scuffed-code/icu4c/source/i18n/smpdtfmt.cpp
2011-09-15 20:38:26 +00:00

3562 lines
128 KiB
C++

/*
*******************************************************************************
* Copyright (C) 1997-2011, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File SMPDTFMT.CPP
*
* Modification History:
*
* Date Name Description
* 02/19/97 aliu Converted from java.
* 03/31/97 aliu Modified extensively to work with 50 locales.
* 04/01/97 aliu Added support for centuries.
* 07/09/97 helena Made ParsePosition into a class.
* 07/21/98 stephen Added initializeDefaultCentury.
* Removed getZoneIndex (added in DateFormatSymbols)
* Removed subParseLong
* Removed chk
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 10/14/99 aliu Updated 2-digit year parsing so that only "00" thru
* "99" are recognized. {j28 4182066}
* 11/15/99 weiv Added support for week of year/day of week format
********************************************************************************
*/
#define ZID_KEY_MAX 128
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/smpdtfmt.h"
#include "unicode/dtfmtsym.h"
#include "unicode/ures.h"
#include "unicode/msgfmt.h"
#include "unicode/calendar.h"
#include "unicode/gregocal.h"
#include "unicode/timezone.h"
#include "unicode/decimfmt.h"
#include "unicode/dcfmtsym.h"
#include "unicode/uchar.h"
#include "unicode/uniset.h"
#include "unicode/ustring.h"
#include "unicode/basictz.h"
#include "unicode/simpletz.h"
#include "unicode/rbtz.h"
#include "unicode/utf16.h"
#include "unicode/vtzone.h"
#include "olsontz.h"
#include "patternprops.h"
#include "fphdlimp.h"
#include "gregoimp.h"
#include "hebrwcal.h"
#include "cstring.h"
#include "uassert.h"
#include "cmemory.h"
#include "umutex.h"
#include "tzfmt.h"
#include <float.h>
#include "smpdtfst.h"
#if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
#include <stdio.h>
#endif
// *****************************************************************************
// class SimpleDateFormat
// *****************************************************************************
U_NAMESPACE_BEGIN
static const UChar PATTERN_CHAR_BASE = 0x40;
/**
* Last-resort string to use for "GMT" when constructing time zone strings.
*/
// For time zones that have no names, use strings GMT+minutes and
// GMT-minutes. For instance, in France the time zone is GMT+60.
// Also accepted are GMT+H:MM or GMT-H:MM.
static const UChar gGmt[] = {0x0047, 0x004D, 0x0054, 0x0000}; // "GMT"
static const UChar gGmtPlus[] = {0x0047, 0x004D, 0x0054, 0x002B, 0x0000}; // "GMT+"
static const UChar gGmtMinus[] = {0x0047, 0x004D, 0x0054, 0x002D, 0x0000}; // "GMT-"
static const UChar gDefGmtPat[] = {0x0047, 0x004D, 0x0054, 0x007B, 0x0030, 0x007D, 0x0000}; /* GMT{0} */
static const UChar gDefGmtNegHmsPat[] = {0x002D, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x003A, 0x0073, 0x0073, 0x0000}; /* -HH:mm:ss */
static const UChar gDefGmtNegHmPat[] = {0x002D, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x0000}; /* -HH:mm */
static const UChar gDefGmtPosHmsPat[] = {0x002B, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x003A, 0x0073, 0x0073, 0x0000}; /* +HH:mm:ss */
static const UChar gDefGmtPosHmPat[] = {0x002B, 0x0048, 0x0048, 0x003A, 0x006D, 0x006D, 0x0000}; /* +HH:mm */
static const UChar gUt[] = {0x0055, 0x0054, 0x0000}; // "UT"
static const UChar gUtc[] = {0x0055, 0x0054, 0x0043, 0x0000}; // "UT"
typedef enum GmtPatSize {
kGmtLen = 3,
kGmtPatLen = 6,
kNegHmsLen = 9,
kNegHmLen = 6,
kPosHmsLen = 9,
kPosHmLen = 6,
kUtLen = 2,
kUtcLen = 3
} GmtPatSize;
// Stuff needed for numbering system overrides
typedef enum OvrStrType {
kOvrStrDate = 0,
kOvrStrTime = 1,
kOvrStrBoth = 2
} OvrStrType;
static const UDateFormatField kDateFields[] = {
UDAT_YEAR_FIELD,
UDAT_MONTH_FIELD,
UDAT_DATE_FIELD,
UDAT_DAY_OF_YEAR_FIELD,
UDAT_DAY_OF_WEEK_IN_MONTH_FIELD,
UDAT_WEEK_OF_YEAR_FIELD,
UDAT_WEEK_OF_MONTH_FIELD,
UDAT_YEAR_WOY_FIELD,
UDAT_EXTENDED_YEAR_FIELD,
UDAT_JULIAN_DAY_FIELD,
UDAT_STANDALONE_DAY_FIELD,
UDAT_STANDALONE_MONTH_FIELD,
UDAT_QUARTER_FIELD,
UDAT_STANDALONE_QUARTER_FIELD };
static const int8_t kDateFieldsCount = 13;
static const UDateFormatField kTimeFields[] = {
UDAT_HOUR_OF_DAY1_FIELD,
UDAT_HOUR_OF_DAY0_FIELD,
UDAT_MINUTE_FIELD,
UDAT_SECOND_FIELD,
UDAT_FRACTIONAL_SECOND_FIELD,
UDAT_HOUR1_FIELD,
UDAT_HOUR0_FIELD,
UDAT_MILLISECONDS_IN_DAY_FIELD,
UDAT_TIMEZONE_RFC_FIELD };
static const int8_t kTimeFieldsCount = 9;
// This is a pattern-of-last-resort used when we can't load a usable pattern out
// of a resource.
static const UChar gDefaultPattern[] =
{
0x79, 0x79, 0x79, 0x79, 0x4D, 0x4D, 0x64, 0x64, 0x20, 0x68, 0x68, 0x3A, 0x6D, 0x6D, 0x20, 0x61, 0
}; /* "yyyyMMdd hh:mm a" */
// This prefix is designed to NEVER MATCH real text, in order to
// suppress the parsing of negative numbers. Adjust as needed (if
// this becomes valid Unicode).
static const UChar SUPPRESS_NEGATIVE_PREFIX[] = {0xAB00, 0};
/**
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
static const char gDateTimePatternsTag[]="DateTimePatterns";
static const UChar gEtcUTC[] = {0x45, 0x74, 0x63, 0x2F, 0x55, 0x54, 0x43, 0x00}; // "Etc/UTC"
static const UChar QUOTE = 0x27; // Single quote
/*
* The field range check bias for each UDateFormatField.
* The bias is added to the minimum and maximum values
* before they are compared to the parsed number.
* For example, the calendar stores zero-based month numbers
* but the parsed month numbers start at 1, so the bias is 1.
*
* A value of -1 means that the value is not checked.
*/
static const int32_t gFieldRangeBias[] = {
-1, // 'G' - UDAT_ERA_FIELD
-1, // 'y' - UDAT_YEAR_FIELD
1, // 'M' - UDAT_MONTH_FIELD
0, // 'd' - UDAT_DATE_FIELD
-1, // 'k' - UDAT_HOUR_OF_DAY1_FIELD
-1, // 'H' - UDAT_HOUR_OF_DAY0_FIELD
0, // 'm' - UDAT_MINUTE_FIELD
0, // 's' - UDAT_SEOND_FIELD
-1, // 'S' - UDAT_FRACTIONAL_SECOND_FIELD (0-999?)
-1, // 'E' - UDAT_DAY_OF_WEEK_FIELD (1-7?)
-1, // 'D' - UDAT_DAY_OF_YEAR_FIELD (1 - 366?)
-1, // 'F' - UDAT_DAY_OF_WEEK_IN_MONTH_FIELD (1-5?)
-1, // 'w' - UDAT_WEEK_OF_YEAR_FIELD (1-52?)
-1, // 'W' - UDAT_WEEK_OF_MONTH_FIELD (1-5?)
-1, // 'a' - UDAT_AM_PM_FIELD
-1, // 'h' - UDAT_HOUR1_FIELD
-1, // 'K' - UDAT_HOUR0_FIELD
-1, // 'z' - UDAT_TIMEZONE_FIELD
-1, // 'Y' - UDAT_YEAR_WOY_FIELD
-1, // 'e' - UDAT_DOW_LOCAL_FIELD
-1, // 'u' - UDAT_EXTENDED_YEAR_FIELD
-1, // 'g' - UDAT_JULIAN_DAY_FIELD
-1, // 'A' - UDAT_MILLISECONDS_IN_DAY_FIELD
-1, // 'Z' - UDAT_TIMEZONE_RFC_FIELD
-1, // 'v' - UDAT_TIMEZONE_GENERIC_FIELD
0, // 'c' - UDAT_STANDALONE_DAY_FIELD
1, // 'L' - UDAT_STANDALONE_MONTH_FIELD
-1, // 'Q' - UDAT_QUARTER_FIELD (1-4?)
-1, // 'q' - UDAT_STANDALONE_QUARTER_FIELD
-1 // 'V' - UDAT_TIMEZONE_SPECIAL_FIELD
};
static UMTX LOCK;
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(SimpleDateFormat)
//----------------------------------------------------------------------
SimpleDateFormat::~SimpleDateFormat()
{
delete fSymbols;
if (fGMTFormatters) {
for (int32_t i = 0; i < kNumGMTFormatters; i++) {
if (fGMTFormatters[i]) {
delete fGMTFormatters[i];
}
}
uprv_free(fGMTFormatters);
}
if (fNumberFormatters) {
uprv_free(fNumberFormatters);
}
if (fTimeZoneFormat) {
delete fTimeZoneFormat;
}
while (fOverrideList) {
NSOverride *cur = fOverrideList;
fOverrideList = cur->next;
delete cur->nf;
uprv_free(cur);
}
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(UErrorCode& status)
: fLocale(Locale::getDefault()),
fSymbols(NULL),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
construct(kShort, (EStyle) (kShort + kDateOffset), fLocale, status);
initializeDefaultCentury();
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
UErrorCode &status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(NULL),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
fDateOverride.setToBogus();
fTimeOverride.setToBogus();
initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status);
initialize(fLocale, status);
initializeDefaultCentury();
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const UnicodeString& override,
UErrorCode &status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(NULL),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
fDateOverride.setTo(override);
fTimeOverride.setToBogus();
initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status);
initialize(fLocale, status);
initializeDefaultCentury();
processOverrideString(fLocale,override,kOvrStrBoth,status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const Locale& locale,
UErrorCode& status)
: fPattern(pattern),
fLocale(locale),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
fDateOverride.setToBogus();
fTimeOverride.setToBogus();
initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status);
initialize(fLocale, status);
initializeDefaultCentury();
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const UnicodeString& override,
const Locale& locale,
UErrorCode& status)
: fPattern(pattern),
fLocale(locale),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
fDateOverride.setTo(override);
fTimeOverride.setToBogus();
initializeSymbols(fLocale, initializeCalendar(NULL,fLocale,status), status);
initialize(fLocale, status);
initializeDefaultCentury();
processOverrideString(locale,override,kOvrStrBoth,status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
DateFormatSymbols* symbolsToAdopt,
UErrorCode& status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(symbolsToAdopt),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
fDateOverride.setToBogus();
fTimeOverride.setToBogus();
initializeCalendar(NULL,fLocale,status);
initialize(fLocale, status);
initializeDefaultCentury();
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const DateFormatSymbols& symbols,
UErrorCode& status)
: fPattern(pattern),
fLocale(Locale::getDefault()),
fSymbols(new DateFormatSymbols(symbols)),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
fDateOverride.setToBogus();
fTimeOverride.setToBogus();
initializeCalendar(NULL, fLocale, status);
initialize(fLocale, status);
initializeDefaultCentury();
}
//----------------------------------------------------------------------
// Not for public consumption; used by DateFormat
SimpleDateFormat::SimpleDateFormat(EStyle timeStyle,
EStyle dateStyle,
const Locale& locale,
UErrorCode& status)
: fLocale(locale),
fSymbols(NULL),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
construct(timeStyle, dateStyle, fLocale, status);
if(U_SUCCESS(status)) {
initializeDefaultCentury();
}
}
//----------------------------------------------------------------------
/**
* Not for public consumption; used by DateFormat. This constructor
* never fails. If the resource data is not available, it uses the
* the last resort symbols.
