scuffed-code/icu4c/source/common/ucmp32.h
Steven R. Loomis 363ee387f6 ICU-161 (c)opyright notices
X-SVN-Rev: 362
1999-12-09 23:27:55 +00:00

209 lines
6.8 KiB
C

/*
**********************************************************************
* Copyright (C) 1995-1999, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* and others. All Rights Reserved.
* @version 1.0 23/10/96
* @author Helena Shih
* Based on Taligent international support for java
* Modification History :
*
* Date Name Description
* 2/5/97 aliu Added CompactIntArray streamIn and streamOut methods.
* 05/07/97 helena Added isBogus()
* 04/26/99 Madhu Ported to C for C Implementation
* 11/21/99 srl macroized ucmp32_get()
*/
#ifndef UCMP32_H
#define UCMP32_H
#include "utypes.h"
#include "filestrm.h"
/* INTERNAL CONSTANTS */
#define UCMP32_kBlockShift 7
#define UCMP32_kBlockCount (1<<UCMP32_kBlockShift)
#define UCMP32_kIndexShift 16-UCMP32_kBlockShift
#define UCMP32_kIndexCount (1<<UCMP32_kIndexShift)
#define UCMP32_kBlockMask UCMP32_kBlockCount-1
#define UCMP32_kUnicodeCount 65536
/**
* class CompactATypeArray : use only on primitive data types
* Provides a compact way to store information that is indexed by Unicode
* values, such as character properties, types, keyboard values, etc.This
* is very useful when you have a block of Unicode data that contains
* significant values while the rest of the Unicode data is unused in the
* application or when you have a lot of redundance, such as where all 21,000
* Han ideographs have the same value. However, lookup is much faster than a
* hash table.
* <P>
* A compact array of any primitive data type serves two purposes:
* <UL type = round>
* <LI>Fast access of the indexed values.
* <LI>Smaller memory footprint.
* </UL>
* <P>
* The index array always points into particular parts of the data array
* it is initially set up to point at regular block boundaries
* The following example uses blocks of 4 for simplicity
* <PRE>
* Example: Expanded
* BLOCK 0 1 2 3 4
* INDEX 0 4 8 12 16 ...
* ARRAY abcdeababcdezyabcdea...
* | | | | | |...
* </PRE>
* <P>
* After compression, the index will point to various places in the data array
* wherever there is a runs of the same elements as in the original
* <PRE>
* Example: Compressed
* BLOCK 0 1 2 3 4
* INDEX 0 4 1 8 2 ...
* ARRAY abcdeabazyabc...
* </PRE>
* <P>
* If you look at the example, index number 2 in the expanded version points
* to data position number 8, which has elements "bcde". In the compressed
* version, index number 2 points to data position 1, which also has "bcde"
* @see CompactByteArray
* @see CompactIntArray
* @see CompactCharArray
* @see CompactStringArray
* @version $Revision: 1.5 $ 8/25/98
* @author Helena Shih
*/
/*====================================*/
/*CompactIntArray
* Provides a compact way to store information that is indexed by Unicode values,
* such as character properties, types, keyboard values, etc.
* The ATypes are used by value, so should be small, integers or pointers.
*====================================
*/
typedef struct{
int32_t* fArray;
uint16_t* fIndex;
int32_t fCount;
bool_t fCompact;
bool_t fBogus;
} CompactIntArray;
U_CAPI int32_t U_EXPORT2 ucmp32_getkUnicodeCount(void);
U_CAPI int32_t U_EXPORT2 ucmp32_getkBlockCount(void);
/**
*
* Construct an empty CompactIntArray.
* @param defaultValue the default value for all characters not explicitly in the array
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_open(int32_t defaultValue);
/**
* Construct a CompactIntArray from a pre-computed index and values array. The values
* will be adobped by the CompactIntArray. Note: for speed, the compact method will
* only re-use blocks in the values array that are on a block boundary. The pre-computed
* arrays passed in to this constructor may re-use blocks at any position in the values
* array.
* @param indexArray the index array to be adopted
* @param newValues the value array to be adobptd
* @param count the number of entries in the value array
* @see compact
*/
U_CAPI CompactIntArray* U_EXPORT2 ucmp32_openAdopt(uint16_t *indexArray,
int32_t *newValues,
int32_t count);
U_CAPI void U_EXPORT2 ucmp32_close(CompactIntArray* array);
/**
* Returns TRUE if the creation of the compact array fails.
*/
U_CAPI bool_t U_EXPORT2 ucmp32_isBogus(const CompactIntArray* array);
/**
*
* Get the mapped value of a Unicode character.
* @param index the character to get the mapped value with
* @return the mapped value of the given character
*/
#define ucmp32_get(array, index) (array->fArray[(array->fIndex[(index >> UCMP32_kBlockShift)] )+ \
(index & UCMP32_kBlockMask)])
#define ucmp32_getu(array, index) (uint16_t)ucmp32_get(array, index)
/**
* Set a new value for a Unicode character.
* Set automatically expands the array if it is compacted.
* @param index the character to set the mapped value with
* @param value the new mapped value
*/
U_CAPI void U_EXPORT2 ucmp32_set(CompactIntArray *array,
UChar index,
int32_t value);
/**
*
* Set new values for a range of Unicode character.
* @param start the starting offset of the range
* @param end the ending offset of the range
* @param value the new mapped value
*/
U_CAPI void U_EXPORT2 ucmp32_setRange(CompactIntArray* array,
UChar start,
UChar end,
int32_t value);
/**
* Compact the array. The value of cycle determines how large the overlap can be.
* A cycle of 1 is the most compacted, but takes the most time to do.
* If values stored in the array tend to repeat in cycles of, say, 16,
* then using that will be faster than cycle = 1, and get almost the
* same compression.
*/
U_CAPI void U_EXPORT2 ucmp32_compact(CompactIntArray* array, int32_t cycle);
/**
* Expands the compacted array.
* Takes the array back to a 65536 element array
*/
U_CAPI void U_EXPORT2 ucmp32_expand(CompactIntArray* array);
/**
*
* Get the number of elements in the value array.
* @return the number of elements in the value array.
*/
U_CAPI uint32_t U_EXPORT2 ucmp32_getCount(const CompactIntArray* array);
/**
*
* Get the address of the value array.
* @return the address of the value array
*/
U_CAPI const int32_t* U_EXPORT2 ucmp32_getArray(const CompactIntArray* array);
/**
*
* Get the address of the index array.
* @return the address of the index array
*/
U_CAPI const uint16_t* U_EXPORT2 ucmp32_getIndex(const CompactIntArray* array);
U_CAPI void U_EXPORT2 ucmp32_streamIn( CompactIntArray* array, FileStream* is);
U_CAPI void U_EXPORT2 ucmp32_streamOut(CompactIntArray* array, FileStream* os);
#endif