rule
|
|
* maskings are currently not detected. For example,
|
|
* "{Lu}]a>x" masks "A]a>y". This can be added later. TODO
|
|
*/
|
|
|
|
int32_t len = pattern.length();
|
|
int32_t left = anteContextLength;
|
|
int32_t left2 = r2.anteContextLength;
|
|
int32_t right = len - left;
|
|
int32_t right2 = r2.pattern.length() - left2;
|
|
|
|
// TODO Clean this up -- some logic might be combinable with the
|
|
// next statement.
|
|
|
|
// Test for anchor masking
|
|
if (left == left2 && right == right2 &&
|
|
keyLength <= r2.keyLength &&
|
|
0 == r2.pattern.compare(0, len, pattern)) {
|
|
// The following boolean logic implements the table above
|
|
return (flags == r2.flags) ||
|
|
(!(flags & ANCHOR_START) && !(flags & ANCHOR_END)) ||
|
|
((r2.flags & ANCHOR_START) && (r2.flags & ANCHOR_END));
|
|
}
|
|
|
|
return left <= left2 &&
|
|
(right < right2 ||
|
|
(right == right2 && keyLength <= r2.keyLength)) &&
|
|
0 == r2.pattern.compare(left2 - left, len, pattern);
|
|
}
|
|
|
|
inline int32_t posBefore(const Replaceable& str, int32_t pos) {
|
|
return (pos > 0) ?
|
|
pos - UTF_CHAR_LENGTH(str.char32At(pos-1)) :
|
|
pos - 1;
|
|
}
|
|
|
|
inline int32_t posAfter(const Replaceable& str, int32_t pos) {
|
|
return (pos < str.length()) ?
|
|
pos + UTF_CHAR_LENGTH(str.char32At(pos)) :
|
|
pos + 1;
|
|
}
|
|
|
|
/**
|
|
* Attempt a match and replacement at the given position. Return
|
|
* the degree of match between this rule and the given text. The
|
|
* degree of match may be mismatch, a partial match, or a full
|
|
* match. A mismatch means at least one character of the text
|
|
* does not match the context or key. A partial match means some
|
|
* context and key characters match, but the text is not long
|
|
* enough to match all of them. A full match means all context
|
|
* and key characters match.
|
|
*
|
|
* If a full match is obtained, perform a replacement, update pos,
|
|
* and return U_MATCH. Otherwise both text and pos are unchanged.
|
|
*
|
|
* @param text the text
|
|
* @param pos the position indices
|
|
* @param incremental if TRUE, test for partial matches that may
|
|
* be completed by additional text inserted at pos.limit.
|
|
* @return one of <code>U_MISMATCH</code>,
|
|
* <code>U_PARTIAL_MATCH</code>, or <code>U_MATCH</code>. If
|
|
* incremental is FALSE then U_PARTIAL_MATCH will not be returned.
|
|
*/
|
|
UMatchDegree TransliterationRule::matchAndReplace(Replaceable& text,
|
|
UTransPosition& pos,
|
|
UBool incremental) const {
|
|
// Matching and replacing are done in one method because the
|
|
// replacement operation needs information obtained during the
|
|
// match. Another way to do this is to have the match method
|
|
// create a match result struct with relevant offsets, and to pass
|
|
// this into the replace method.
|
|
|
|
// ============================ MATCH ===========================
|
|
|
|
// Record the positions of segments. We assume the following:
|
|
// - The maximum number of segments is 9.
|
|
// - The segment indices occur in ascending order. That is,
|
|
// segment 1 start <= segment 1 limit <= sement 2 start...
|
|
// - The segments have been validated such that there are no
|
|
// references to nonexistent segments.
|
|
// - The end of the segment array is marked by a start of -1.
|
|
// Currently, the parser enforces all of these constraints.
|
|
// In the future, the first two constraints may be lifted,
|
|
// in which case this method will have to be modified.
