scuffed-code/icu4c/source/i18n/collationkeys.cpp
2014-02-25 21:21:49 +00:00

696 lines
28 KiB
C++

/*
*******************************************************************************
* Copyright (C) 2012-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* collationkeys.cpp
*
* created on: 2012sep02
* created by: Markus W. Scherer
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/bytestream.h"
#include "collation.h"
#include "collationiterator.h"
#include "collationkeys.h"
#include "collationsettings.h"
#include "uassert.h"
U_NAMESPACE_BEGIN
SortKeyByteSink::~SortKeyByteSink() {}
void
SortKeyByteSink::Append(const char *bytes, int32_t n) {
if (n <= 0 || bytes == NULL) {
return;
}
if (ignore_ > 0) {
int32_t ignoreRest = ignore_ - n;
if (ignoreRest >= 0) {
ignore_ = ignoreRest;
return;
} else {
bytes += ignore_;
n = -ignoreRest;
ignore_ = 0;
}
}
int32_t length = appended_;
appended_ += n;
if ((buffer_ + length) == bytes) {
return; // the caller used GetAppendBuffer() and wrote the bytes already
}
int32_t available = capacity_ - length;
if (n <= available) {
uprv_memcpy(buffer_ + length, bytes, n);
} else {
AppendBeyondCapacity(bytes, n, length);
}
}
char *
SortKeyByteSink::GetAppendBuffer(int32_t min_capacity,
int32_t desired_capacity_hint,
char *scratch,
int32_t scratch_capacity,
int32_t *result_capacity) {
if (min_capacity < 1 || scratch_capacity < min_capacity) {
*result_capacity = 0;
return NULL;
}
if (ignore_ > 0) {
// Do not write ignored bytes right at the end of the buffer.
*result_capacity = scratch_capacity;
return scratch;
}
int32_t available = capacity_ - appended_;
if (available >= min_capacity) {
*result_capacity = available;
return buffer_ + appended_;
} else if (Resize(desired_capacity_hint, appended_)) {
*result_capacity = capacity_ - appended_;
return buffer_ + appended_;
} else {
*result_capacity = scratch_capacity;
return scratch;
}
}
namespace {
/**
* uint8_t byte buffer, similar to CharString but simpler.
*/
class SortKeyLevel : public UMemory {
public:
SortKeyLevel() : len(0), ok(TRUE) {}
~SortKeyLevel() {}
/** @return FALSE if memory allocation failed */
UBool isOk() const { return ok; }
UBool isEmpty() const { return len == 0; }
int32_t length() const { return len; }
const uint8_t *data() const { return buffer.getAlias(); }
uint8_t operator[](int32_t index) const { return buffer[index]; }
uint8_t *data() { return buffer.getAlias(); }
void appendByte(uint32_t b);
void appendWeight16(uint32_t w);
void appendWeight32(uint32_t w);
void appendReverseWeight16(uint32_t w);
/** Appends all but the last byte to the sink. The last byte should be the 01 terminator. */
void appendTo(ByteSink &sink) const {
U_ASSERT(len > 0 && buffer[len - 1] == 1);
sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len - 1);
}
private:
MaybeStackArray<uint8_t, 40> buffer;
int32_t len;
UBool ok;
UBool ensureCapacity(int32_t appendCapacity);
SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class
SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class
};
void SortKeyLevel::appendByte(uint32_t b) {
if(len < buffer.getCapacity() || ensureCapacity(1)) {
buffer[len++] = (uint8_t)b;
}
}
void
SortKeyLevel::appendWeight16(uint32_t w) {
U_ASSERT((w & 0xffff) != 0);
uint8_t b0 = (uint8_t)(w >> 8);
uint8_t b1 = (uint8_t)w;
int32_t appendLength = (b1 == 0) ? 1 : 2;
if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
buffer[len++] = b0;
if(b1 != 0) {
buffer[len++] = b1;
}
}
}
void
SortKeyLevel::appendWeight32(uint32_t w) {
U_ASSERT(w != 0);
uint8_t bytes[4] = { (uint8_t)(w >> 24), (uint8_t)(w >> 16), (uint8_t)(w >> 8), (uint8_t)w };
int32_t appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4;
if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
buffer[len++] = bytes[0];
if(bytes[1] != 0) {
buffer[len++] = bytes[1];
if(bytes[2] != 0) {
buffer[len++] = bytes[2];
if(bytes[3] != 0) {
buffer[len++] = bytes[3];
}
}
}
}
}
void
SortKeyLevel::appendReverseWeight16(uint32_t w) {
U_ASSERT((w & 0xffff) != 0);
uint8_t b0 = (uint8_t)(w >> 8);