*/
SimpleDateFormat::SimpleDateFormat(const Locale& locale,
UErrorCode& status)
: fPattern(gDefaultPattern),
fLocale(locale),
fSymbols(NULL),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
if (U_FAILURE(status)) return;
initializeSymbols(fLocale, initializeCalendar(NULL, fLocale, status),status);
if (U_FAILURE(status))
{
status = U_ZERO_ERROR;
delete fSymbols;
// This constructor doesn't fail; it uses last resort data
fSymbols = new DateFormatSymbols(status);
/* test for NULL */
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
fDateOverride.setToBogus();
fTimeOverride.setToBogus();
initialize(fLocale, status);
if(U_SUCCESS(status)) {
initializeDefaultCentury();
}
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const SimpleDateFormat& other)
: DateFormat(other),
fSymbols(NULL),
fTimeZoneFormat(NULL),
fGMTFormatters(NULL),
fNumberFormatters(NULL),
fOverrideList(NULL)
{
*this = other;
}
//----------------------------------------------------------------------
SimpleDateFormat& SimpleDateFormat::operator=(const SimpleDateFormat& other)
{
if (this == &other) {
return *this;
}
DateFormat::operator=(other);
delete fSymbols;
fSymbols = NULL;
if (other.fSymbols)
fSymbols = new DateFormatSymbols(*other.fSymbols);
fDefaultCenturyStart = other.fDefaultCenturyStart;
fDefaultCenturyStartYear = other.fDefaultCenturyStartYear;
fHaveDefaultCentury = other.fHaveDefaultCentury;
fPattern = other.fPattern;
// TimeZoneFormat in ICU4C only depends on a locale for now
if (fLocale != other.fLocale) {
delete fTimeZoneFormat;
}
return *this;
}
//----------------------------------------------------------------------
Format*
SimpleDateFormat::clone() const
{
return new SimpleDateFormat(*this);
}
//----------------------------------------------------------------------
UBool
SimpleDateFormat::operator==(const Format& other) const
{
if (DateFormat::operator==(other)) {
// DateFormat::operator== guarantees following cast is safe
SimpleDateFormat* that = (SimpleDateFormat*)&other;
return (fPattern == that->fPattern &&
fSymbols != NULL && // Check for pathological object
that->fSymbols != NULL && // Check for pathological object
*fSymbols == *that->fSymbols &&
fHaveDefaultCentury == that->fHaveDefaultCentury &&
fDefaultCenturyStart == that->fDefaultCenturyStart);
}
return FALSE;
}
//----------------------------------------------------------------------
void SimpleDateFormat::construct(EStyle timeStyle,
EStyle dateStyle,
const Locale& locale,
UErrorCode& status)
{
// called by several constructors to load pattern data from the resources
if (U_FAILURE(status)) return;
// We will need the calendar to know what type of symbols to load.
initializeCalendar(NULL, locale, status);
if (U_FAILURE(status)) return;
CalendarData calData(locale, fCalendar?fCalendar->getType():NULL, status);
UResourceBundle *dateTimePatterns = calData.getByKey(gDateTimePatternsTag, status);
UResourceBundle *currentBundle;
if (U_FAILURE(status)) return;
if (ures_getSize(dateTimePatterns) <= kDateTime)
{
status = U_INVALID_FORMAT_ERROR;
return;
}
setLocaleIDs(ures_getLocaleByType(dateTimePatterns, ULOC_VALID_LOCALE, &status),
ures_getLocaleByType(dateTimePatterns, ULOC_ACTUAL_LOCALE, &status));
// create a symbols object from the locale
initializeSymbols(locale,fCalendar, status);
if (U_FAILURE(status)) return;
/* test for NULL */
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
const UChar *resStr,*ovrStr;
int32_t resStrLen,ovrStrLen = 0;
fDateOverride.setToBogus();
fTimeOverride.setToBogus();
// if the pattern should include both date and time information, use the date/time
// pattern string as a guide to tell use how to glue together the appropriate date
// and time pattern strings. The actual gluing-together is handled by a convenience
// method on MessageFormat.
if ((timeStyle != kNone) && (dateStyle != kNone))
{
Formattable timeDateArray[2];
// use Formattable::adoptString() so that we can use fastCopyFrom()
// instead of Formattable::setString()'s unaware, safe, deep string clone
// see Jitterbug 2296
currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)timeStyle, NULL, &status);
if (U_FAILURE(status)) {
status = U_INVALID_FORMAT_ERROR;
return;
}
switch (ures_getType(currentBundle)) {
case URES_STRING: {
resStr = ures_getString(currentBundle, &resStrLen, &status);
break;
}
case URES_ARRAY: {
resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status);
ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status);
fTimeOverride.setTo(TRUE, ovrStr, ovrStrLen);
break;
}
default: {
status = U_INVALID_FORMAT_ERROR;
ures_close(currentBundle);
return;
}
}
ures_close(currentBundle);
UnicodeString *tempus1 = new UnicodeString(TRUE, resStr, resStrLen);
// NULL pointer check
if (tempus1 == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
timeDateArray[0].adoptString(tempus1);
currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)dateStyle, NULL, &status);
if (U_FAILURE(status)) {
status = U_INVALID_FORMAT_ERROR;
return;
}
switch (ures_getType(currentBundle)) {
case URES_STRING: {
resStr = ures_getString(currentBundle, &resStrLen, &status);
break;
}
case URES_ARRAY: {
resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status);
ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status);
fDateOverride.setTo(TRUE, ovrStr, ovrStrLen);
break;
}
default: {
status = U_INVALID_FORMAT_ERROR;
ures_close(currentBundle);
return;
}
}
ures_close(currentBundle);
UnicodeString *tempus2 = new UnicodeString(TRUE, resStr, resStrLen);
// Null pointer check
if (tempus2 == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
timeDateArray[1].adoptString(tempus2);
int32_t glueIndex = kDateTime;
int32_t patternsSize = ures_getSize(dateTimePatterns);
if (patternsSize >= (kDateTimeOffset + kShort + 1)) {
// Get proper date time format
glueIndex = (int32_t)(kDateTimeOffset + (dateStyle - kDateOffset));
}
resStr = ures_getStringByIndex(dateTimePatterns, glueIndex, &resStrLen, &status);
MessageFormat::format(UnicodeString(TRUE, resStr, resStrLen), timeDateArray, 2, fPattern, status);
}
// if the pattern includes just time data or just date date, load the appropriate
// pattern string from the resources
// setTo() - see DateFormatSymbols::assignArray comments
else if (timeStyle != kNone) {
currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)timeStyle, NULL, &status);
if (U_FAILURE(status)) {
status = U_INVALID_FORMAT_ERROR;
return;
}
switch (ures_getType(currentBundle)) {
case URES_STRING: {
resStr = ures_getString(currentBundle, &resStrLen, &status);
break;
}
case URES_ARRAY: {
resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status);
ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status);
fDateOverride.setTo(TRUE, ovrStr, ovrStrLen);
break;
}
default: {
status = U_INVALID_FORMAT_ERROR;
ures_close(currentBundle);
return;
}
}
fPattern.setTo(TRUE, resStr, resStrLen);
ures_close(currentBundle);
}
else if (dateStyle != kNone) {
currentBundle = ures_getByIndex(dateTimePatterns, (int32_t)dateStyle, NULL, &status);
if (U_FAILURE(status)) {
status = U_INVALID_FORMAT_ERROR;
return;
}
switch (ures_getType(currentBundle)) {
case URES_STRING: {
resStr = ures_getString(currentBundle, &resStrLen, &status);
break;
}
case URES_ARRAY: {
resStr = ures_getStringByIndex(currentBundle, 0, &resStrLen, &status);
ovrStr = ures_getStringByIndex(currentBundle, 1, &ovrStrLen, &status);
fDateOverride.setTo(TRUE, ovrStr, ovrStrLen);
break;
}
default: {
status = U_INVALID_FORMAT_ERROR;
ures_close(currentBundle);
return;
}
}
fPattern.setTo(TRUE, resStr, resStrLen);
ures_close(currentBundle);
}
// and if it includes _neither_, that's an error
else
status = U_INVALID_FORMAT_ERROR;
// finally, finish initializing by creating a Calendar and a NumberFormat
initialize(locale, status);
}
//----------------------------------------------------------------------
Calendar*
SimpleDateFormat::initializeCalendar(TimeZone* adoptZone, const Locale& locale, UErrorCode& status)
{
if(!U_FAILURE(status)) {
fCalendar = Calendar::createInstance(adoptZone?adoptZone:TimeZone::createDefault(), locale, status);
}
if (U_SUCCESS(status) && fCalendar == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
return fCalendar;
}
void
SimpleDateFormat::initializeSymbols(const Locale& locale, Calendar* calendar, UErrorCode& status)
{
if(U_FAILURE(status)) {
fSymbols = NULL;
} else {
// pass in calendar type - use NULL (default) if no calendar set (or err).
fSymbols = new DateFormatSymbols(locale, calendar?calendar->getType() :NULL , status);
// Null pointer check
if (fSymbols == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
void
SimpleDateFormat::initialize(const Locale& locale,
UErrorCode& status)
{
if (U_FAILURE(status)) return;
// We don't need to check that the row count is >= 1, since all 2d arrays have at
// least one row
fNumberFormat = NumberFormat::createInstance(locale, status);
if (fNumberFormat != NULL && U_SUCCESS(status))
{
// no matter what the locale's default number format looked like, we want
// to modify it so that it doesn't use thousands separators, doesn't always
// show the decimal point, and recognizes integers only when parsing
fNumberFormat->setGroupingUsed(FALSE);
DecimalFormat* decfmt = dynamic_cast<DecimalFormat*>(fNumberFormat);
if (decfmt != NULL) {
decfmt->setDecimalSeparatorAlwaysShown(FALSE);
}
fNumberFormat->setParseIntegerOnly(TRUE);
fNumberFormat->setMinimumFractionDigits(0); // To prevent "Jan 1.00, 1997.00"
//fNumberFormat->setLenient(TRUE); // Java uses a custom DateNumberFormat to format/parse
initNumberFormatters(locale,status);
}
else if (U_SUCCESS(status))
{
status = U_MISSING_RESOURCE_ERROR;
}
}
/* Initialize the fields we use to disambiguate ambiguous years. Separate
* so we can call it from readObject().
*/
void SimpleDateFormat::initializeDefaultCentury()
{
if(fCalendar) {
fHaveDefaultCentury = fCalendar->haveDefaultCentury();
if(fHaveDefaultCentury) {
fDefaultCenturyStart = fCalendar->defaultCenturyStart();
fDefaultCenturyStartYear = fCalendar->defaultCenturyStartYear();
} else {
fDefaultCenturyStart = DBL_MIN;
fDefaultCenturyStartYear = -1;
}
}
}
/* Define one-century window into which to disambiguate dates using
* two-digit years. Make public in JDK 1.2.
*/
void SimpleDateFormat::parseAmbiguousDatesAsAfter(UDate startDate, UErrorCode& status)
{
if(U_FAILURE(status)) {
return;
}
if(!fCalendar) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
fCalendar->setTime(startDate, status);
if(U_SUCCESS(status)) {
fHaveDefaultCentury = TRUE;
fDefaultCenturyStart = startDate;
fDefaultCenturyStartYear = fCalendar->get(UCAL_YEAR, status);
}
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::format(Calendar& cal, UnicodeString& appendTo, FieldPosition& pos) const
{
UErrorCode status = U_ZERO_ERROR;
FieldPositionOnlyHandler handler(pos);
return _format(cal, appendTo, handler, status);
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::format(Calendar& cal, UnicodeString& appendTo,
FieldPositionIterator* posIter, UErrorCode& status) const
{
FieldPositionIteratorHandler handler(posIter, status);
return _format(cal, appendTo, handler, status);
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::_format(Calendar& cal, UnicodeString& appendTo, FieldPositionHandler& handler,
UErrorCode& status) const
{
Calendar *workCal = &cal;
TimeZone *backupTZ = NULL;
if (&cal != fCalendar && uprv_strcmp(cal.getType(), fCalendar->getType()) != 0) {
// Different calendar type
// We use the time and time zone from the input calendar, but
// do not use the input calendar for field calculation.
UDate t = cal.getTime(status);
fCalendar->setTime(t, status);
backupTZ = fCalendar->getTimeZone().clone();
fCalendar->setTimeZone(cal.getTimeZone());
workCal = fCalendar;
}
UBool inQuote = FALSE;
UChar prevCh = 0;
int32_t count = 0;
// loop through the pattern string character by character
for (int32_t i = 0; i < fPattern.length() && U_SUCCESS(status); ++i) {
UChar ch = fPattern[i];
// Use subFormat() to format a repeated pattern character
// when a different pattern or non-pattern character is seen
if (ch != prevCh && count > 0) {
subFormat(appendTo, prevCh, count, handler, *workCal, status);
count = 0;
}
if (ch == QUOTE) {
// Consecutive single quotes are a single quote literal,
// either outside of quotes or between quotes
if ((i+1) < fPattern.length() && fPattern[i+1] == QUOTE) {
appendTo += (UChar)QUOTE;
++i;
} else {
inQuote = ! inQuote;
}
}
else if ( ! inQuote && ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/)
|| (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))) {
// ch is a date-time pattern character to be interpreted
// by subFormat(); count the number of times it is repeated
prevCh = ch;
++count;
}
else {
// Append quoted characters and unquoted non-pattern characters
appendTo += ch;
}
}
// Format the last item in the pattern, if any
if (count > 0) {
subFormat(appendTo, prevCh, count, handler, *workCal, status);
}
if (backupTZ != NULL) {
// Restore the original time zone
fCalendar->adoptTimeZone(backupTZ);
}
return appendTo;
}
//----------------------------------------------------------------------
/* Map calendar field into calendar field level.
* the larger the level, the smaller the field unit.
* For example, UCAL_ERA level is 0, UCAL_YEAR level is 10,
* UCAL_MONTH level is 20.
* NOTE: if new fields adds in, the table needs to update.
*/
const int32_t
SimpleDateFormat::fgCalendarFieldToLevel[] =
{
/*GyM*/ 0, 10, 20,
/*wW*/ 20, 30,
/*dDEF*/ 30, 20, 30, 30,
/*ahHm*/ 40, 50, 50, 60,
/*sS..*/ 70, 80,
/*z?Y*/ 0, 0, 10,
/*eug*/ 30, 10, 0,
/*A*/ 40
};
/* Map calendar field LETTER into calendar field level.
* the larger the level, the smaller the field unit.
* NOTE: if new fields adds in, the table needs to update.