|
|
|
|
int32_t _segPos[2*MAX_STATIC_SEGS];
|
|
int32_t *segPos = _segPos;
|
|
if (segments != 0 && SEGMENTS_COUNT > MAX_STATIC_SEGS) {
|
|
segPos = new int32_t[2*SEGMENTS_COUNT];
|
|
}
|
|
int32_t iSeg = firstKeySeg - 1;
|
|
int32_t nextSegPos = (iSeg >= 0) ? segments[iSeg] : -1;
|
|
|
|
UMatchDegree m;
|
|
int32_t lenDelta, keyLimit;
|
|
|
|
// ------------------------ Ante Context ------------------------
|
|
|
|
// A mismatch in the ante context, or with the start anchor,
|
|
// is an outright U_MISMATCH regardless of whether we are
|
|
// incremental or not.
|
|
int32_t cursor;
|
|
int32_t newStart = 0;
|
|
int32_t minCursor;
|
|
int32_t i;
|
|
|
|
// Backup cursor by one
|
|
cursor = posBefore(text, pos.start);
|
|
|
|
for (i=anteContextLength-1; i>=0; --i) {
|
|
UChar keyChar = pattern.charAt(i);
|
|
const UnicodeMatcher* matcher = data.lookup(keyChar);
|
|
if (matcher == 0) {
|
|
if (cursor >= pos.contextStart &&
|
|
keyChar == text.charAt(cursor)) {
|
|
--cursor;
|
|
} else {
|
|
m = U_MISMATCH;
|
|
goto exit;
|
|
}
|
|
} else {
|
|
// Subtract 1 from contextStart to make it a reverse limit
|
|
if (matcher->matches(text, cursor, pos.contextStart-1, FALSE)
|
|
!= U_MATCH) {
|
|
m = U_MISMATCH;
|
|
goto exit;
|
|
}
|
|
}
|
|
while (nextSegPos == i) {
|
|
segPos[iSeg] = cursor;
|
|
if (cursor >= 0) {
|
|
segPos[iSeg] += UTF_CHAR_LENGTH(text.char32At(cursor));
|
|
} else {
|
|
++segPos[iSeg];
|
|
}
|
|
nextSegPos = (--iSeg >= FIRST_SEG_POS_INDEX) ? segments[iSeg] : -1;
|
|
}
|
|
}
|
|
|
|
minCursor = posAfter(text, cursor);
|
|
|
|
// ------------------------ Start Anchor ------------------------
|
|
|
|
if ((flags & ANCHOR_START) && cursor != posBefore(text, pos.contextStart)) {
|
|
m = U_MISMATCH;
|
|
goto exit;
|
|
}
|
|
|
|
// -------------------- Key and Post Context --------------------
|
|
|
|
iSeg = firstKeySeg;
|
|
nextSegPos = (iSeg >= FIRST_SEG_POS_INDEX) ? (segments[iSeg] - anteContextLength) : -1;
|
|
|
|
i = 0;
|
|
cursor = pos.start;
|
|
keyLimit = 0;
|
|
while (i < (pattern.length() - anteContextLength)) {
|
|
if (incremental && cursor == pos.contextLimit) {
|
|
// We've reached the context limit without a mismatch and
|
|
// without completing our match.
|
|
m = U_PARTIAL_MATCH;
|
|
goto exit;
|
|
}
|
|
if (cursor == pos.limit && i < keyLength) {
|
|
// We're still in the pattern key but we're entering the
|
|
// post context.
|
|
m = U_MISMATCH;
|
|
goto exit;
|
|
}
|
|
while (i == nextSegPos) {
|
|
segPos[iSeg] = cursor;
|
|
nextSegPos = segments[++iSeg] - anteContextLength;
|
|
}
|
|
if (i == keyLength) {
|
|
keyLimit = cursor;
|
|
}
|
|
UChar keyChar = pattern.charAt(anteContextLength + i++);
|
|
const UnicodeMatcher* matcher = data.lookup(keyChar);
|
|
if (matcher == 0) {
|
|
// Don't need the cursor < pos.contextLimit check if
|
|
// incremental is TRUE (because it's done above); do need
|
|
// it otherwise.