uint8_t b1 = (uint8_t)w;
int32_t appendLength = (b1 == 0) ? 1 : 2;
if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
if(b1 == 0) {
buffer[len++] = b0;
} else {
buffer[len] = b1;
buffer[len + 1] = b0;
len += 2;
}
}
}
UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) {
if(!ok) {
return FALSE;
}
int32_t newCapacity = 2 * buffer.getCapacity();
int32_t altCapacity = len + 2 * appendCapacity;
if (newCapacity < altCapacity) {
newCapacity = altCapacity;
}
if (newCapacity < 200) {
newCapacity = 200;
}
if(buffer.resize(newCapacity, len)==NULL) {
return ok = FALSE;
}
return TRUE;
}
} // namespace
CollationKeys::LevelCallback::~LevelCallback() {}
UBool
CollationKeys::LevelCallback::needToWrite(Collation::Level /*level*/) { return TRUE; }
/**
* Map from collation strength (UColAttributeValue)
* to a mask of Collation::Level bits up to that strength,
* excluding the CASE_LEVEL which is independent of the strength,
* and excluding IDENTICAL_LEVEL which this function does not write.
*/
static const uint32_t levelMasks[UCOL_STRENGTH_LIMIT] = {
2, // UCOL_PRIMARY -> PRIMARY_LEVEL
6, // UCOL_SECONDARY -> up to SECONDARY_LEVEL
0x16, // UCOL_TERTIARY -> up to TERTIARY_LEVEL
0x36, // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0,
0x36 // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL
};
void
CollationKeys::writeSortKeyUpToQuaternary(CollationIterator &iter,
const UBool *compressibleBytes,
const CollationSettings &settings,
SortKeyByteSink &sink,
Collation::Level minLevel, LevelCallback &callback,
UBool preflight, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
int32_t options = settings.options;
// Set of levels to process and write.
uint32_t levels = levelMasks[CollationSettings::getStrength(options)];
if((options & CollationSettings::CASE_LEVEL) != 0) {
levels |= Collation::CASE_LEVEL_FLAG;
}
// Minus the levels below minLevel.
levels &= ~(((uint32_t)1 << minLevel) - 1);
if(levels == 0) { return; }
uint32_t variableTop;
if((options & CollationSettings::ALTERNATE_MASK) == 0) {
variableTop = 0;
} else {
// +1 so that we can use "<" and primary ignorables test out early.
variableTop = settings.variableTop + 1;
}
const uint8_t *reorderTable = settings.reorderTable;
uint32_t tertiaryMask = CollationSettings::getTertiaryMask(options);
SortKeyLevel cases;
SortKeyLevel secondaries;
SortKeyLevel tertiaries;
SortKeyLevel quaternaries;
uint32_t compressedP1 = 0; // 0==no compression; otherwise reordered compressible lead byte
int32_t commonCases = 0;
int32_t commonSecondaries = 0;
int32_t commonTertiaries = 0;
int32_t commonQuaternaries = 0;
uint32_t prevSecondary = 0;
UBool anyMergeSeparators = FALSE;
for(;;) {
// No need to keep all CEs in the buffer when we write a sort key.
iter.clearCEsIfNoneRemaining();
int64_t ce = iter.nextCE(errorCode);
uint32_t p = (uint32_t)(ce >> 32);
if(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY) {
// Variable CE, shift it to quaternary level.
// Ignore all following primary ignorables, and shift further variable CEs.
if(commonQuaternaries != 0) {
--commonQuaternaries;
while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
quaternaries.appendByte(QUAT_COMMON_MIDDLE);
commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
}
// Shifted primary weights are lower than the common weight.
quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries);
commonQuaternaries = 0;
}
do {
if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
uint32_t p1 = p >> 24;
if(reorderTable != NULL) { p1 = reorderTable[p1]; }
if(p1 >= QUAT_SHIFTED_LIMIT_BYTE) {
// Prevent shifted primary lead bytes from
// overlapping with the common compression range.
quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE);
}
quaternaries.appendWeight32((p1 << 24) | (p & 0xffffff));
}
do {
ce = iter.nextCE(errorCode);
p = (uint32_t)(ce >> 32);
} while(p == 0);
} while(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY);
}
// ce could be primary ignorable, or NO_CE, or the merge separator,
// or a regular primary CE, but it is not variable.