*/
const int32_t
SimpleDateFormat::fgPatternCharToLevel[] = {
// A B C D E F G H I J K L M N O
-1, 40, -1, -1, 20, 30, 30, 0, 50, -1, -1, 50, 20, 20, -1, -1,
// P Q R S T U V W X Y Z
-1, 20, -1, 80, -1, -1, 0, 30, -1, 10, 0, -1, -1, -1, -1, -1,
// a b c d e f g h i j k l m n o
-1, 40, -1, 30, 30, 30, -1, 0, 50, -1, -1, 50, -1, 60, -1, -1,
// p q r s t u v w x y z
-1, 20, -1, 70, -1, 10, 0, 20, -1, 10, 0, -1, -1, -1, -1, -1
};
// Map index into pattern character string to Calendar field number.
const UCalendarDateFields
SimpleDateFormat::fgPatternIndexToCalendarField[] =
{
/*GyM*/ UCAL_ERA, UCAL_YEAR, UCAL_MONTH,
/*dkH*/ UCAL_DATE, UCAL_HOUR_OF_DAY, UCAL_HOUR_OF_DAY,
/*msS*/ UCAL_MINUTE, UCAL_SECOND, UCAL_MILLISECOND,
/*EDF*/ UCAL_DAY_OF_WEEK, UCAL_DAY_OF_YEAR, UCAL_DAY_OF_WEEK_IN_MONTH,
/*wWa*/ UCAL_WEEK_OF_YEAR, UCAL_WEEK_OF_MONTH, UCAL_AM_PM,
/*hKz*/ UCAL_HOUR, UCAL_HOUR, UCAL_ZONE_OFFSET,
/*Yeu*/ UCAL_YEAR_WOY, UCAL_DOW_LOCAL, UCAL_EXTENDED_YEAR,
/*gAZ*/ UCAL_JULIAN_DAY, UCAL_MILLISECONDS_IN_DAY, UCAL_ZONE_OFFSET,
/*v*/ UCAL_ZONE_OFFSET,
/*c*/ UCAL_DOW_LOCAL,
/*L*/ UCAL_MONTH,
/*Q*/ UCAL_MONTH,
/*q*/ UCAL_MONTH,
/*V*/ UCAL_ZONE_OFFSET,
};
// Map index into pattern character string to DateFormat field number
const UDateFormatField
SimpleDateFormat::fgPatternIndexToDateFormatField[] = {
/*GyM*/ UDAT_ERA_FIELD, UDAT_YEAR_FIELD, UDAT_MONTH_FIELD,
/*dkH*/ UDAT_DATE_FIELD, UDAT_HOUR_OF_DAY1_FIELD, UDAT_HOUR_OF_DAY0_FIELD,
/*msS*/ UDAT_MINUTE_FIELD, UDAT_SECOND_FIELD, UDAT_FRACTIONAL_SECOND_FIELD,
/*EDF*/ UDAT_DAY_OF_WEEK_FIELD, UDAT_DAY_OF_YEAR_FIELD, UDAT_DAY_OF_WEEK_IN_MONTH_FIELD,
/*wWa*/ UDAT_WEEK_OF_YEAR_FIELD, UDAT_WEEK_OF_MONTH_FIELD, UDAT_AM_PM_FIELD,
/*hKz*/ UDAT_HOUR1_FIELD, UDAT_HOUR0_FIELD, UDAT_TIMEZONE_FIELD,
/*Yeu*/ UDAT_YEAR_WOY_FIELD, UDAT_DOW_LOCAL_FIELD, UDAT_EXTENDED_YEAR_FIELD,
/*gAZ*/ UDAT_JULIAN_DAY_FIELD, UDAT_MILLISECONDS_IN_DAY_FIELD, UDAT_TIMEZONE_RFC_FIELD,
/*v*/ UDAT_TIMEZONE_GENERIC_FIELD,
/*c*/ UDAT_STANDALONE_DAY_FIELD,
/*L*/ UDAT_STANDALONE_MONTH_FIELD,
/*Q*/ UDAT_QUARTER_FIELD,
/*q*/ UDAT_STANDALONE_QUARTER_FIELD,
/*V*/ UDAT_TIMEZONE_SPECIAL_FIELD,
};
//----------------------------------------------------------------------
/**
* Append symbols[value] to dst. Make sure the array index is not out
* of bounds.
*/
static inline void
_appendSymbol(UnicodeString& dst,
int32_t value,
const UnicodeString* symbols,
int32_t symbolsCount) {
U_ASSERT(0 <= value && value < symbolsCount);
if (0 <= value && value < symbolsCount) {
dst += symbols[value];
}
}
//---------------------------------------------------------------------
void
SimpleDateFormat::appendGMT(NumberFormat *currentNumberFormat,UnicodeString &appendTo, Calendar& cal, UErrorCode& status) const{
int32_t offset = cal.get(UCAL_ZONE_OFFSET, status) + cal.get(UCAL_DST_OFFSET, status);
if (U_FAILURE(status)) {
return;
}
if (offset == 0) {
// use GMT zero format
appendTo += fSymbols->fGmtZero;
} else {
if (isDefaultGMTFormat()) {
formatGMTDefault(currentNumberFormat,appendTo, offset);
} else {
((SimpleDateFormat*)this)->initGMTFormatters(status);
if (U_SUCCESS(status)) {
int32_t type;
if (offset < 0) {
offset = -offset;
type = (offset % U_MILLIS_PER_MINUTE) == 0 ? kGMTNegativeHM : kGMTNegativeHMS;
} else {
type = (offset % U_MILLIS_PER_MINUTE) == 0 ? kGMTPositiveHM : kGMTPositiveHMS;
}
Formattable param(offset, Formattable::kIsDate);
FieldPosition fpos(0);
fGMTFormatters[type]->format(&param, 1, appendTo, fpos, status);
}
}
}
}
int32_t
SimpleDateFormat::parseGMT(const UnicodeString &text, ParsePosition &pos) const {
if (!isDefaultGMTFormat()) {
int32_t start = pos.getIndex();
// Quick check
UBool prefixMatch = FALSE;
int32_t prefixLen = fSymbols->fGmtFormat.indexOf((UChar)0x007B /* '{' */);
if (prefixLen > 0 && text.compare(start, prefixLen, fSymbols->fGmtFormat, 0, prefixLen) == 0) {
prefixMatch = TRUE;
}
if (prefixMatch) {
// Prefix matched
UErrorCode status = U_ZERO_ERROR;
((SimpleDateFormat*)this)->initGMTFormatters(status);
if (U_SUCCESS(status)) {
Formattable parsed;
int32_t parsedCount;
// Try negative Hms
fGMTFormatters[kGMTNegativeHMS]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 &&
(pos.getIndex() - start) >= fGMTFormatHmsMinLen[kGMTNegativeHMSMinLenIdx]) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)(-1 * (int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
// Try positive Hms
fGMTFormatters[kGMTPositiveHMS]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 &&
(pos.getIndex() - start) >= fGMTFormatHmsMinLen[kGMTPositiveHMSMinLenIdx]) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)((int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
// Try negative Hm
fGMTFormatters[kGMTNegativeHM]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 && pos.getIndex() > start) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)(-1 * (int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
// Try positive Hm
fGMTFormatters[kGMTPositiveHM]->parseObject(text, parsed, pos);
if (pos.getErrorIndex() == -1 && pos.getIndex() > start) {
parsed.getArray(parsedCount);
if (parsedCount == 1 && parsed[0].getType() == Formattable::kDate) {
return (int32_t)((int64_t)parsed[0].getDate());
}
}
// Reset ParsePosition
pos.setIndex(start);
pos.setErrorIndex(-1);
}
// fall through to the default GMT parsing method
}
}
return parseGMTDefault(text, pos);
}
void
SimpleDateFormat::formatGMTDefault(NumberFormat *currentNumberFormat,UnicodeString &appendTo, int32_t offset) const {
if (offset < 0) {
appendTo.append(gGmtMinus, 4);
offset = -offset; // suppress the '-' sign for text display.
}else{
appendTo.append(gGmtPlus, 4);
}
offset /= U_MILLIS_PER_SECOND; // now in seconds
int32_t sec = offset % 60;
offset /= 60;
int32_t min = offset % 60;
int32_t hour = offset / 60;
zeroPaddingNumber(currentNumberFormat,appendTo, hour, 2, 2);
appendTo += (UChar)0x003A /*':'*/;
zeroPaddingNumber(currentNumberFormat,appendTo, min, 2, 2);
if (sec != 0) {
appendTo += (UChar)0x003A /*':'*/;
zeroPaddingNumber(currentNumberFormat,appendTo, sec, 2, 2);
}
}
int32_t
SimpleDateFormat::parseGMTDefault(const UnicodeString &text, ParsePosition &pos) const {
int32_t start = pos.getIndex();
NumberFormat *currentNumberFormat = getNumberFormatByIndex(UDAT_TIMEZONE_RFC_FIELD);
if (start + kUtLen + 1 >= text.length()) {
pos.setErrorIndex(start);
return 0;
}
int32_t cur = start;
// "GMT"
if (text.compare(start, kGmtLen, gGmt) == 0) {
cur += kGmtLen;
} else if (text.compare(start, kUtLen, gUt) == 0) {
cur += kUtLen;
} else {
pos.setErrorIndex(start);
return 0;
}
// Sign
UBool negative = FALSE;
if (text.charAt(cur) == (UChar)0x002D /* minus */) {
negative = TRUE;
} else if (text.charAt(cur) != (UChar)0x002B /* plus */) {
pos.setErrorIndex(cur);
return 0;
}
cur++;
// Numbers
int32_t numLen;
pos.setIndex(cur);
Formattable number;
parseInt(text, number, 6, pos, FALSE,currentNumberFormat);
numLen = pos.getIndex() - cur;
if (numLen <= 0) {
pos.setIndex(start);
pos.setErrorIndex(cur);
return 0;
}
int32_t numVal = number.getLong();
int32_t hour = 0;
int32_t min = 0;
int32_t sec = 0;
if (numLen <= 2) {
// H[H][:mm[:ss]]
hour = numVal;
cur += numLen;
if (cur + 2 < text.length() && text.charAt(cur) == (UChar)0x003A /* colon */) {
cur++;
pos.setIndex(cur);
parseInt(text, number, 2, pos, FALSE,currentNumberFormat);
numLen = pos.getIndex() - cur;
if (numLen == 2) {
// got minute field
min = number.getLong();
cur += numLen;
if (cur + 2 < text.length() && text.charAt(cur) == (UChar)0x003A /* colon */) {
cur++;
pos.setIndex(cur);
parseInt(text, number, 2, pos, FALSE,currentNumberFormat);
numLen = pos.getIndex() - cur;
if (numLen == 2) {
// got second field
sec = number.getLong();
} else {
// reset position
pos.setIndex(cur - 1);
pos.setErrorIndex(-1);
}
}
} else {
// reset postion
pos.setIndex(cur - 1);
pos.setErrorIndex(-1);
}
}
} else if (numLen == 3 || numLen == 4) {
// Hmm or HHmm
hour = numVal / 100;
min = numVal % 100;
} else if (numLen == 5 || numLen == 6) {
// Hmmss or HHmmss
hour = numVal / 10000;
min = (numVal % 10000) / 100;
sec = numVal % 100;
} else {
// HHmmss followed by bogus numbers
pos.setIndex(cur + 6);
int32_t shift = numLen - 6;
while (shift > 0) {
numVal /= 10;
shift--;
}
hour = numVal / 10000;
min = (numVal % 10000) / 100;
sec = numVal % 100;
}
int32_t offset = ((hour*60 + min)*60 + sec)*1000;
if (negative) {
offset = -offset;
}
return offset;
}
UBool
SimpleDateFormat::isDefaultGMTFormat() const {
// GMT pattern
if (fSymbols->fGmtFormat.length() == 0) {
// No GMT pattern is set
return TRUE;
} else if (fSymbols->fGmtFormat.compare(gDefGmtPat, kGmtPatLen) != 0) {
return FALSE;
}
// Hour patterns
if (fSymbols->fGmtHourFormats == NULL || fSymbols->fGmtHourFormatsCount != DateFormatSymbols::GMT_HOUR_COUNT) {
// No Hour pattern is set
return TRUE;
} else if ((fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HMS].compare(gDefGmtNegHmsPat, kNegHmsLen) != 0)
|| (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HM].compare(gDefGmtNegHmPat, kNegHmLen) != 0)
|| (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HMS].compare(gDefGmtPosHmsPat, kPosHmsLen) != 0)
|| (fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HM].compare(gDefGmtPosHmPat, kPosHmLen) != 0)) {
return FALSE;
}
return TRUE;
}
void
SimpleDateFormat::formatRFC822TZ(UnicodeString &appendTo, int32_t offset) const {
UChar sign = 0x002B /* '+' */;
if (offset < 0) {
offset = -offset;
sign = 0x002D /* '-' */;
}
appendTo.append(sign);
int32_t offsetH = offset / U_MILLIS_PER_HOUR;
offset = offset % U_MILLIS_PER_HOUR;
int32_t offsetM = offset / U_MILLIS_PER_MINUTE;
offset = offset % U_MILLIS_PER_MINUTE;
int32_t offsetS = offset / U_MILLIS_PER_SECOND;
int32_t num = 0, denom = 0;
if (offsetS == 0) {
offset = offsetH*100 + offsetM; // HHmm
num = offset % 10000;
denom = 1000;
} else {
offset = offsetH*10000 + offsetM*100 + offsetS; // HHmmss
num = offset % 1000000;
denom = 100000;
}
while (denom >= 1) {
UChar digit = (UChar)0x0030 + (num / denom);
appendTo.append(digit);
num = num % denom;
denom /= 10;
}
}
void
SimpleDateFormat::initGMTFormatters(UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
umtx_lock(&LOCK);
if (fGMTFormatters == NULL) {
fGMTFormatters = (MessageFormat**)uprv_malloc(kNumGMTFormatters * sizeof(MessageFormat*));
if (fGMTFormatters) {
for (int32_t i = 0; i < kNumGMTFormatters; i++) {
const UnicodeString *hourPattern = NULL; //initialized it to avoid warning
switch (i) {
case kGMTNegativeHMS:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HMS]);
break;
case kGMTNegativeHM:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_NEGATIVE_HM]);
break;
case kGMTPositiveHMS:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HMS]);
break;
case kGMTPositiveHM:
hourPattern = &(fSymbols->fGmtHourFormats[DateFormatSymbols::GMT_POSITIVE_HM]);
break;
}
fGMTFormatters[i] = new MessageFormat(fSymbols->fGmtFormat, status);
GregorianCalendar *gcal = new GregorianCalendar(TimeZone::createTimeZone(UnicodeString(gEtcUTC)), status);
if (U_FAILURE(status)) {
break;
}
SimpleDateFormat *sdf = (SimpleDateFormat*)this->clone();
sdf->adoptCalendar(gcal);
sdf->applyPattern(*hourPattern);
// This prevents an hours format pattern like "-HH:mm:ss" from matching
// in a string like "GMT-07:00 10:08:11 PM"
sdf->setLenient(FALSE);
fGMTFormatters[i]->adoptFormat(0, sdf);
// For parsing, we only allow Hms patterns to be equal or longer
// than its length with fixed minutes/seconds digits.