|
|
if (cursor < pos.contextLimit &&
|
|
keyChar == text.charAt(cursor)) {
|
|
++cursor;
|
|
} else {
|
|
m = U_MISMATCH;
|
|
goto exit;
|
|
}
|
|
} else {
|
|
m = matcher->matches(text, cursor, pos.contextLimit, incremental);
|
|
if (m != U_MATCH) {
|
|
goto exit;
|
|
}
|
|
}
|
|
}
|
|
while (i == nextSegPos) {
|
|
segPos[iSeg] = cursor;
|
|
nextSegPos = segments[++iSeg] - anteContextLength;
|
|
}
|
|
if (i == keyLength) {
|
|
keyLimit = cursor;
|
|
}
|
|
|
|
// ------------------------- Stop Anchor ------------------------
|
|
|
|
if ((flags & ANCHOR_END) != 0) {
|
|
if (cursor != pos.contextLimit) {
|
|
return U_MISMATCH;
|
|
}
|
|
if (incremental) {
|
|
return U_PARTIAL_MATCH;
|
|
}
|
|
}
|
|
|
|
// =========================== REPLACE ==========================
|
|
|
|
// We have a full match. The key is between pos.start and
|
|
// keyLimit. Segment indices have been recorded in segPos[].
|
|
// Perform a replacement.
|
|
|
|
if (segments == NULL) {
|
|
text.handleReplaceBetween(pos.start, keyLimit, output);
|
|
lenDelta = output.length() - (keyLimit - pos.start);
|
|
if (cursorPos >= 0 && cursorPos < keyLength) {
|
|
// Within the key, the cursor refers to 16-bit code units
|
|
newStart = pos.start + cursorPos;
|
|
} else {
|
|
newStart = pos.start;
|
|
int32_t n = cursorPos;
|
|
// Outside the key, cursorPos counts code points
|
|
while (n > 0) {
|
|
newStart += UTF_CHAR_LENGTH(text.char32At(newStart));
|
|
--n;
|
|
}
|
|
while (n < 0) {
|
|
newStart -= UTF_CHAR_LENGTH(text.char32At(newStart-1));
|
|
++n;
|
|
}
|
|
}
|
|
} else {
|
|
/* When there are segments to be copied, use the Replaceable.copy()
|
|
* API in order to retain out-of-band data. Copy everything to the
|
|
* point after the key, then delete the key. That is, copy things
|
|
* into offset + keyLength, then replace offset .. offset +
|
|
* keyLength with the empty string.
|
|
*
|
|
* Minimize the number of calls to Replaceable.replace() and
|
|
* Replaceable.copy().
|
|
*/
|
|
int32_t dest = keyLimit; // copy new text to here
|
|
UnicodeString buf;
|
|
for (i=0; i<output.length(); ) {
|
|
if (i == cursorPos) {
|
|
// Record the position of the cursor
|
|
newStart = dest - (keyLimit - pos.start);
|
|
}
|
|
UChar32 c = output.char32At(i);
|
|
int32_t b = data.lookupSegmentReference(c);
|
|
if (b < 0) {
|
|
// Accumulate straight (non-segment) text.
|
|
buf.append(c);
|
|
} else {
|
|
// Insert any accumulated straight text.
|
|
if (buf.length() > 0) {
|
|
text.handleReplaceBetween(dest, dest, buf);
|
|
dest += buf.length();
|
|
buf.remove();
|
|
}
|
|
// Copy segment with out-of-band data
|
|
b *= 2;
|
|
int32_t start = segPos[SEGMENTS_NUM(b)];
|
|
int32_t limit = segPos[SEGMENTS_NUM(b+1)];
|
|
text.copy(start, limit, dest);
|
|
dest += limit - start;
|
|
}
|
|
i += UTF_CHAR_LENGTH(c);
|
|
}
|
|
// Insert any accumulated straight text.