// If ce==NO_CE, then write nothing for the primary level but
// terminate compression on all levels and then exit the loop.
if(p > Collation::NO_CE_PRIMARY && (levels & Collation::PRIMARY_LEVEL_FLAG) != 0) {
uint32_t p1 = p >> 24;
if(reorderTable != NULL) { p1 = reorderTable[p1]; }
if(p1 != compressedP1) {
if(compressedP1 != 0) {
if(p1 < compressedP1) {
// No primary compression terminator
// at the end of the level or merged segment.
if(p1 > Collation::MERGE_SEPARATOR_BYTE) {
sink.Append(Collation::PRIMARY_COMPRESSION_LOW_BYTE);
}
} else {
sink.Append(Collation::PRIMARY_COMPRESSION_HIGH_BYTE);
}
}
sink.Append(p1);
// Test the un-reordered lead byte for compressibility but
// remember the reordered lead byte.
if(compressibleBytes[p >> 24]) {
compressedP1 = p1;
} else {
compressedP1 = 0;
}
}
char p2 = (char)(p >> 16);
if(p2 != 0) {
char buffer[3] = { p2, (char)(p >> 8), (char)p };
sink.Append(buffer, (buffer[1] == 0) ? 1 : (buffer[2] == 0) ? 2 : 3);
}
// Optimization for internalNextSortKeyPart():
// When the primary level overflows we can stop because we need not
// calculate (preflight) the whole sort key length.
if(!preflight && sink.Overflowed()) {
if(U_SUCCESS(errorCode) && !sink.IsOk()) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
}
return;
}
}
uint32_t lower32 = (uint32_t)ce;
if(lower32 == 0) { continue; } // completely ignorable, no secondary/case/tertiary/quaternary
if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
uint32_t s = lower32 >> 16;
if(s == 0) {
// secondary ignorable
} else if(s == Collation::COMMON_WEIGHT16) {
++commonSecondaries;
} else if((options & CollationSettings::BACKWARD_SECONDARY) == 0) {
if(commonSecondaries != 0) {
--commonSecondaries;
while(commonSecondaries >= SEC_COMMON_MAX_COUNT) {
secondaries.appendByte(SEC_COMMON_MIDDLE);
commonSecondaries -= SEC_COMMON_MAX_COUNT;
}
uint32_t b;
if(s < Collation::COMMON_WEIGHT16) {
b = SEC_COMMON_LOW + commonSecondaries;
} else {
b = SEC_COMMON_HIGH - commonSecondaries;
}
secondaries.appendByte(b);
commonSecondaries = 0;
}
secondaries.appendWeight16(s);
} else {
if(commonSecondaries != 0) {
--commonSecondaries;
// Append reverse weights. The level will be re-reversed later.
int32_t remainder = commonSecondaries % SEC_COMMON_MAX_COUNT;
uint32_t b;
if(prevSecondary < Collation::COMMON_WEIGHT16) {
b = SEC_COMMON_LOW + remainder;
} else {
b = SEC_COMMON_HIGH - remainder;
}
secondaries.appendByte(b);
commonSecondaries -= remainder;
// commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT.
while(commonSecondaries > 0) { // same as >= SEC_COMMON_MAX_COUNT
secondaries.appendByte(SEC_COMMON_MIDDLE);
commonSecondaries -= SEC_COMMON_MAX_COUNT;
}
// commonSecondaries == 0
}
// Reduce separators so that we can look for byte<=1 later.
if(s <= Collation::MERGE_SEPARATOR_WEIGHT16) {
if(s == Collation::MERGE_SEPARATOR_WEIGHT16) {
anyMergeSeparators = TRUE;
}
secondaries.appendByte((s >> 8) - 1);
} else {
secondaries.appendReverseWeight16(s);
}
prevSecondary = s;
}
}
if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
if((CollationSettings::getStrength(options) == UCOL_PRIMARY) ?
p == 0 : lower32 <= 0xffff) {
// Primary+caseLevel: Ignore case level weights of primary ignorables.
// Otherwise: Ignore case level weights of secondary ignorables.
// For details see the comments in the CollationCompare class.