// See #6880
if (i == kGMTNegativeHMS || i == kGMTPositiveHMS) {
UnicodeString tmp;
Formattable tmpParam(60*60*1000, Formattable::kIsDate);
FieldPosition fpos(0);
fGMTFormatters[i]->format(&tmpParam, 1, tmp, fpos, status);
if (U_FAILURE(status)) {
break;
}
if (i == kGMTNegativeHMS) {
fGMTFormatHmsMinLen[kGMTNegativeHMSMinLenIdx] = tmp.length();
} else {
fGMTFormatHmsMinLen[kGMTPositiveHMSMinLenIdx] = tmp.length();
}
}
}
} else {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
umtx_unlock(&LOCK);
}
void
SimpleDateFormat::initNumberFormatters(const Locale &locale,UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if ( fDateOverride.isBogus() && fTimeOverride.isBogus() ) {
return;
}
umtx_lock(&LOCK);
if (fNumberFormatters == NULL) {
fNumberFormatters = (NumberFormat**)uprv_malloc(UDAT_FIELD_COUNT * sizeof(NumberFormat*));
if (fNumberFormatters) {
for (int32_t i = 0; i < UDAT_FIELD_COUNT; i++) {
fNumberFormatters[i] = fNumberFormat;
}
} else {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
umtx_unlock(&LOCK);
processOverrideString(locale,fDateOverride,kOvrStrDate,status);
processOverrideString(locale,fTimeOverride,kOvrStrTime,status);
}
void
SimpleDateFormat::processOverrideString(const Locale &locale, const UnicodeString &str, int8_t type, UErrorCode &status) {
if (str.isBogus()) {
return;
}
int32_t start = 0;
int32_t len;
UnicodeString nsName;
UnicodeString ovrField;
UBool moreToProcess = TRUE;
while (moreToProcess) {
int32_t delimiterPosition = str.indexOf((UChar)ULOC_KEYWORD_ITEM_SEPARATOR_UNICODE,start);
if (delimiterPosition == -1) {
moreToProcess = FALSE;
len = str.length() - start;
} else {
len = delimiterPosition - start;
}
UnicodeString currentString(str,start,len);
int32_t equalSignPosition = currentString.indexOf((UChar)ULOC_KEYWORD_ASSIGN_UNICODE,0);
if (equalSignPosition == -1) { // Simple override string such as "hebrew"
nsName.setTo(currentString);
ovrField.setToBogus();
} else { // Field specific override string such as "y=hebrew"
nsName.setTo(currentString,equalSignPosition+1);
ovrField.setTo(currentString,0,1); // We just need the first character.
}
int32_t nsNameHash = nsName.hashCode();
// See if the numbering system is in the override list, if not, then add it.
NSOverride *cur = fOverrideList;
NumberFormat *nf = NULL;
UBool found = FALSE;
while ( cur && !found ) {
if ( cur->hash == nsNameHash ) {
nf = cur->nf;
found = TRUE;
}
cur = cur->next;
}
if (!found) {
cur = (NSOverride *)uprv_malloc(sizeof(NSOverride));
if (cur) {
char kw[ULOC_KEYWORD_AND_VALUES_CAPACITY];
uprv_strcpy(kw,"numbers=");
nsName.extract(0,len,kw+8,ULOC_KEYWORD_AND_VALUES_CAPACITY-8,US_INV);
Locale ovrLoc(locale.getLanguage(),locale.getCountry(),locale.getVariant(),kw);
nf = NumberFormat::createInstance(ovrLoc,status);
// no matter what the locale's default number format looked like, we want
// to modify it so that it doesn't use thousands separators, doesn't always
// show the decimal point, and recognizes integers only when parsing
if (U_SUCCESS(status)) {
nf->setGroupingUsed(FALSE);
DecimalFormat* decfmt = dynamic_cast<DecimalFormat*>(nf);
if (decfmt != NULL) {
decfmt->setDecimalSeparatorAlwaysShown(FALSE);
}
nf->setParseIntegerOnly(TRUE);
nf->setMinimumFractionDigits(0); // To prevent "Jan 1.00, 1997.00"
cur->nf = nf;
cur->hash = nsNameHash;
cur->next = fOverrideList;
fOverrideList = cur;
}
else {
// clean up before returning
if (cur != NULL) {
uprv_free(cur);
}
return;
}
} else {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
// Now that we have an appropriate number formatter, fill in the appropriate spaces in the
// number formatters table.
if (ovrField.isBogus()) {
switch (type) {
case kOvrStrDate:
case kOvrStrBoth: {
for ( int8_t i=0 ; i<kDateFieldsCount; i++ ) {
fNumberFormatters[kDateFields[i]] = nf;
}
if (type==kOvrStrDate) {
break;
}
}
case kOvrStrTime : {
for ( int8_t i=0 ; i<kTimeFieldsCount; i++ ) {
fNumberFormatters[kTimeFields[i]] = nf;
}
break;
}
}
} else {
UChar ch = ovrField.charAt(0);
UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch);
UDateFormatField patternCharIndex;
// if the pattern character is unrecognized, signal an error and bail out
if (patternCharPtr == NULL) {
status = U_INVALID_FORMAT_ERROR;
return;
}
patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars());
// Set the number formatter in the table
fNumberFormatters[patternCharIndex] = nf;
}
start = delimiterPosition + 1;
}
}
//---------------------------------------------------------------------
void
SimpleDateFormat::subFormat(UnicodeString &appendTo,
UChar ch,
int32_t count,
FieldPositionHandler& handler,
Calendar& cal,
UErrorCode& status) const
{
if (U_FAILURE(status)) {
return;
}
// this function gets called by format() to produce the appropriate substitution
// text for an individual pattern symbol (e.g., "HH" or "yyyy")
UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch);
UDateFormatField patternCharIndex;
const int32_t maxIntCount = 10;
int32_t beginOffset = appendTo.length();
NumberFormat *currentNumberFormat;
UBool isHebrewCalendar = !strcmp(cal.getType(),"hebrew");
// if the pattern character is unrecognized, signal an error and dump out
if (patternCharPtr == NULL)
{
status = U_INVALID_FORMAT_ERROR;
return;
}
patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars());
UCalendarDateFields field = fgPatternIndexToCalendarField[patternCharIndex];
int32_t value = cal.get(field, status);
if (U_FAILURE(status)) {
return;
}
currentNumberFormat = getNumberFormatByIndex(patternCharIndex);
switch (patternCharIndex) {
// for any "G" symbol, write out the appropriate era string
// "GGGG" is wide era name, "GGGGG" is narrow era name, anything else is abbreviated name
case UDAT_ERA_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fNarrowEras, fSymbols->fNarrowErasCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fEraNames, fSymbols->fEraNamesCount);
else
_appendSymbol(appendTo, value, fSymbols->fEras, fSymbols->fErasCount);
break;
// OLD: for "yyyy", write out the whole year; for "yy", write out the last 2 digits
// NEW: UTS#35:
//Year y yy yyy yyyy yyyyy
//AD 1 1 01 001 0001 00001
//AD 12 12 12 012 0012 00012
//AD 123 123 23 123 0123 00123
//AD 1234 1234 34 1234 1234 01234
//AD 12345 12345 45 12345 12345 12345
case UDAT_YEAR_FIELD:
case UDAT_YEAR_WOY_FIELD:
if(count == 2)
zeroPaddingNumber(currentNumberFormat, appendTo, value, 2, 2);
else
zeroPaddingNumber(currentNumberFormat, appendTo, value, count, maxIntCount);
break;
// for "MMMM", write out the whole month name, for "MMM", write out the month
// abbreviation, for "M" or "MM", write out the month as a number with the
// appropriate number of digits
// for "MMMMM", use the narrow form
case UDAT_MONTH_FIELD:
if ( isHebrewCalendar ) {
HebrewCalendar *hc = (HebrewCalendar*)&cal;
if (hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value == 6 && count >= 3 )
value = 13; // Show alternate form for Adar II in leap years in Hebrew calendar.
if (!hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value >= 6 && count < 3 )
value--; // Adjust the month number down 1 in Hebrew non-leap years, i.e. Adar is 6, not 7.
}
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fNarrowMonths,
fSymbols->fNarrowMonthsCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fMonths,
fSymbols->fMonthsCount);
else if (count == 3)
_appendSymbol(appendTo, value, fSymbols->fShortMonths,
fSymbols->fShortMonthsCount);
else
zeroPaddingNumber(currentNumberFormat,appendTo, value + 1, count, maxIntCount);
break;
// for "LLLL", write out the whole month name, for "LLL", write out the month
// abbreviation, for "L" or "LL", write out the month as a number with the
// appropriate number of digits
// for "LLLLL", use the narrow form
case UDAT_STANDALONE_MONTH_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fStandaloneNarrowMonths,
fSymbols->fStandaloneNarrowMonthsCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fStandaloneMonths,
fSymbols->fStandaloneMonthsCount);
else if (count == 3)
_appendSymbol(appendTo, value, fSymbols->fStandaloneShortMonths,
fSymbols->fStandaloneShortMonthsCount);
else
zeroPaddingNumber(currentNumberFormat,appendTo, value + 1, count, maxIntCount);
break;
// for "k" and "kk", write out the hour, adjusting midnight to appear as "24"
case UDAT_HOUR_OF_DAY1_FIELD:
if (value == 0)
zeroPaddingNumber(currentNumberFormat,appendTo, cal.getMaximum(UCAL_HOUR_OF_DAY) + 1, count, maxIntCount);
else
zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount);
break;
case UDAT_FRACTIONAL_SECOND_FIELD:
// Fractional seconds left-justify
{
currentNumberFormat->setMinimumIntegerDigits((count > 3) ? 3 : count);
currentNumberFormat->setMaximumIntegerDigits(maxIntCount);
if (count == 1) {
value /= 100;
} else if (count == 2) {
value /= 10;
}
FieldPosition p(0);
currentNumberFormat->format(value, appendTo, p);
if (count > 3) {
currentNumberFormat->setMinimumIntegerDigits(count - 3);
currentNumberFormat->format((int32_t)0, appendTo, p);
}
}
break;
// for "ee" or "e", use local numeric day-of-the-week
// for "EEEEE" or "eeeee", write out the narrow day-of-the-week name
// for "EEEE" or "eeee", write out the wide day-of-the-week name
// for "EEE" or "EE" or "E" or "eee", write out the abbreviated day-of-the-week name
case UDAT_DOW_LOCAL_FIELD:
if ( count < 3 ) {
zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount);
break;
}
// fall through to EEEEE-EEE handling, but for that we don't want local day-of-week,
// we want standard day-of-week, so first fix value to work for EEEEE-EEE.
value = cal.get(UCAL_DAY_OF_WEEK, status);
if (U_FAILURE(status)) {
return;
}
// fall through, do not break here
case UDAT_DAY_OF_WEEK_FIELD:
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fNarrowWeekdays,
fSymbols->fNarrowWeekdaysCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fWeekdays,
fSymbols->fWeekdaysCount);
else
_appendSymbol(appendTo, value, fSymbols->fShortWeekdays,
fSymbols->fShortWeekdaysCount);
break;
// for "ccc", write out the abbreviated day-of-the-week name
// for "cccc", write out the wide day-of-the-week name
// for "ccccc", use the narrow day-of-the-week name
case UDAT_STANDALONE_DAY_FIELD:
if ( count < 3 ) {
zeroPaddingNumber(currentNumberFormat,appendTo, value, 1, maxIntCount);
break;
}
// fall through to alpha DOW handling, but for that we don't want local day-of-week,
// we want standard day-of-week, so first fix value.
value = cal.get(UCAL_DAY_OF_WEEK, status);
if (U_FAILURE(status)) {
return;
}
if (count == 5)
_appendSymbol(appendTo, value, fSymbols->fStandaloneNarrowWeekdays,
fSymbols->fStandaloneNarrowWeekdaysCount);
else if (count == 4)
_appendSymbol(appendTo, value, fSymbols->fStandaloneWeekdays,
fSymbols->fStandaloneWeekdaysCount);
else // count == 3
_appendSymbol(appendTo, value, fSymbols->fStandaloneShortWeekdays,
fSymbols->fStandaloneShortWeekdaysCount);
break;
// for and "a" symbol, write out the whole AM/PM string
case UDAT_AM_PM_FIELD:
_appendSymbol(appendTo, value, fSymbols->fAmPms,
fSymbols->fAmPmsCount);
break;
// for "h" and "hh", write out the hour, adjusting noon and midnight to show up
// as "12"
case UDAT_HOUR1_FIELD:
if (value == 0)
zeroPaddingNumber(currentNumberFormat,appendTo, cal.getLeastMaximum(UCAL_HOUR) + 1, count, maxIntCount);
else
zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount);
break;
// for the "z" symbols, we have to check our time zone data first. If we have a
// localized name for the time zone, then "zzzz" / "zzz" indicate whether
// daylight time is in effect (long/short) and "zz" / "z" do not (long/short).