|
|
if (buf.length() > 0) {
|
|
text.handleReplaceBetween(dest, dest, buf);
|
|
dest += buf.length();
|
|
}
|
|
if (i == cursorPos) {
|
|
// Record the position of the cursor
|
|
newStart = dest - (keyLimit - pos.start);
|
|
}
|
|
// Delete the key
|
|
buf.remove();
|
|
text.handleReplaceBetween(pos.start, keyLimit, buf);
|
|
lenDelta = dest - keyLimit - (keyLimit - pos.start);
|
|
// Handle cursor in postContext
|
|
if (cursorPos > output.length()) {
|
|
newStart = pos.start + (dest - keyLimit);
|
|
int32_t n = cursorPos - output.length();
|
|
// cursorPos counts code points
|
|
while (n > 0) {
|
|
newStart += UTF_CHAR_LENGTH(text.char32At(newStart));
|
|
n--;
|
|
}
|
|
}
|
|
}
|
|
|
|
cursor += lenDelta;
|
|
pos.limit += lenDelta;
|
|
pos.contextLimit += lenDelta;
|
|
// Restrict new value of start to [minCursor, min(cursor, pos.limit)].
|
|
pos.start = uprv_max(minCursor, uprv_min(uprv_min(cursor, pos.limit), newStart));
|
|
m = U_MATCH;
|
|
|
|
exit:
|
|
if (segPos != _segPos) {
|
|
delete[] segPos;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
/**
|
|
* Append a character to a rule that is being built up. To flush
|
|
* the quoteBuf to rule, make one final call with isLiteral == TRUE.
|
|
* If there is no final character, pass in (UChar32)-1 as c.
|
|
* @param rule the string to append the character to
|
|
* @param c the character to append, or (UChar32)-1 if none.
|
|
* @param isLiteral if true, then the given character should not be
|
|
* quoted or escaped. Usually this means it is a syntactic element
|
|
* such as > or $
|
|
* @param escapeUnprintable if true, then unprintable characters
|
|
* should be escaped using \uxxxx or \Uxxxxxxxx. These escapes will
|
|
* appear outside of quotes.
|
|
* @param quoteBuf a buffer which is used to build up quoted
|
|
* substrings. The caller should initially supply an empty buffer,
|
|
* and thereafter should not modify the buffer. The buffer should be
|
|
* cleared out by, at the end, calling this method with a literal
|
|
* character.
|
|
*/
|
|
void TransliterationRule::appendToRule(UnicodeString& rule,
|
|
UChar32 c,
|
|
UBool isLiteral,
|
|
UBool escapeUnprintable,
|
|
UnicodeString& quoteBuf) {
|
|
// If we are escaping unprintables, then escape them outside
|
|
// quotes. \u and \U are not recognized within quotes. The same
|
|
// logic applies to literals, but literals are never escaped.
|
|
if (isLiteral ||
|
|
(escapeUnprintable && UnicodeSet::_isUnprintable(c))) {
|
|
if (quoteBuf.length() > 0) {
|
|
// We prefer backslash APOSTROPHE to double APOSTROPHE
|
|
// (more readable, less similar to ") so if there are
|
|
// double APOSTROPHEs at the ends, we pull them outside
|
|
// of the quote.
|
|
|
|
// If the first thing in the quoteBuf is APOSTROPHE
|
|
// (doubled) then pull it out.
|
|
while (quoteBuf.length() >= 2 &&
|
|
quoteBuf.charAt(0) == APOSTROPHE &&
|
|
quoteBuf.charAt(1) == APOSTROPHE) {
|
|
rule.append(BACKSLASH).append(APOSTROPHE);
|
|
quoteBuf.remove(0, 2);
|
|
}
|
|
// If the last thing in the quoteBuf is APOSTROPHE
|
|
// (doubled) then remove and count it and add it after.