} else {
uint32_t c = (lower32 >> 8) & 0xff; // case bits & tertiary lead byte
U_ASSERT((c & 0xc0) != 0xc0);
if((c & 0xc0) == 0 && c > Collation::MERGE_SEPARATOR_BYTE) {
++commonCases;
} else {
if((options & CollationSettings::UPPER_FIRST) == 0) {
// lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14, upper=15.
if(commonCases != 0) {
--commonCases;
while(commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) {
cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4);
commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT;
}
uint32_t b;
if(c <= Collation::MERGE_SEPARATOR_BYTE) {
b = CASE_LOWER_FIRST_COMMON_LOW + commonCases;
} else {
b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases;
}
cases.appendByte(b << 4);
commonCases = 0;
}
if(c > Collation::MERGE_SEPARATOR_BYTE) {
c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >> 6)) << 4; // 14 or 15
}
} else {
// upperFirst: Compress common weights to nibbles 3..15, mixed=2, upper=1.
// The compressed common case weights only go up from the "low" value
// because with upperFirst the common weight is the highest one.
if(commonCases != 0) {
--commonCases;
while(commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) {
cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4);
commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT;
}
cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4);
commonCases = 0;
}
if(c > Collation::MERGE_SEPARATOR_BYTE) {
c = (CASE_UPPER_FIRST_COMMON_LOW - (c >> 6)) << 4; // 2 or 1
}
}
// c is a separator byte 01 or 02,
// or a left-shifted nibble 0x10, 0x20, ... 0xf0.
cases.appendByte(c);
}
}
}
if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
uint32_t t = lower32 & tertiaryMask;
U_ASSERT((lower32 & 0xc000) != 0xc000);
if(t == Collation::COMMON_WEIGHT16) {
++commonTertiaries;
} else if((tertiaryMask & 0x8000) == 0) {
// Tertiary weights without case bits.
// Move lead bytes 06..3F to C6..FF for a large common-weight range.
if(commonTertiaries != 0) {
--commonTertiaries;
while(commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) {
tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE);
commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT;
}
uint32_t b;
if(t < Collation::COMMON_WEIGHT16) {
b = TER_ONLY_COMMON_LOW + commonTertiaries;
} else {
b = TER_ONLY_COMMON_HIGH - commonTertiaries;
}
tertiaries.appendByte(b);
commonTertiaries = 0;
}
if(t > Collation::COMMON_WEIGHT16) { t += 0xc000; }
tertiaries.appendWeight16(t);
} else if((options & CollationSettings::UPPER_FIRST) == 0) {
// Tertiary weights with caseFirst=lowerFirst.
// Move lead bytes 06..BF to 46..FF for the common-weight range.
if(commonTertiaries != 0) {
--commonTertiaries;
while(commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) {
tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE);
commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT;
}
uint32_t b;
if(t < Collation::COMMON_WEIGHT16) {
b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries;
} else {
b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries;
}
tertiaries.appendByte(b);
commonTertiaries = 0;
}
if(t > Collation::COMMON_WEIGHT16) { t += 0x4000; }
tertiaries.appendWeight16(t);
} else {
// Tertiary weights with caseFirst=upperFirst.
// Do not change the artificial uppercase weight of a tertiary CE (0.0.ut),
// to keep tertiary CEs well-formed.
// Their case+tertiary weights must be greater than those of
// primary and secondary CEs.
//
// Separators 01..02 -> 01..02 (unchanged)
// Lowercase 03..04 -> 83..84 (includes uncased)
// Common weight 05 -> 85..C5 (common-weight compression range)
// Lowercase 06..3F -> C6..FF
// Mixed case 43..7F -> 43..7F
// Uppercase 83..BF -> 03..3F
// Tertiary CE 86..BF -> C6..FF
if(t <= Collation::MERGE_SEPARATOR_WEIGHT16) {
// Keep separators unchanged.
} else if(lower32 > 0xffff) {
// Invert case bits of primary & secondary CEs.
t ^= 0xc000;
if(t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) {
t -= 0x4000;
}
} else {
// Keep uppercase bits of tertiary CEs.