// If we don't have a localized time zone name,
// then the time zone shows up as "GMT+hh:mm" or "GMT-hh:mm" (where "hh:mm" is the
// offset from GMT) regardless of how many z's were in the pattern symbol
case UDAT_TIMEZONE_FIELD:
case UDAT_TIMEZONE_GENERIC_FIELD:
case UDAT_TIMEZONE_SPECIAL_FIELD:
{
UnicodeString zoneString;
const TimeZone& tz = cal.getTimeZone();
UDate date = cal.getTime(status);
if (U_SUCCESS(status)) {
if (patternCharIndex == UDAT_TIMEZONE_FIELD) {
if (count < 4) {
// "z", "zz", "zzz"
tzFormat()->format(UTZFMT_STYLE_SPECIFIC_SHORT, tz, date, zoneString);
} else {
// "zzzz"
tzFormat()->format(UTZFMT_STYLE_SPECIFIC_LONG, tz, date, zoneString);
}
} else if (patternCharIndex == UDAT_TIMEZONE_GENERIC_FIELD) {
if (count == 1) {
// "v"
tzFormat()->format(UTZFMT_STYLE_GENERIC_SHORT, tz, date, zoneString);
} else if (count == 4) {
// "vvvv"
tzFormat()->format(UTZFMT_STYLE_GENERIC_LONG, tz, date, zoneString);
}
} else { // patternCharIndex == UDAT_TIMEZONE_SPECIAL_FIELD
if (count == 1) {
// "V"
tzFormat()->format(UTZFMT_STYLE_SPECIFIC_SHORT, tz, date, zoneString);
} else if (count == 4) {
// "VVVV"
tzFormat()->format(UTZFMT_STYLE_LOCATION, tz, date, zoneString);
}
}
}
if (zoneString.isEmpty()) {
appendGMT(currentNumberFormat,appendTo, cal, status);
} else {
appendTo += zoneString;
}
}
break;
case UDAT_TIMEZONE_RFC_FIELD: // 'Z' - TIMEZONE_RFC
if (count < 4) {
// RFC822 format, must use ASCII digits
value = (cal.get(UCAL_ZONE_OFFSET, status) + cal.get(UCAL_DST_OFFSET, status));
formatRFC822TZ(appendTo, value);
} else {
// long form, localized GMT pattern
appendGMT(currentNumberFormat,appendTo, cal, status);
}
break;
case UDAT_QUARTER_FIELD:
if (count >= 4)
_appendSymbol(appendTo, value/3, fSymbols->fQuarters,
fSymbols->fQuartersCount);
else if (count == 3)
_appendSymbol(appendTo, value/3, fSymbols->fShortQuarters,
fSymbols->fShortQuartersCount);
else
zeroPaddingNumber(currentNumberFormat,appendTo, (value/3) + 1, count, maxIntCount);
break;
case UDAT_STANDALONE_QUARTER_FIELD:
if (count >= 4)
_appendSymbol(appendTo, value/3, fSymbols->fStandaloneQuarters,
fSymbols->fStandaloneQuartersCount);
else if (count == 3)
_appendSymbol(appendTo, value/3, fSymbols->fStandaloneShortQuarters,
fSymbols->fStandaloneShortQuartersCount);
else
zeroPaddingNumber(currentNumberFormat,appendTo, (value/3) + 1, count, maxIntCount);
break;
// all of the other pattern symbols can be formatted as simple numbers with
// appropriate zero padding
default:
zeroPaddingNumber(currentNumberFormat,appendTo, value, count, maxIntCount);
break;
}
handler.addAttribute(fgPatternIndexToDateFormatField[patternCharIndex], beginOffset, appendTo.length());
}
//----------------------------------------------------------------------
NumberFormat *
SimpleDateFormat::getNumberFormatByIndex(UDateFormatField index) const {
if (fNumberFormatters != NULL) {
return fNumberFormatters[index];
} else {
return fNumberFormat;
}
}
//----------------------------------------------------------------------
void
SimpleDateFormat::zeroPaddingNumber(NumberFormat *currentNumberFormat,UnicodeString &appendTo,
int32_t value, int32_t minDigits, int32_t maxDigits) const
{
if (currentNumberFormat!=NULL) {
FieldPosition pos(0);
currentNumberFormat->setMinimumIntegerDigits(minDigits);
currentNumberFormat->setMaximumIntegerDigits(maxDigits);
currentNumberFormat->format(value, appendTo, pos); // 3rd arg is there to speed up processing
}
}
//----------------------------------------------------------------------
/**
* Format characters that indicate numeric fields. The character
* at index 0 is treated specially.
*/
static const UChar NUMERIC_FORMAT_CHARS[] = {0x4D, 0x59, 0x79, 0x75, 0x64, 0x65, 0x68, 0x48, 0x6D, 0x73, 0x53, 0x44, 0x46, 0x77, 0x57, 0x6B, 0x4B, 0x00}; /* "MYyudehHmsSDFwWkK" */
/**
* Return true if the given format character, occuring count
* times, represents a numeric field.
*/
UBool SimpleDateFormat::isNumeric(UChar formatChar, int32_t count) {
UnicodeString s(NUMERIC_FORMAT_CHARS);
int32_t i = s.indexOf(formatChar);
return (i > 0 || (i == 0 && count < 3));
}
void
SimpleDateFormat::parse(const UnicodeString& text, Calendar& cal, ParsePosition& parsePos) const
{
UErrorCode status = U_ZERO_ERROR;
int32_t pos = parsePos.getIndex();
int32_t start = pos;
UBool ambiguousYear[] = { FALSE };
int32_t saveHebrewMonth = -1;
int32_t count = 0;
UBool lenient = isLenient();
// hack, reset tztype, cast away const
((SimpleDateFormat*)this)->tztype = TZTYPE_UNK;
// For parsing abutting numeric fields. 'abutPat' is the
// offset into 'pattern' of the first of 2 or more abutting
// numeric fields. 'abutStart' is the offset into 'text'
// where parsing the fields begins. 'abutPass' starts off as 0
// and increments each time we try to parse the fields.
int32_t abutPat = -1; // If >=0, we are in a run of abutting numeric fields
int32_t abutStart = 0;
int32_t abutPass = 0;
UBool inQuote = FALSE;
const UnicodeString numericFormatChars(NUMERIC_FORMAT_CHARS);
TimeZone *backupTZ = NULL;
Calendar *workCal = &cal;
if (&cal != fCalendar && uprv_strcmp(cal.getType(), fCalendar->getType()) != 0) {
// Different calendar type
// We use the time/zone from the input calendar, but
// do not use the input calendar for field calculation.
fCalendar->setTime(cal.getTime(status),status);
if (U_FAILURE(status)) {
goto ExitParse;
}
backupTZ = fCalendar->getTimeZone().clone();
fCalendar->setTimeZone(cal.getTimeZone());
workCal = fCalendar;
}
for (int32_t i=0; i<fPattern.length(); ++i) {
UChar ch = fPattern.charAt(i);
// Handle alphabetic field characters.
if (!inQuote && ((ch >= 0x41 && ch <= 0x5A) || (ch >= 0x61 && ch <= 0x7A))) { // [A-Za-z]
int32_t fieldPat = i;
// Count the length of this field specifier
count = 1;
while ((i+1)<fPattern.length() &&
fPattern.charAt(i+1) == ch) {
++count;
++i;
}
if (isNumeric(ch, count)) {
if (abutPat < 0) {
// Determine if there is an abutting numeric field. For
// most fields we can just look at the next characters,
// but the 'm' field is either numeric or text,
// depending on the count, so we have to look ahead for
// that field.
if ((i+1)<fPattern.length()) {
UBool abutting;
UChar nextCh = fPattern.charAt(i+1);
int32_t k = numericFormatChars.indexOf(nextCh);
if (k == 0) {
int32_t j = i+2;
while (j<fPattern.length() &&
fPattern.charAt(j) == nextCh) {
++j;
}
abutting = (j-i) < 4; // nextCount < 3
} else {
abutting = k > 0;
}
// Record the start of a set of abutting numeric
// fields.
if (abutting) {
abutPat = fieldPat;
abutStart = pos;
abutPass = 0;
}
}
}
} else {
abutPat = -1; // End of any abutting fields
}
// Handle fields within a run of abutting numeric fields. Take
// the pattern "HHmmss" as an example. We will try to parse
// 2/2/2 characters of the input text, then if that fails,
// 1/2/2. We only adjust the width of the leftmost field; the
// others remain fixed. This allows "123456" => 12:34:56, but
// "12345" => 1:23:45. Likewise, for the pattern "yyyyMMdd" we
// try 4/2/2, 3/2/2, 2/2/2, and finally 1/2/2.
if (abutPat >= 0) {
// If we are at the start of a run of abutting fields, then
// shorten this field in each pass. If we can't shorten
// this field any more, then the parse of this set of
// abutting numeric fields has failed.
if (fieldPat == abutPat) {
count -= abutPass++;
if (count == 0) {
status = U_PARSE_ERROR;
goto ExitParse;
}
}
pos = subParse(text, pos, ch, count,
TRUE, FALSE, ambiguousYear, saveHebrewMonth, *workCal, i);
// If the parse fails anywhere in the run, back up to the
// start of the run and retry.
if (pos < 0) {
i = abutPat - 1;
pos = abutStart;
continue;
}
}
// Handle non-numeric fields and non-abutting numeric
// fields.
else {
int32_t s = subParse(text, pos, ch, count,
FALSE, TRUE, ambiguousYear, saveHebrewMonth, *workCal, i);
if (s == -pos-1) {
// era not present, in special cases allow this to continue
s++;
if (i+1 < fPattern.length()) {
// move to next pattern character
UChar ch = fPattern.charAt(i+1);
// check for whitespace
if (PatternProps::isWhiteSpace(ch)) {
i++;
// Advance over run in pattern
while ((i+1)<fPattern.length() &&
PatternProps::isWhiteSpace(fPattern.charAt(i+1))) {
++i;
}
}
}
}
else if (s <= 0) {
status = U_PARSE_ERROR;
goto ExitParse;
}
pos = s;
}
}
// Handle literal pattern characters. These are any
// quoted characters and non-alphabetic unquoted
// characters.
else {
abutPat = -1; // End of any abutting fields
if (! matchLiterals(fPattern, i, text, pos, lenient)) {
status = U_PARSE_ERROR;
goto ExitParse;
}
}
}
// At this point the fields of Calendar have been set. Calendar
// will fill in default values for missing fields when the time
// is computed.
parsePos.setIndex(pos);
// This part is a problem: When we call parsedDate.after, we compute the time.
// Take the date April 3 2004 at 2:30 am. When this is first set up, the year
// will be wrong if we're parsing a 2-digit year pattern. It will be 1904.
// April 3 1904 is a Sunday (unlike 2004) so it is the DST onset day. 2:30 am
// is therefore an "impossible" time, since the time goes from 1:59 to 3:00 am
// on that day. It is therefore parsed out to fields as 3:30 am. Then we
// add 100 years, and get April 3 2004 at 3:30 am. Note that April 3 2004 is
// a Saturday, so it can have a 2:30 am -- and it should. [LIU]
/*
UDate parsedDate = calendar.getTime();
if( ambiguousYear[0] && !parsedDate.after(fDefaultCenturyStart) ) {
calendar.add(Calendar.YEAR, 100);
parsedDate = calendar.getTime();
}
*/
// Because of the above condition, save off the fields in case we need to readjust.
// The procedure we use here is not particularly efficient, but there is no other
// way to do this given the API restrictions present in Calendar. We minimize
// inefficiency by only performing this computation when it might apply, that is,
// when the two-digit year is equal to the start year, and thus might fall at the
// front or the back of the default century. This only works because we adjust
// the year correctly to start with in other cases -- see subParse().
if (ambiguousYear[0] || tztype != TZTYPE_UNK) // If this is true then the two-digit year == the default start year
{
// We need a copy of the fields, and we need to avoid triggering a call to
// complete(), which will recalculate the fields. Since we can't access
// the fields[] array in Calendar, we clone the entire object. This will
// stop working if Calendar.clone() is ever rewritten to call complete().
Calendar *copy;
if (ambiguousYear[0]) {
copy = cal.clone();
// Check for failed cloning.
if (copy == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto ExitParse;
}
UDate parsedDate = copy->getTime(status);
// {sfb} check internalGetDefaultCenturyStart
if (fHaveDefaultCentury && (parsedDate < fDefaultCenturyStart)) {
// We can't use add here because that does a complete() first.
cal.set(UCAL_YEAR, fDefaultCenturyStartYear + 100);
}
delete copy;
}
if (tztype != TZTYPE_UNK) {
copy = cal.clone();
// Check for failed cloning.
if (copy == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto ExitParse;
}
const TimeZone & tz = cal.getTimeZone();
BasicTimeZone *btz = NULL;
if (dynamic_cast<const OlsonTimeZone *>(&tz) != NULL
|| dynamic_cast<const SimpleTimeZone *>(&tz) != NULL
|| dynamic_cast<const RuleBasedTimeZone *>(&tz) != NULL
|| dynamic_cast<const VTimeZone *>(&tz) != NULL) {
btz = (BasicTimeZone*)&tz;
}
// Get local millis
copy->set(UCAL_ZONE_OFFSET, 0);
copy->set(UCAL_DST_OFFSET, 0);
UDate localMillis = copy->getTime(status);
// Make sure parsed time zone type (Standard or Daylight)
// matches the rule used by the parsed time zone.
int32_t raw, dst;
if (btz != NULL) {
if (tztype == TZTYPE_STD) {
btz->getOffsetFromLocal(localMillis,
BasicTimeZone::kStandard, BasicTimeZone::kStandard, raw, dst, status);
} else {
btz->getOffsetFromLocal(localMillis,
BasicTimeZone::kDaylight, BasicTimeZone::kDaylight, raw, dst, status);
}
} else {
// No good way to resolve ambiguous time at transition,
// but following code work in most case.
tz.getOffset(localMillis, TRUE, raw, dst, status);
}
// Now, compare the results with parsed type, either standard or daylight saving time
int32_t resolvedSavings = dst;
if (tztype == TZTYPE_STD) {
if (dst != 0) {
// Override DST_OFFSET = 0 in the result calendar
resolvedSavings = 0;
}
} else { // tztype == TZTYPE_DST
if (dst == 0) {
if (btz != NULL) {
UDate time = localMillis + raw;
// We use the nearest daylight saving time rule.