|
|
int32_t trailingCount = 0;
|
|
while (quoteBuf.length() >= 2 &&
|
|
quoteBuf.charAt(quoteBuf.length()-2) == APOSTROPHE &&
|
|
quoteBuf.charAt(quoteBuf.length()-1) == APOSTROPHE) {
|
|
quoteBuf.truncate(quoteBuf.length()-2);
|
|
++trailingCount;
|
|
}
|
|
if (quoteBuf.length() > 0) {
|
|
rule.append(APOSTROPHE);
|
|
rule.append(quoteBuf);
|
|
rule.append(APOSTROPHE);
|
|
quoteBuf.truncate(0);
|
|
}
|
|
while (trailingCount-- > 0) {
|
|
rule.append(BACKSLASH).append(APOSTROPHE);
|
|
}
|
|
}
|
|
if (c != (UChar32)-1) {
|
|
if (!escapeUnprintable || !UnicodeSet::_escapeUnprintable(rule, c)) {
|
|
rule.append(c);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Escape ' and '\' and don't begin a quote just for them
|
|
else if (quoteBuf.length() == 0 &&
|
|
(c == APOSTROPHE || c == BACKSLASH)) {
|
|
rule.append(BACKSLASH);
|
|
rule.append(c);
|
|
}
|
|
|
|
// Specials (printable ascii that isn't [0-9a-zA-Z]) and
|
|
// whitespace need quoting. Also append stuff to quotes if we are
|
|
// building up a quoted substring already.
|
|
else if (quoteBuf.length() > 0 ||
|
|
(c >= 0x0021 && c <= 0x007E &&
|
|
!((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
|
|
(c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
|
|
(c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) ||
|
|
Unicode::isWhitespace(c)) {
|
|
quoteBuf.append(c);
|
|
// Double ' within a quote
|
|
if (c == APOSTROPHE) {
|
|
quoteBuf.append(c);
|
|
}
|
|
}
|
|
|
|
// Otherwise just append
|
|
else {
|
|
rule.append(c);
|
|
}
|
|
}
|
|
|
|
void TransliterationRule::appendToRule(UnicodeString& rule,
|
|
const UnicodeString& text,
|
|
UBool isLiteral,
|
|
UBool escapeUnprintable,
|
|
UnicodeString& quoteBuf) {
|
|
for (int32_t i=0; i<text.length(); ++i) {
|
|
appendToRule(rule, text[i], isLiteral, escapeUnprintable, quoteBuf);
|
|
}
|
|
}
|
|
|
|
static const int32_t POW10[] = {1, 10, 100, 1000, 10000, 100000, 1000000,
|
|
10000000, 100000000, 1000000000};
|
|
|
|
/**
|
|
* Create a source string that represents this rule. Append it to the
|
|
* given string.
|
|
*/
|
|
UnicodeString& TransliterationRule::toRule(UnicodeString& rule,
|
|
UBool escapeUnprintable) const {
|
|
int32_t i;
|
|
|
|
int32_t iseg = FIRST_SEG_POS_INDEX-1;
|
|
int32_t nextSeg = -1;
|
|
// Build an array of booleans specifying open vs. close paren
|
|
UBool _isOpen[2*MAX_STATIC_SEGS];
|
|
UBool *isOpen = _isOpen;
|
|
if (segments != 0) {
|
|
if (SEGMENTS_COUNT > MAX_STATIC_SEGS) {
|
|
isOpen = new UBool[2*SEGMENTS_COUNT];
|
|
}
|
|
for (i=0; i<2*SEGMENTS_COUNT; i+=2) {
|
|
isOpen[SEGMENTS_NUM(i) -FIRST_SEG_POS_INDEX] = TRUE;
|
|
isOpen[SEGMENTS_NUM(i+1)-FIRST_SEG_POS_INDEX] = FALSE;
|
|
}
|
|
nextSeg = segments[++iseg];
|
|
}
|
|
|
|
// Accumulate special characters (and non-specials following them)
|
|
// into quoteBuf. Append quoteBuf, within single quotes, when
|
|
// a non-quoted element must be inserted.
|
|
UnicodeString str, quoteBuf;
|
|
|
|
// Do not emit the braces '{' '}' around the pattern if there
|
|
// is neither anteContext nor postContext.