U_ASSERT(0x8600 <= t && t <= 0xbfff);
t += 0x4000;
}
if(commonTertiaries != 0) {
--commonTertiaries;
while(commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) {
tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE);
commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT;
}
uint32_t b;
if(t < (TER_UPPER_FIRST_COMMON_LOW << 8)) {
b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries;
} else {
b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries;
}
tertiaries.appendByte(b);
commonTertiaries = 0;
}
tertiaries.appendWeight16(t);
}
}
if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
uint32_t q = lower32 & 0xffff;
if((q & 0xc0) == 0 && q > Collation::MERGE_SEPARATOR_WEIGHT16) {
++commonQuaternaries;
} else if(q <= Collation::MERGE_SEPARATOR_WEIGHT16 &&
(options & CollationSettings::ALTERNATE_MASK) == 0 &&
(quaternaries.isEmpty() ||
quaternaries[quaternaries.length() - 1] == Collation::MERGE_SEPARATOR_BYTE)) {
// If alternate=non-ignorable and there are only
// common quaternary weights between two separators,
// then we need not write anything between these separators.
// The only weights greater than the merge separator and less than the common weight
// are shifted primary weights, which are not generated for alternate=non-ignorable.
// There are also exactly as many quaternary weights as tertiary weights,
// so level length differences are handled already on tertiary level.
// Any above-common quaternary weight will compare greater regardless.
quaternaries.appendByte(q >> 8);
} else {
if(q <= Collation::MERGE_SEPARATOR_WEIGHT16) {
q >>= 8;
} else {
q = 0xfc + ((q >> 6) & 3);
}
if(commonQuaternaries != 0) {
--commonQuaternaries;
while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
quaternaries.appendByte(QUAT_COMMON_MIDDLE);
commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
}
uint32_t b;
if(q < QUAT_COMMON_LOW) {
b = QUAT_COMMON_LOW + commonQuaternaries;
} else {
b = QUAT_COMMON_HIGH - commonQuaternaries;
}
quaternaries.appendByte(b);
commonQuaternaries = 0;
}
quaternaries.appendByte(q);
}
}
if((lower32 >> 24) == Collation::LEVEL_SEPARATOR_BYTE) { break; } // ce == NO_CE
}
if(U_FAILURE(errorCode)) { return; }
// Append the beyond-primary levels.
UBool ok = TRUE;
if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
if(!callback.needToWrite(Collation::SECONDARY_LEVEL)) { return; }
ok &= secondaries.isOk();
sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
uint8_t *secs = secondaries.data();
int32_t length = secondaries.length() - 1; // Ignore the trailing NO_CE.
if((options & CollationSettings::BACKWARD_SECONDARY) != 0) {
// The backwards secondary level compares secondary weights backwards
// within segments separated by the merge separator (U+FFFE, weight 02).
// The separator weights 01 & 02 were reduced to 00 & 01 so that
// we do not accidentally separate at a _second_ weight byte of 02.
int32_t start = 0;
for(;;) {
// Find the merge separator or the NO_CE terminator.
int32_t limit;
if(anyMergeSeparators) {
limit = start;
while(secs[limit] > 1) { ++limit; }
} else {
limit = length;
}
// Reverse this segment.
if(start < limit) {
uint8_t *p = secs + start;
uint8_t *q = secs + limit - 1;
while(p < q) {
uint8_t s = *p;
*p++ = *q;
*q-- = s;
}
}
// Did we reach the end of the string?
if(secs[limit] == 0) { break; }
// Restore the merge separator.
secs[limit] = 2;
// Skip the merge separator and continue.
start = limit + 1;
}
}
sink.Append(reinterpret_cast<char *>(secs), length);
}
if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
if(!callback.needToWrite(Collation::CASE_LEVEL)) { return; }
ok &= cases.isOk();
sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
// Write pairs of nibbles as bytes, except separator bytes as themselves.
int32_t length = cases.length() - 1; // Ignore the trailing NO_CE.
uint8_t b = 0;
for(int32_t i = 0; i < length; ++i) {
uint8_t c = (uint8_t)cases[i];
if(c <= Collation::MERGE_SEPARATOR_BYTE) {
U_ASSERT(c != 0);
if(b != 0) {
sink.Append(b);
b = 0;
}
sink.Append(c);
} else {
U_ASSERT((c & 0xf) == 0);
if(b == 0) {
b = c;
} else {
sink.Append(b | (c >> 4));
b = 0;
}
}
}
if(b != 0) {
sink.Append(b);
}
}
if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
if(!callback.needToWrite(Collation::TERTIARY_LEVEL)) { return; }
ok &= tertiaries.isOk();
sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
tertiaries.appendTo(sink);
}
if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
if(!callback.needToWrite(Collation::QUATERNARY_LEVEL)) { return; }
ok &= quaternaries.isOk();
sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
quaternaries.appendTo(sink);
}
if(!ok || !sink.IsOk()) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
}
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_COLLATION