TimeZoneTransition beforeTrs, afterTrs;
UDate beforeT = time, afterT = time;
int32_t beforeSav = 0, afterSav = 0;
UBool beforeTrsAvail, afterTrsAvail;
// Search for DST rule before or on the time
while (TRUE) {
beforeTrsAvail = btz->getPreviousTransition(beforeT, TRUE, beforeTrs);
if (!beforeTrsAvail) {
break;
}
beforeT = beforeTrs.getTime() - 1;
beforeSav = beforeTrs.getFrom()->getDSTSavings();
if (beforeSav != 0) {
break;
}
}
// Search for DST rule after the time
while (TRUE) {
afterTrsAvail = btz->getNextTransition(afterT, FALSE, afterTrs);
if (!afterTrsAvail) {
break;
}
afterT = afterTrs.getTime();
afterSav = afterTrs.getTo()->getDSTSavings();
if (afterSav != 0) {
break;
}
}
if (beforeTrsAvail && afterTrsAvail) {
if (time - beforeT > afterT - time) {
resolvedSavings = afterSav;
} else {
resolvedSavings = beforeSav;
}
} else if (beforeTrsAvail && beforeSav != 0) {
resolvedSavings = beforeSav;
} else if (afterTrsAvail && afterSav != 0) {
resolvedSavings = afterSav;
} else {
resolvedSavings = btz->getDSTSavings();
}
} else {
resolvedSavings = tz.getDSTSavings();
}
if (resolvedSavings == 0) {
// final fallback
resolvedSavings = U_MILLIS_PER_HOUR;
}
}
}
cal.set(UCAL_ZONE_OFFSET, raw);
cal.set(UCAL_DST_OFFSET, resolvedSavings);
delete copy;
}
}
ExitParse:
// Set the parsed result if local calendar is used
// instead of the input calendar
if (U_SUCCESS(status) && workCal != &cal) {
cal.setTimeZone(workCal->getTimeZone());
cal.setTime(workCal->getTime(status), status);
}
// Restore the original time zone if required
if (backupTZ != NULL) {
fCalendar->adoptTimeZone(backupTZ);
}
// If any Calendar calls failed, we pretend that we
// couldn't parse the string, when in reality this isn't quite accurate--
// we did parse it; the Calendar calls just failed.
if (U_FAILURE(status)) {
parsePos.setErrorIndex(pos);
parsePos.setIndex(start);
}
}
UDate
SimpleDateFormat::parse( const UnicodeString& text,
ParsePosition& pos) const {
// redefined here because the other parse() function hides this function's
// cunterpart on DateFormat
return DateFormat::parse(text, pos);
}
UDate
SimpleDateFormat::parse(const UnicodeString& text, UErrorCode& status) const
{
// redefined here because the other parse() function hides this function's
// counterpart on DateFormat
return DateFormat::parse(text, status);
}
//----------------------------------------------------------------------
int32_t SimpleDateFormat::matchQuarterString(const UnicodeString& text,
int32_t start,
UCalendarDateFields field,
const UnicodeString* data,
int32_t dataCount,
Calendar& cal) const
{
int32_t i = 0;
int32_t count = dataCount;
// There may be multiple strings in the data[] array which begin with
// the same prefix (e.g., Cerven and Cervenec (June and July) in Czech).
// We keep track of the longest match, and return that. Note that this
// unfortunately requires us to test all array elements.
int32_t bestMatchLength = 0, bestMatch = -1;
// {sfb} kludge to support case-insensitive comparison
// {markus 2002oct11} do not just use caseCompareBetween because we do not know
// the length of the match after case folding
// {alan 20040607} don't case change the whole string, since the length
// can change
// TODO we need a case-insensitive startsWith function
UnicodeString lcase, lcaseText;
text.extract(start, INT32_MAX, lcaseText);
lcaseText.foldCase();
for (; i < count; ++i)
{
// Always compare if we have no match yet; otherwise only compare
// against potentially better matches (longer strings).
lcase.fastCopyFrom(data[i]).foldCase();
int32_t length = lcase.length();
if (length > bestMatchLength &&
lcaseText.compareBetween(0, length, lcase, 0, length) == 0)
{
bestMatch = i;
bestMatchLength = length;
}
}
if (bestMatch >= 0)
{
cal.set(field, bestMatch * 3);
// Once we have a match, we have to determine the length of the
// original source string. This will usually be == the length of
// the case folded string, but it may differ (e.g. sharp s).
lcase.fastCopyFrom(data[bestMatch]).foldCase();
// Most of the time, the length will be the same as the length
// of the string from the locale data. Sometimes it will be
// different, in which case we will have to figure it out by
// adding a character at a time, until we have a match. We do
// this all in one loop, where we try 'len' first (at index
// i==0).
int32_t len = data[bestMatch].length(); // 99+% of the time
int32_t n = text.length() - start;
for (i=0; i<=n; ++i) {
int32_t j=i;
if (i == 0) {
j = len;
} else if (i == len) {
continue; // already tried this when i was 0
}
text.extract(start, j, lcaseText);
lcaseText.foldCase();
if (lcase == lcaseText) {
return start + j;
}
}
}
return -start;
}
//----------------------------------------------------------------------
UBool SimpleDateFormat::matchLiterals(const UnicodeString &pattern,
int32_t &patternOffset,
const UnicodeString &text,
int32_t &textOffset,
UBool lenient)
{
UBool inQuote = FALSE;
UnicodeString literal;
int32_t i = patternOffset;
// scan pattern looking for contiguous literal characters
for ( ; i < pattern.length(); i += 1) {
UChar ch = pattern.charAt(i);
if (!inQuote && ((ch >= 0x41 && ch <= 0x5A) || (ch >= 0x61 && ch <= 0x7A))) { // unquoted [A-Za-z]
break;
}
if (ch == QUOTE) {
// Match a quote literal ('') inside OR outside of quotes
if ((i + 1) < pattern.length() && pattern.charAt(i + 1) == QUOTE) {
i += 1;
} else {
inQuote = !inQuote;
continue;
}
}
literal += ch;
}
// at this point, literal contains the literal text
// and i is the index of the next non-literal pattern character.
int32_t p;
int32_t t = textOffset;
if (lenient) {
// trim leading, trailing whitespace from
// the literal text
literal.trim();
// ignore any leading whitespace in the text
while (t < text.length() && u_isWhitespace(text.charAt(t))) {
t += 1;
}
}
for (p = 0; p < literal.length() && t < text.length(); p += 1, t += 1) {
UBool needWhitespace = FALSE;
while (p < literal.length() && PatternProps::isWhiteSpace(literal.charAt(p))) {
needWhitespace = TRUE;
p += 1;
}
if (needWhitespace) {
int32_t tStart = t;
while (t < text.length()) {
UChar tch = text.charAt(t);
if (!u_isUWhiteSpace(tch) && !PatternProps::isWhiteSpace(tch)) {
break;
}
t += 1;
}
// TODO: should we require internal spaces
// in lenient mode? (There won't be any
// leading or trailing spaces)
if (!lenient && t == tStart) {
// didn't find matching whitespace:
// an error in strict mode
return FALSE;
}
// In strict mode, this run of whitespace
// may have been at the end.
if (p >= literal.length()) {
break;
}
}
if (t >= text.length() || literal.charAt(p) != text.charAt(t)) {
// Ran out of text, or found a non-matching character:
// OK in lenient mode, an error in strict mode.
if (lenient) {
break;
}
return FALSE;
}
}
// At this point if we're in strict mode we have a complete match.
// If we're in lenient mode we may have a partial match, or no
// match at all.
if (p <= 0) {
// no match. Pretend it matched a run of whitespace
// and ignorables in the text.
const UnicodeSet *ignorables = NULL;
UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), pattern.charAt(i));
if (patternCharPtr != NULL) {
UDateFormatField patternCharIndex = (UDateFormatField) (patternCharPtr - DateFormatSymbols::getPatternUChars());
ignorables = SimpleDateFormatStaticSets::getIgnorables(patternCharIndex);
}
for (t = textOffset; t < text.length(); t += 1) {
UChar ch = text.charAt(t);
if (ignorables == NULL || !ignorables->contains(ch)) {
break;
}
}
}
// if we get here, we've got a complete match.
patternOffset = i - 1;
textOffset = t;
return TRUE;
}
//----------------------------------------------------------------------
int32_t SimpleDateFormat::matchString(const UnicodeString& text,
int32_t start,
UCalendarDateFields field,
const UnicodeString* data,
int32_t dataCount,
Calendar& cal) const
{
int32_t i = 0;
int32_t count = dataCount;
if (field == UCAL_DAY_OF_WEEK) i = 1;
// There may be multiple strings in the data[] array which begin with
// the same prefix (e.g., Cerven and Cervenec (June and July) in Czech).
// We keep track of the longest match, and return that. Note that this
// unfortunately requires us to test all array elements.
int32_t bestMatchLength = 0, bestMatch = -1;
// {sfb} kludge to support case-insensitive comparison
// {markus 2002oct11} do not just use caseCompareBetween because we do not know
// the length of the match after case folding
// {alan 20040607} don't case change the whole string, since the length
// can change
// TODO we need a case-insensitive startsWith function
UnicodeString lcase, lcaseText;
text.extract(start, INT32_MAX, lcaseText);
lcaseText.foldCase();
for (; i < count; ++i)
{
// Always compare if we have no match yet; otherwise only compare
// against potentially better matches (longer strings).
lcase.fastCopyFrom(data[i]).foldCase();
int32_t length = lcase.length();
if (length > bestMatchLength &&
lcaseText.compareBetween(0, length, lcase, 0, length) == 0)
{
bestMatch = i;
bestMatchLength = length;
}
}
if (bestMatch >= 0)
{
// Adjustment for Hebrew Calendar month Adar II
if (!strcmp(cal.getType(),"hebrew") && field==UCAL_MONTH && bestMatch==13) {
cal.set(field,6);
}
else {
cal.set(field, bestMatch);
}
// Once we have a match, we have to determine the length of the
// original source string. This will usually be == the length of
// the case folded string, but it may differ (e.g. sharp s).
lcase.fastCopyFrom(data[bestMatch]).foldCase();
// Most of the time, the length will be the same as the length
// of the string from the locale data. Sometimes it will be
// different, in which case we will have to figure it out by
// adding a character at a time, until we have a match. We do
// this all in one loop, where we try 'len' first (at index
// i==0).
int32_t len = data[bestMatch].length(); // 99+% of the time
int32_t n = text.length() - start;
for (i=0; i<=n; ++i) {
int32_t j=i;
if (i == 0) {
j = len;
} else if (i == len) {
continue; // already tried this when i was 0
}
text.extract(start, j, lcaseText);
lcaseText.foldCase();
if (lcase == lcaseText) {
return start + j;
}
}
}
return -start;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::set2DigitYearStart(UDate d, UErrorCode& status)
{
parseAmbiguousDatesAsAfter(d, status);
}
/**
* Private member function that converts the parsed date strings into
* timeFields. Returns -start (for ParsePosition) if failed.
* @param text the time text to be parsed.
* @param start where to start parsing.
* @param ch the pattern character for the date field text to be parsed.
* @param count the count of a pattern character.
* @return the new start position if matching succeeded; a negative number
* indicating matching failure, otherwise.
*/
int32_t SimpleDateFormat::subParse(const UnicodeString& text, int32_t& start, UChar ch, int32_t count,
UBool obeyCount, UBool allowNegative, UBool ambiguousYear[], int32_t& saveHebrewMonth, Calendar& cal,
int32_t patLoc) const
{
Formattable number;
int32_t value = 0;
int32_t i;
int32_t ps = 0;
ParsePosition pos(0);
UDateFormatField patternCharIndex;
NumberFormat *currentNumberFormat;
UnicodeString temp;
UChar *patternCharPtr = u_strchr(DateFormatSymbols::getPatternUChars(), ch);
UBool lenient = isLenient();
UBool gotNumber = FALSE;
#if defined (U_DEBUG_CAL)
//fprintf(stderr, "%s:%d - [%c] st=%d \n", __FILE__, __LINE__, (char) ch, start);
#endif
if (patternCharPtr == NULL) {
return -start;
}
patternCharIndex = (UDateFormatField)(patternCharPtr - DateFormatSymbols::getPatternUChars());
currentNumberFormat = getNumberFormatByIndex(patternCharIndex);
UCalendarDateFields field = fgPatternIndexToCalendarField[patternCharIndex];
// If there are any spaces here, skip over them. If we hit the end
// of the string, then fail.
for (;;) {
if (start >= text.length()) {
return -start;
}
UChar32 c = text.char32At(start);
if (!u_isUWhiteSpace(c) /*||*/ && !PatternProps::isWhiteSpace(c)) {
break;
}
start += U16_LENGTH(c);
}
pos.setIndex(start);
// We handle a few special cases here where we need to parse
// a number value. We handle further, more generic cases below. We need
// to handle some of them here because some fields require extra processing on
// the parsed value.
if (patternCharIndex == UDAT_HOUR_OF_DAY1_FIELD ||
patternCharIndex == UDAT_HOUR_OF_DAY0_FIELD ||
patternCharIndex == UDAT_HOUR1_FIELD ||
patternCharIndex == UDAT_HOUR0_FIELD ||
patternCharIndex == UDAT_DOW_LOCAL_FIELD ||
patternCharIndex == UDAT_STANDALONE_DAY_FIELD ||
patternCharIndex == UDAT_MONTH_FIELD ||
patternCharIndex == UDAT_STANDALONE_MONTH_FIELD ||
patternCharIndex == UDAT_QUARTER_FIELD ||
patternCharIndex == UDAT_STANDALONE_QUARTER_FIELD ||
patternCharIndex == UDAT_YEAR_FIELD ||
patternCharIndex == UDAT_YEAR_WOY_FIELD ||
patternCharIndex == UDAT_FRACTIONAL_SECOND_FIELD)
{
int32_t parseStart = pos.getIndex();
// It would be good to unify this with the obeyCount logic below,
// but that's going to be difficult.