|
|
UBool emitBraces =
|
|
(anteContextLength != 0) || (keyLength != pattern.length());
|
|
|
|
// Emit the input pattern
|
|
for (i=0; i<pattern.length(); ++i) {
|
|
if (emitBraces && i == anteContextLength) {
|
|
appendToRule(rule, (UChar) 0x007B /*{*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
|
|
// Append either '(' or ')' if we are at a segment index
|
|
if (i == nextSeg) {
|
|
appendToRule(rule, isOpen[iseg-FIRST_SEG_POS_INDEX] ?
|
|
(UChar)0x0028 : (UChar)0x0029,
|
|
TRUE, escapeUnprintable, quoteBuf);
|
|
nextSeg = segments[++iseg];
|
|
}
|
|
|
|
if (emitBraces && i == (anteContextLength + keyLength)) {
|
|
appendToRule(rule, (UChar) 0x007D /*}*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
|
|
UChar c = pattern.charAt(i);
|
|
const UnicodeMatcher *matcher = data.lookup(c);
|
|
if (matcher == 0) {
|
|
appendToRule(rule, c, FALSE, escapeUnprintable, quoteBuf);
|
|
} else {
|
|
appendToRule(rule, matcher->toPattern(str, escapeUnprintable),
|
|
TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
}
|
|
|
|
if (i == nextSeg) {
|
|
// assert(!isOpen[iSeg-FIRST_SEG_POS_INDEX]);
|
|
appendToRule(rule, (UChar)0x0029 /*)*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
|
|
if (emitBraces && i == (anteContextLength + keyLength)) {
|
|
appendToRule(rule, (UChar)0x007D /*}*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
|
|
appendToRule(rule, UnicodeString(" > ", ""), TRUE, escapeUnprintable, quoteBuf);
|
|
|
|
// Emit the output pattern
|
|
|
|
// Handle a cursor preceding the output
|
|
int32_t cursor = cursorPos;
|
|
if (cursor < 0) {
|
|
while (cursor++ < 0) {
|
|
appendToRule(rule, (UChar) 0x0040 /*@*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
// Fall through and append '|' below
|
|
}
|
|
|
|
for (i=0; i<output.length(); ++i) {
|
|
if (i == cursor) {
|
|
appendToRule(rule, (UChar) 0x007C /*|*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
UChar c = output.charAt(i);
|
|
int32_t seg = data.lookupSegmentReference(c);
|
|
if (seg < 0) {
|
|
appendToRule(rule, c, FALSE, escapeUnprintable, quoteBuf);
|
|
} else {
|
|
++seg; // make 1-based
|
|
appendToRule(rule, (UChar)0x20, TRUE, escapeUnprintable, quoteBuf);
|
|
rule.append((UChar)0x24 /*$*/);
|
|
UBool show = FALSE; // TRUE if we should display digits
|
|
for (int32_t p=9; p>=0; --p) {
|
|
int32_t d = seg / POW10[p];
|
|
seg -= d * POW10[p];
|
|
if (d != 0 || p == 0) {
|
|
show = TRUE;
|
|
}
|
|
if (show) {
|
|
rule.append((UChar)(48+d));
|
|
}
|
|
}
|
|
rule.append((UChar)0x20);
|
|
}
|
|
}
|
|
|
|
// Handle a cursor after the output. Use > rather than >= because
|
|
// if cursor == output.length() it is at the end of the output,
|
|
// which is the default position, so we need not emit it.
|
|
if (cursor > output.length()) {
|
|
cursor -= output.length();
|
|
while (cursor-- > 0) {
|
|
appendToRule(rule, (UChar) 0x0040 /*@*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
appendToRule(rule, (UChar) 0x007C /*|*/, TRUE, escapeUnprintable, quoteBuf);
|
|
}
|
|
|
|
appendToRule(rule, (UChar) 0x003B /*;*/, TRUE, escapeUnprintable, quoteBuf);
|
|
|
|
if (isOpen != _isOpen) {
|
|
delete[] isOpen;
|
|
}
|
|
return rule;
|
|
}
|
|
|
|
//eof
|