const UnicodeString* src;
if (obeyCount) {
if ((start+count) > text.length()) {
return -start;
}
text.extractBetween(0, start + count, temp);
src = &temp;
} else {
src = &text;
}
parseInt(*src, number, pos, allowNegative,currentNumberFormat);
int32_t txtLoc = pos.getIndex();
if (txtLoc > parseStart) {
value = number.getLong();
gotNumber = TRUE;
// suffix processing
if (value < 0 ) {
txtLoc = checkIntSuffix(text, txtLoc, patLoc+1, TRUE);
if (txtLoc != pos.getIndex()) {
value *= -1;
}
}
else {
txtLoc = checkIntSuffix(text, txtLoc, patLoc+1, FALSE);
}
if (!lenient) {
// Check the range of the value
int32_t bias = gFieldRangeBias[patternCharIndex];
if (bias >= 0 && (value > cal.getMaximum(field) + bias || value < cal.getMinimum(field) + bias)) {
return -start;
}
}
pos.setIndex(txtLoc);
}
}
// Make sure that we got a number if
// we want one, and didn't get one
// if we don't want one.
switch (patternCharIndex) {
case UDAT_HOUR_OF_DAY1_FIELD:
case UDAT_HOUR_OF_DAY0_FIELD:
case UDAT_HOUR1_FIELD:
case UDAT_HOUR0_FIELD:
// special range check for hours:
if (value < 0 || value > 24) {
return -start;
}
// fall through to gotNumber check
case UDAT_YEAR_FIELD:
case UDAT_YEAR_WOY_FIELD:
case UDAT_FRACTIONAL_SECOND_FIELD:
// these must be a number
if (! gotNumber) {
return -start;
}
break;
case UDAT_DOW_LOCAL_FIELD:
case UDAT_STANDALONE_DAY_FIELD:
case UDAT_MONTH_FIELD:
case UDAT_STANDALONE_MONTH_FIELD:
case UDAT_QUARTER_FIELD:
case UDAT_STANDALONE_QUARTER_FIELD:
// in strict mode, these can only
// be a number if count <= 2
if (!lenient && gotNumber && count > 2) {
// We have a string pattern in strict mode
// but the input parsed as a number. Ignore
// the fact that the input parsed as a number
// and try to match it as a string. (Some
// locales have numbers for the month names.)
gotNumber = FALSE;
pos.setIndex(start);
}
break;
default:
// we check the rest of the fields below.
break;
}
switch (patternCharIndex) {
case UDAT_ERA_FIELD:
if (count == 5) {
ps = matchString(text, start, UCAL_ERA, fSymbols->fNarrowEras, fSymbols->fNarrowErasCount, cal);
} else if (count == 4) {
ps = matchString(text, start, UCAL_ERA, fSymbols->fEraNames, fSymbols->fEraNamesCount, cal);
} else {
ps = matchString(text, start, UCAL_ERA, fSymbols->fEras, fSymbols->fErasCount, cal);
}
// check return position, if it equals -start, then matchString error
// special case the return code so we don't necessarily fail out until we
// verify no year information also
if (ps == -start)
ps--;
return ps;
case UDAT_YEAR_FIELD:
// If there are 3 or more YEAR pattern characters, this indicates
// that the year value is to be treated literally, without any
// two-digit year adjustments (e.g., from "01" to 2001). Otherwise
// we made adjustments to place the 2-digit year in the proper
// century, for parsed strings from "00" to "99". Any other string
// is treated literally: "2250", "-1", "1", "002".
if ((pos.getIndex() - start) == 2
&& u_isdigit(text.charAt(start))
&& u_isdigit(text.charAt(start+1)))
{
// Assume for example that the defaultCenturyStart is 6/18/1903.
// This means that two-digit years will be forced into the range
// 6/18/1903 to 6/17/2003. As a result, years 00, 01, and 02
// correspond to 2000, 2001, and 2002. Years 04, 05, etc. correspond
// to 1904, 1905, etc. If the year is 03, then it is 2003 if the
// other fields specify a date before 6/18, or 1903 if they specify a
// date afterwards. As a result, 03 is an ambiguous year. All other
// two-digit years are unambiguous.
if(fHaveDefaultCentury) { // check if this formatter even has a pivot year
int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100;
ambiguousYear[0] = (value == ambiguousTwoDigitYear);
value += (fDefaultCenturyStartYear/100)*100 +
(value < ambiguousTwoDigitYear ? 100 : 0);
}
}
cal.set(UCAL_YEAR, value);
// Delayed checking for adjustment of Hebrew month numbers in non-leap years.
if (saveHebrewMonth >= 0) {
HebrewCalendar *hc = (HebrewCalendar*)&cal;
if (!hc->isLeapYear(value) && saveHebrewMonth >= 6) {
cal.set(UCAL_MONTH,saveHebrewMonth);
} else {
cal.set(UCAL_MONTH,saveHebrewMonth-1);
}
saveHebrewMonth = -1;
}
return pos.getIndex();
case UDAT_YEAR_WOY_FIELD:
// Comment is the same as for UDAT_Year_FIELDs - look above
if ((pos.getIndex() - start) == 2
&& u_isdigit(text.charAt(start))
&& u_isdigit(text.charAt(start+1))
&& fHaveDefaultCentury )
{
int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100;
ambiguousYear[0] = (value == ambiguousTwoDigitYear);
value += (fDefaultCenturyStartYear/100)*100 +
(value < ambiguousTwoDigitYear ? 100 : 0);
}
cal.set(UCAL_YEAR_WOY, value);
return pos.getIndex();
case UDAT_MONTH_FIELD:
if (gotNumber) // i.e., M or MM.
{
// When parsing month numbers from the Hebrew Calendar, we might need to adjust the month depending on whether
// or not it was a leap year. We may or may not yet know what year it is, so might have to delay checking until
// the year is parsed.
if (!strcmp(cal.getType(),"hebrew")) {
HebrewCalendar *hc = (HebrewCalendar*)&cal;
if (cal.isSet(UCAL_YEAR)) {
UErrorCode status = U_ZERO_ERROR;
if (!hc->isLeapYear(hc->get(UCAL_YEAR,status)) && value >= 6) {
cal.set(UCAL_MONTH, value);
} else {
cal.set(UCAL_MONTH, value - 1);
}
} else {
saveHebrewMonth = value;
}
} else {
// Don't want to parse the month if it is a string
// while pattern uses numeric style: M or MM.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, value - 1);
}
return pos.getIndex();
} else {
// count >= 3 // i.e., MMM or MMMM
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_MONTH,
fSymbols->fMonths, fSymbols->fMonthsCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchString(text, start, UCAL_MONTH,
fSymbols->fShortMonths, fSymbols->fShortMonthsCount, cal);
}
case UDAT_STANDALONE_MONTH_FIELD:
if (gotNumber) // i.e., L or LL.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: M or MM.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, value - 1);
return pos.getIndex();
} else {
// count >= 3 // i.e., LLL or LLLL
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_MONTH,
fSymbols->fStandaloneMonths, fSymbols->fStandaloneMonthsCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchString(text, start, UCAL_MONTH,
fSymbols->fStandaloneShortMonths, fSymbols->fStandaloneShortMonthsCount, cal);
}
case UDAT_HOUR_OF_DAY1_FIELD:
// [We computed 'value' above.]
if (value == cal.getMaximum(UCAL_HOUR_OF_DAY) + 1)
value = 0;
// fall through to set field
case UDAT_HOUR_OF_DAY0_FIELD:
cal.set(UCAL_HOUR_OF_DAY, value);
return pos.getIndex();
case UDAT_FRACTIONAL_SECOND_FIELD:
// Fractional seconds left-justify
i = pos.getIndex() - start;
if (i < 3) {
while (i < 3) {
value *= 10;
i++;
}
} else {
int32_t a = 1;
while (i > 3) {
a *= 10;
i--;
}
value = (value + (a>>1)) / a;
}
cal.set(UCAL_MILLISECOND, value);
return pos.getIndex();
case UDAT_DOW_LOCAL_FIELD:
if (gotNumber) // i.e., e or ee
{
// [We computed 'value' above.]
cal.set(UCAL_DOW_LOCAL, value);
return pos.getIndex();
}
// else for eee-eeeee fall through to handling of EEE-EEEEE
// fall through, do not break here
case UDAT_DAY_OF_WEEK_FIELD:
{
// Want to be able to parse both short and long forms.
// Try count == 4 (EEEE) first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fWeekdays, fSymbols->fWeekdaysCount, cal)) > 0)
return newStart;
// EEEE failed, now try EEE
else if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fShortWeekdays, fSymbols->fShortWeekdaysCount, cal)) > 0)
return newStart;
// EEE failed, now try EEEEE
else
return matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fNarrowWeekdays, fSymbols->fNarrowWeekdaysCount, cal);
}
case UDAT_STANDALONE_DAY_FIELD:
{
if (gotNumber) // c or cc
{
// [We computed 'value' above.]
cal.set(UCAL_DOW_LOCAL, value);
return pos.getIndex();
}
// Want to be able to parse both short and long forms.
// Try count == 4 (cccc) first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fStandaloneWeekdays, fSymbols->fStandaloneWeekdaysCount, cal)) > 0)
return newStart;
else // cccc failed, now try ccc
return matchString(text, start, UCAL_DAY_OF_WEEK,
fSymbols->fStandaloneShortWeekdays, fSymbols->fStandaloneShortWeekdaysCount, cal);
}
case UDAT_AM_PM_FIELD:
return matchString(text, start, UCAL_AM_PM, fSymbols->fAmPms, fSymbols->fAmPmsCount, cal);
case UDAT_HOUR1_FIELD:
// [We computed 'value' above.]
if (value == cal.getLeastMaximum(UCAL_HOUR)+1)
value = 0;
// fall through to set field
case UDAT_HOUR0_FIELD:
cal.set(UCAL_HOUR, value);
return pos.getIndex();
case UDAT_QUARTER_FIELD:
if (gotNumber) // i.e., Q or QQ.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: Q or QQ.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, (value - 1) * 3);
return pos.getIndex();
} else {
// count >= 3 // i.e., QQQ or QQQQ
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fQuarters, fSymbols->fQuartersCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fShortQuarters, fSymbols->fShortQuartersCount, cal);
}
case UDAT_STANDALONE_QUARTER_FIELD:
if (gotNumber) // i.e., q or qq.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: q or q.
// [We computed 'value' above.]
cal.set(UCAL_MONTH, (value - 1) * 3);
return pos.getIndex();
} else {
// count >= 3 // i.e., qqq or qqqq
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fStandaloneQuarters, fSymbols->fStandaloneQuartersCount, cal)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchQuarterString(text, start, UCAL_MONTH,
fSymbols->fStandaloneShortQuarters, fSymbols->fStandaloneShortQuartersCount, cal);
}
case UDAT_TIMEZONE_FIELD:
case UDAT_TIMEZONE_RFC_FIELD:
case UDAT_TIMEZONE_GENERIC_FIELD:
case UDAT_TIMEZONE_SPECIAL_FIELD:
{
int32_t offset = 0;
UBool parsed = FALSE;
// Step 1
// Check if this is a long GMT offset string (either localized or default)
offset = parseGMT(text, pos);
if (pos.getIndex() - start > 0) {
parsed = TRUE;
}
if (!parsed) {
// Step 2
// Check if this is an RFC822 time zone offset.
// ICU supports the standard RFC822 format [+|-]HHmm
// and its extended form [+|-]HHmmSS.
do {
int32_t sign = 0;
UChar signChar = text.charAt(start);
if (signChar == (UChar)0x002B /* '+' */) {
sign = 1;
} else if (signChar == (UChar)0x002D /* '-' */) {
sign = -1;
} else {
// Not an RFC822 offset string
break;
}
// Parse digits
int32_t orgPos = start + 1;
pos.setIndex(orgPos);
parseInt(text, number, 6, pos, FALSE,currentNumberFormat);
int32_t numLen = pos.getIndex() - orgPos;
if (numLen <= 0) {
break;
}
// Followings are possible format (excluding sign char)
// HHmmSS
// HmmSS
// HHmm
// Hmm
// HH
// H
int32_t val = number.getLong();
int32_t hour = 0, min = 0, sec = 0;
switch(numLen) {
case 1: // H
case 2: // HH
hour = val;
break;
case 3: // Hmm
case 4: // HHmm
hour = val / 100;
min = val % 100;
break;
case 5: // Hmmss
case 6: // HHmmss
hour = val / 10000;
min = (val % 10000) / 100;
sec = val % 100;
break;
}
if (hour > 23 || min > 59 || sec > 59) {
// Invalid value range
break;
}
offset = (((hour * 60) + min) * 60 + sec) * 1000 * sign;
parsed = TRUE;
} while (FALSE);
if (!parsed) {
// Failed to parse. Reset the position.
pos.setIndex(start);
}
}
if (parsed) {
// offset was successfully parsed as either a long GMT string or RFC822 zone offset
// string. Create normalized zone ID for the offset.
UnicodeString tzID(gGmt);
formatRFC822TZ(tzID, offset);
//TimeZone *customTZ = TimeZone::createTimeZone(tzID);
TimeZone *customTZ = new SimpleTimeZone(offset, tzID); // faster than TimeZone::createTimeZone
cal.adoptTimeZone(customTZ);
return pos.getIndex();
}
// Step 3
// Is this standalone Localized GMT zero or GMT/UT/UTC?
int32_t gmtLen = 0;
if (text.compare(start, fSymbols->fGmtZero.length(), fSymbols->fGmtZero) == 0) {
gmtLen = fSymbols->fGmtZero.length();
} else if (text.compare(start, kGmtLen, gGmt) == 0) {
gmtLen = kGmtLen;
} else if (text.compare(start, kUtcLen, gUtc) == 0) {
gmtLen = kUtcLen;
} else if (text.compare(start, kUtLen, gUt) == 0) {
gmtLen = kUtLen;
}
// If we parse the string to the end, we can exit here.
// If any characters follow, we still need to proceed to the
// next step. Otherwise, all time zone names starting with GMT/UT/UTC
// (for example, "UTT") will fail.
if (gmtLen > 0 && ((text.length() - start) == gmtLen)) {
TimeZone *tz = TimeZone::createTimeZone(UNICODE_STRING("Etc/GMT", 7));
cal.adoptTimeZone(tz);
return start + gmtLen;
}
// Step 4
// At this point, check for named time zones by looking through
// the locale data.
if (patternCharIndex != UDAT_TIMEZONE_RFC_FIELD) {
UTimeZoneTimeType parsedTimeType = UTZFMT_TIME_TYPE_UNKNOWN;
ParsePosition tmpPos(start);
UnicodeString parsedID;
switch (patternCharIndex) {
case UDAT_TIMEZONE_FIELD:
if (count < 4) {
tzFormat()->parse(UTZFMT_STYLE_SPECIFIC_SHORT, text, tmpPos, parsedID, &parsedTimeType);
} else {
tzFormat()->parse(UTZFMT_STYLE_SPECIFIC_LONG, text, tmpPos, parsedID, &parsedTimeType);
}
break;
case UDAT_TIMEZONE_GENERIC_FIELD:
if (count < 4) {
tzFormat()->parse(UTZFMT_STYLE_GENERIC_SHORT, text, tmpPos, parsedID, &parsedTimeType);
} else {
tzFormat()->parse(UTZFMT_STYLE_GENERIC_LONG, text, tmpPos, parsedID, &parsedTimeType);
}
break;
case UDAT_TIMEZONE_SPECIAL_FIELD:
if (count < 4) {
tzFormat()->parse(UTZFMT_STYLE_SPECIFIC_SHORT, text, tmpPos, parsedID, &parsedTimeType);
} else {
tzFormat()->parse(UTZFMT_STYLE_LOCATION, text, tmpPos, parsedID, &parsedTimeType);
}
break;
default:
break;
}
if (tmpPos.getErrorIndex() < 0) {
if (parsedTimeType == UTZFMT_TIME_TYPE_STANDARD) {
((SimpleDateFormat*)this)->tztype = TZTYPE_STD;
} else if (parsedTimeType == UTZFMT_TIME_TYPE_DAYLIGHT) {
((SimpleDateFormat*)this)->tztype = TZTYPE_DST;
}
UnicodeString current;
cal.getTimeZone().getID(current);
if (parsedID != current) {
TimeZone *tz = TimeZone::createTimeZone(parsedID);
cal.adoptTimeZone(tz);
}
return tmpPos.getIndex();
}
}
// Step 5
// If we saw standalone GMT zero pattern, then use GMT.
if (gmtLen > 0) {
TimeZone *tz = TimeZone::createTimeZone(UNICODE_STRING("Etc/GMT", 7));
cal.adoptTimeZone(tz);
return start + gmtLen;
}
// complete failure
return -start;
}
default:
// Handle "generic" fields
int32_t parseStart = pos.getIndex();
const UnicodeString* src;
if (obeyCount) {
if ((start+count) > text.length()) {
return -start;
}
text.extractBetween(0, start + count, temp);
src = &temp;
} else {
src = &text;
}
parseInt(*src, number, pos, allowNegative,currentNumberFormat);
if (pos.getIndex() != parseStart) {
int32_t value = number.getLong();
if (!lenient) {
// Check the range of the value
int32_t bias = gFieldRangeBias[patternCharIndex];
if (bias >= 0 && (value > cal.getMaximum(field) + bias || value < cal.getMinimum(field) + bias)) {
return -start;
}
}
cal.set(field, value);
return pos.getIndex();
}
return -start;
}
}
/**
* Parse an integer using fNumberFormat. This method is semantically
* const, but actually may modify fNumberFormat.
*/
void SimpleDateFormat::parseInt(const UnicodeString& text,
Formattable& number,
ParsePosition& pos,
UBool allowNegative,
NumberFormat *fmt) const {
parseInt(text, number, -1, pos, allowNegative,fmt);
}
/**
* Parse an integer using fNumberFormat up to maxDigits.
*/
void SimpleDateFormat::parseInt(const UnicodeString& text,
Formattable& number,
int32_t maxDigits,
ParsePosition& pos,
UBool allowNegative,
NumberFormat *fmt) const {
UnicodeString oldPrefix;
DecimalFormat* df = NULL;
if (!allowNegative && (df = dynamic_cast<DecimalFormat*>(fmt)) != NULL) {
df->getNegativePrefix(oldPrefix);
df->setNegativePrefix(UnicodeString(TRUE, SUPPRESS_NEGATIVE_PREFIX, -1));
}
int32_t oldPos = pos.getIndex();
fmt->parse(text, number, pos);
if (df != NULL) {
df->setNegativePrefix(oldPrefix);
}
if (maxDigits > 0) {
// adjust the result to fit into
// the maxDigits and move the position back
int32_t nDigits = pos.getIndex() - oldPos;
if (nDigits > maxDigits) {
int32_t val = number.getLong();
nDigits -= maxDigits;
while (nDigits > 0) {
val /= 10;
nDigits--;
}
pos.setIndex(oldPos + maxDigits);
number.setLong(val);
}
}
}
//----------------------------------------------------------------------
void SimpleDateFormat::translatePattern(const UnicodeString& originalPattern,
UnicodeString& translatedPattern,
const UnicodeString& from,
const UnicodeString& to,
UErrorCode& status)
{
// run through the pattern and convert any pattern symbols from the version
// in "from" to the corresponding character ion "to". This code takes
// quoted strings into account (it doesn't try to translate them), and it signals
// an error if a particular "pattern character" doesn't appear in "from".
// Depending on the values of "from" and "to" this can convert from generic
// to localized patterns or localized to generic.
if (U_FAILURE(status))
return;
translatedPattern.remove();
UBool inQuote = FALSE;
for (int32_t i = 0; i < originalPattern.length(); ++i) {
UChar c = originalPattern[i];
if (inQuote) {
if (c == QUOTE)
inQuote = FALSE;
}
else {
if (c == QUOTE)
inQuote = TRUE;
else if ((c >= 0x0061 /*'a'*/ && c <= 0x007A) /*'z'*/
|| (c >= 0x0041 /*'A'*/ && c <= 0x005A /*'Z'*/)) {
int32_t ci = from.indexOf(c);
if (ci == -1) {
status = U_INVALID_FORMAT_ERROR;
return;
}
c = to[ci];
}
}
translatedPattern += c;
}
if (inQuote) {
status = U_INVALID_FORMAT_ERROR;
return;
}
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::toPattern(UnicodeString& result) const
{
result = fPattern;
return result;
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::toLocalizedPattern(UnicodeString& result,
UErrorCode& status) const
{
translatePattern(fPattern, result,
UnicodeString(DateFormatSymbols::getPatternUChars()),
fSymbols->fLocalPatternChars, status);
return result;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::applyPattern(const UnicodeString& pattern)
{
fPattern = pattern;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::applyLocalizedPattern(const UnicodeString& pattern,
UErrorCode &status)
{
translatePattern(pattern, fPattern,
fSymbols->fLocalPatternChars,
UnicodeString(DateFormatSymbols::getPatternUChars()), status);
}
//----------------------------------------------------------------------
const DateFormatSymbols*
SimpleDateFormat::getDateFormatSymbols() const
{
return fSymbols;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::adoptDateFormatSymbols(DateFormatSymbols* newFormatSymbols)
{
delete fSymbols;
fSymbols = newFormatSymbols;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::setDateFormatSymbols(const DateFormatSymbols& newFormatSymbols)
{
delete fSymbols;
fSymbols = new DateFormatSymbols(newFormatSymbols);
}
//----------------------------------------------------------------------
void SimpleDateFormat::adoptCalendar(Calendar* calendarToAdopt)
{
UErrorCode status = U_ZERO_ERROR;
DateFormat::adoptCalendar(calendarToAdopt);
delete fSymbols;
fSymbols=NULL;
initializeSymbols(fLocale, fCalendar, status); // we need new symbols
initializeDefaultCentury(); // we need a new century (possibly)
}
//----------------------------------------------------------------------
UBool
SimpleDateFormat::isFieldUnitIgnored(UCalendarDateFields field) const {
return isFieldUnitIgnored(fPattern, field);
}
UBool
SimpleDateFormat::isFieldUnitIgnored(const UnicodeString& pattern,
UCalendarDateFields field) {
int32_t fieldLevel = fgCalendarFieldToLevel[field];
int32_t level;
UChar ch;
UBool inQuote = FALSE;
UChar prevCh = 0;
int32_t count = 0;
for (int32_t i = 0; i < pattern.length(); ++i) {
ch = pattern[i];
if (ch != prevCh && count > 0) {
level = fgPatternCharToLevel[prevCh - PATTERN_CHAR_BASE];
// the larger the level, the smaller the field unit.
if ( fieldLevel <= level ) {
return FALSE;
}
count = 0;
}
if (ch == QUOTE) {
if ((i+1) < pattern.length() && pattern[i+1] == QUOTE) {
++i;
} else {
inQuote = ! inQuote;
}
}
else if ( ! inQuote && ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/)
|| (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))) {
prevCh = ch;
++count;
}
}
if ( count > 0 ) {
// last item
level = fgPatternCharToLevel[prevCh - PATTERN_CHAR_BASE];
if ( fieldLevel <= level ) {
return FALSE;
}
}
return TRUE;
}
//----------------------------------------------------------------------
const Locale&
SimpleDateFormat::getSmpFmtLocale(void) const {
return fLocale;
}
//----------------------------------------------------------------------
int32_t
SimpleDateFormat::checkIntSuffix(const UnicodeString& text, int32_t start,
int32_t patLoc, UBool isNegative) const {
// local variables
UnicodeString suf;
int32_t patternMatch;
int32_t textPreMatch;
int32_t textPostMatch;
// check that we are still in range
if ( (start > text.length()) ||
(start < 0) ||
(patLoc < 0) ||
(patLoc > fPattern.length())) {
// out of range, don't advance location in text
return start;
}
// get the suffix
DecimalFormat* decfmt = dynamic_cast<DecimalFormat*>(fNumberFormat);
if (decfmt != NULL) {
if (isNegative) {
suf = decfmt->getNegativeSuffix(suf);
}
else {
suf = decfmt->getPositiveSuffix(suf);
}
}
// check for suffix
if (suf.length() <= 0) {
return start;
}
// check suffix will be encountered in the pattern
patternMatch = compareSimpleAffix(suf,fPattern,patLoc);
// check if a suffix will be encountered in the text
textPreMatch = compareSimpleAffix(suf,text,start);
// check if a suffix was encountered in the text
textPostMatch = compareSimpleAffix(suf,text,start-suf.length());
// check for suffix match
if ((textPreMatch >= 0) && (patternMatch >= 0) && (textPreMatch == patternMatch)) {
return start;
}
else if ((textPostMatch >= 0) && (patternMatch >= 0) && (textPostMatch == patternMatch)) {
return start - suf.length();
}
// should not get here
return start;
}
//----------------------------------------------------------------------
int32_t
SimpleDateFormat::compareSimpleAffix(const UnicodeString& affix,
const UnicodeString& input,
int32_t pos) const {
int32_t start = pos;
for (int32_t i=0; i<affix.length(); ) {
UChar32 c = affix.char32At(i);
int32_t len = U16_LENGTH(c);
if (PatternProps::isWhiteSpace(c)) {
// We may have a pattern like: \u200F \u0020
// and input text like: \u200F \u0020
// Note that U+200F and U+0020 are Pattern_White_Space but only
// U+0020 is UWhiteSpace. So we have to first do a direct
// match of the run of Pattern_White_Space in the pattern,
// then match any extra characters.
UBool literalMatch = FALSE;
while (pos < input.length() &&
input.char32At(pos) == c) {
literalMatch = TRUE;
i += len;
pos += len;
if (i == affix.length()) {
break;
}
c = affix.char32At(i);
len = U16_LENGTH(c);
if (!PatternProps::isWhiteSpace(c)) {
break;
}
}
// Advance over run in pattern
i = skipPatternWhiteSpace(affix, i);
// Advance over run in input text
// Must see at least one white space char in input,
// unless we've already matched some characters literally.
int32_t s = pos;
pos = skipUWhiteSpace(input, pos);
if (pos == s && !literalMatch) {
return -1;
}
// If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
// Otherwise, the previous lines may have skipped over text (such as U+00A0) that
// is also in the affix.
i = skipUWhiteSpace(affix, i);
} else {
if (pos < input.length() &&
input.char32At(pos) == c) {
i += len;
pos += len;
} else {
return -1;
}
}
}
return pos - start;
}
//----------------------------------------------------------------------
int32_t
SimpleDateFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) const {
const UChar* s = text.getBuffer();
return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
}
//----------------------------------------------------------------------
int32_t
SimpleDateFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) const {
while (pos < text.length()) {
UChar32 c = text.char32At(pos);
if (!u_isUWhiteSpace(c)) {
break;
}
pos += U16_LENGTH(c);
}
return pos;
}
//----------------------------------------------------------------------
// Lazy TimeZoneFormat instantiation, semantically const.
TimeZoneFormat *
SimpleDateFormat::tzFormat() const {
if (fTimeZoneFormat == NULL) {
umtx_lock(&LOCK);
{
if (fTimeZoneFormat == NULL) {
UErrorCode status = U_ZERO_ERROR;
TimeZoneFormat *tzfmt = TimeZoneFormat::createInstance(fLocale, status);
U_ASSERT(U_SUCCESS(status));
const_cast<SimpleDateFormat *>(this)->fTimeZoneFormat = tzfmt;
}
}
umtx_unlock(&LOCK);
}
return fTimeZoneFormat;
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof