scuffed-code/icu4c/source/test/intltest/tstnorm.cpp

1758 lines
68 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/********************************************************************
* COPYRIGHT:
* Copyright (c) 1997-2016, International Business Machines Corporation and
* others. All Rights Reserved.
********************************************************************/
#include "unicode/utypes.h"
#if !UCONFIG_NO_NORMALIZATION
#include "unicode/uchar.h"
#include "unicode/errorcode.h"
#include "unicode/normlzr.h"
#include "unicode/stringoptions.h"
#include "unicode/uniset.h"
#include "unicode/usetiter.h"
#include "unicode/schriter.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "cstring.h"
#include "normalizer2impl.h"
#include "testutil.h"
#include "tstnorm.h"
#define ARRAY_LENGTH(array) UPRV_LENGTHOF(array)
void BasicNormalizerTest::runIndexedTest(int32_t index, UBool exec,
const char* &name, char* /*par*/) {
if(exec) {
logln("TestSuite BasicNormalizerTest: ");
}
TESTCASE_AUTO_BEGIN;
TESTCASE_AUTO(TestDecomp);
TESTCASE_AUTO(TestCompatDecomp);
TESTCASE_AUTO(TestCanonCompose);
TESTCASE_AUTO(TestCompatCompose);
TESTCASE_AUTO(TestPrevious);
TESTCASE_AUTO(TestHangulDecomp);
TESTCASE_AUTO(TestHangulCompose);
TESTCASE_AUTO(TestTibetan);
TESTCASE_AUTO(TestCompositionExclusion);
TESTCASE_AUTO(TestZeroIndex);
TESTCASE_AUTO(TestVerisign);
TESTCASE_AUTO(TestPreviousNext);
TESTCASE_AUTO(TestNormalizerAPI);
TESTCASE_AUTO(TestConcatenate);
TESTCASE_AUTO(FindFoldFCDExceptions);
TESTCASE_AUTO(TestCompare);
TESTCASE_AUTO(TestSkippable);
#if !UCONFIG_NO_FILE_IO && !UCONFIG_NO_LEGACY_CONVERSION
TESTCASE_AUTO(TestCustomComp);
TESTCASE_AUTO(TestCustomFCC);
#endif
TESTCASE_AUTO(TestFilteredNormalizer2Coverage);
TESTCASE_AUTO(TestNormalizeUTF8WithEdits);
TESTCASE_AUTO(TestLowMappingToEmpty_D);
TESTCASE_AUTO(TestLowMappingToEmpty_FCD);
TESTCASE_AUTO(TestNormalizeIllFormedText);
TESTCASE_AUTO(TestComposeJamoTBase);
TESTCASE_AUTO_END;
}
/**
* Convert Java-style strings with \u Unicode escapes into UnicodeString objects
*/
static UnicodeString str(const char *input)
{
UnicodeString str(input, ""); // Invariant conversion
return str.unescape();
}
BasicNormalizerTest::BasicNormalizerTest()
{
// canonTest
// Input Decomposed Composed
canonTests[0][0] = str("cat"); canonTests[0][1] = str("cat"); canonTests[0][2] = str("cat");
canonTests[1][0] = str("\\u00e0ardvark"); canonTests[1][1] = str("a\\u0300ardvark"); canonTests[1][2] = str("\\u00e0ardvark");
canonTests[2][0] = str("\\u1e0a"); canonTests[2][1] = str("D\\u0307"); canonTests[2][2] = str("\\u1e0a"); // D-dot_above
canonTests[3][0] = str("D\\u0307"); canonTests[3][1] = str("D\\u0307"); canonTests[3][2] = str("\\u1e0a"); // D dot_above
canonTests[4][0] = str("\\u1e0c\\u0307"); canonTests[4][1] = str("D\\u0323\\u0307"); canonTests[4][2] = str("\\u1e0c\\u0307"); // D-dot_below dot_above
canonTests[5][0] = str("\\u1e0a\\u0323"); canonTests[5][1] = str("D\\u0323\\u0307"); canonTests[5][2] = str("\\u1e0c\\u0307"); // D-dot_above dot_below
canonTests[6][0] = str("D\\u0307\\u0323"); canonTests[6][1] = str("D\\u0323\\u0307"); canonTests[6][2] = str("\\u1e0c\\u0307"); // D dot_below dot_above
canonTests[7][0] = str("\\u1e10\\u0307\\u0323"); canonTests[7][1] = str("D\\u0327\\u0323\\u0307"); canonTests[7][2] = str("\\u1e10\\u0323\\u0307"); // D dot_below cedilla dot_above
canonTests[8][0] = str("D\\u0307\\u0328\\u0323"); canonTests[8][1] = str("D\\u0328\\u0323\\u0307"); canonTests[8][2] = str("\\u1e0c\\u0328\\u0307"); // D dot_above ogonek dot_below
canonTests[9][0] = str("\\u1E14"); canonTests[9][1] = str("E\\u0304\\u0300"); canonTests[9][2] = str("\\u1E14"); // E-macron-grave
canonTests[10][0] = str("\\u0112\\u0300"); canonTests[10][1] = str("E\\u0304\\u0300"); canonTests[10][2] = str("\\u1E14"); // E-macron + grave
canonTests[11][0] = str("\\u00c8\\u0304"); canonTests[11][1] = str("E\\u0300\\u0304"); canonTests[11][2] = str("\\u00c8\\u0304"); // E-grave + macron
canonTests[12][0] = str("\\u212b"); canonTests[12][1] = str("A\\u030a"); canonTests[12][2] = str("\\u00c5"); // angstrom_sign
canonTests[13][0] = str("\\u00c5"); canonTests[13][1] = str("A\\u030a"); canonTests[13][2] = str("\\u00c5"); // A-ring
canonTests[14][0] = str("\\u00C4ffin"); canonTests[14][1] = str("A\\u0308ffin"); canonTests[14][2] = str("\\u00C4ffin");
canonTests[15][0] = str("\\u00C4\\uFB03n"); canonTests[15][1] = str("A\\u0308\\uFB03n"); canonTests[15][2] = str("\\u00C4\\uFB03n");
canonTests[16][0] = str("Henry IV"); canonTests[16][1] = str("Henry IV"); canonTests[16][2] = str("Henry IV");
canonTests[17][0] = str("Henry \\u2163"); canonTests[17][1] = str("Henry \\u2163"); canonTests[17][2] = str("Henry \\u2163");
canonTests[18][0] = str("\\u30AC"); canonTests[18][1] = str("\\u30AB\\u3099"); canonTests[18][2] = str("\\u30AC"); // ga (Katakana)
canonTests[19][0] = str("\\u30AB\\u3099"); canonTests[19][1] = str("\\u30AB\\u3099"); canonTests[19][2] = str("\\u30AC"); // ka + ten
canonTests[20][0] = str("\\uFF76\\uFF9E"); canonTests[20][1] = str("\\uFF76\\uFF9E"); canonTests[20][2] = str("\\uFF76\\uFF9E"); // hw_ka + hw_ten
canonTests[21][0] = str("\\u30AB\\uFF9E"); canonTests[21][1] = str("\\u30AB\\uFF9E"); canonTests[21][2] = str("\\u30AB\\uFF9E"); // ka + hw_ten
canonTests[22][0] = str("\\uFF76\\u3099"); canonTests[22][1] = str("\\uFF76\\u3099"); canonTests[22][2] = str("\\uFF76\\u3099"); // hw_ka + ten
canonTests[23][0] = str("A\\u0300\\u0316"); canonTests[23][1] = str("A\\u0316\\u0300"); canonTests[23][2] = str("\\u00C0\\u0316");
/* compatTest */
// Input Decomposed Composed
compatTests[0][0] = str("cat"); compatTests[0][1] = str("cat"); compatTests[0][2] = str("cat") ;
compatTests[1][0] = str("\\uFB4f"); compatTests[1][1] = str("\\u05D0\\u05DC"); compatTests[1][2] = str("\\u05D0\\u05DC"); // Alef-Lamed vs. Alef, Lamed
compatTests[2][0] = str("\\u00C4ffin"); compatTests[2][1] = str("A\\u0308ffin"); compatTests[2][2] = str("\\u00C4ffin") ;
compatTests[3][0] = str("\\u00C4\\uFB03n"); compatTests[3][1] = str("A\\u0308ffin"); compatTests[3][2] = str("\\u00C4ffin") ; // ffi ligature -> f + f + i
compatTests[4][0] = str("Henry IV"); compatTests[4][1] = str("Henry IV"); compatTests[4][2] = str("Henry IV") ;
compatTests[5][0] = str("Henry \\u2163"); compatTests[5][1] = str("Henry IV"); compatTests[5][2] = str("Henry IV") ;
compatTests[6][0] = str("\\u30AC"); compatTests[6][1] = str("\\u30AB\\u3099"); compatTests[6][2] = str("\\u30AC") ; // ga (Katakana)
compatTests[7][0] = str("\\u30AB\\u3099"); compatTests[7][1] = str("\\u30AB\\u3099"); compatTests[7][2] = str("\\u30AC") ; // ka + ten
compatTests[8][0] = str("\\uFF76\\u3099"); compatTests[8][1] = str("\\u30AB\\u3099"); compatTests[8][2] = str("\\u30AC") ; // hw_ka + ten
/* These two are broken in Unicode 2.1.2 but fixed in 2.1.5 and later */
compatTests[9][0] = str("\\uFF76\\uFF9E"); compatTests[9][1] = str("\\u30AB\\u3099"); compatTests[9][2] = str("\\u30AC") ; // hw_ka + hw_ten
compatTests[10][0] = str("\\u30AB\\uFF9E"); compatTests[10][1] = str("\\u30AB\\u3099"); compatTests[10][2] = str("\\u30AC") ; // ka + hw_ten
/* Hangul Canonical */
// Input Decomposed Composed
hangulCanon[0][0] = str("\\ud4db"); hangulCanon[0][1] = str("\\u1111\\u1171\\u11b6"); hangulCanon[0][2] = str("\\ud4db") ;
hangulCanon[1][0] = str("\\u1111\\u1171\\u11b6"), hangulCanon[1][1] = str("\\u1111\\u1171\\u11b6"), hangulCanon[1][2] = str("\\ud4db");
}
BasicNormalizerTest::~BasicNormalizerTest()
{
}
void BasicNormalizerTest::TestPrevious()
{
Normalizer* norm = new Normalizer("", UNORM_NFD);
logln("testing decomp...");
uint32_t i;
for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
backAndForth(norm, canonTests[i][0]);
}
logln("testing compose...");
norm->setMode(UNORM_NFC);
for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
backAndForth(norm, canonTests[i][0]);
}
delete norm;
}
void BasicNormalizerTest::TestDecomp()
{
Normalizer* norm = new Normalizer("", UNORM_NFD);
iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 1);
staticTest(UNORM_NFD, 0, canonTests, ARRAY_LENGTH(canonTests), 1);
delete norm;
}
void BasicNormalizerTest::TestCompatDecomp()
{
Normalizer* norm = new Normalizer("", UNORM_NFKD);
iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 1);
staticTest(UNORM_NFKD, 0,
compatTests, ARRAY_LENGTH(compatTests), 1);
delete norm;
}
void BasicNormalizerTest::TestCanonCompose()
{
Normalizer* norm = new Normalizer("", UNORM_NFC);
iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 2);
staticTest(UNORM_NFC, 0, canonTests,
ARRAY_LENGTH(canonTests), 2);
delete norm;
}
void BasicNormalizerTest::TestCompatCompose()
{
Normalizer* norm = new Normalizer("", UNORM_NFKC);
iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 2);
staticTest(UNORM_NFKC, 0,
compatTests, ARRAY_LENGTH(compatTests), 2);
delete norm;
}
//-------------------------------------------------------------------------------
void BasicNormalizerTest::TestHangulCompose()
{
// Make sure that the static composition methods work
logln("Canonical composition...");
staticTest(UNORM_NFC, 0, hangulCanon, ARRAY_LENGTH(hangulCanon), 2);
logln("Compatibility composition...");
// Now try iterative composition....
logln("Static composition...");
Normalizer* norm = new Normalizer("", UNORM_NFC);
iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 2);
norm->setMode(UNORM_NFKC);
// And finally, make sure you can do it in reverse too
logln("Reverse iteration...");
norm->setMode(UNORM_NFC);
for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
backAndForth(norm, hangulCanon[i][0]);
}
delete norm;
}
void BasicNormalizerTest::TestHangulDecomp()
{
// Make sure that the static decomposition methods work
logln("Canonical decomposition...");
staticTest(UNORM_NFD, 0, hangulCanon, ARRAY_LENGTH(hangulCanon), 1);
logln("Compatibility decomposition...");
// Now the iterative decomposition methods...
logln("Iterative decomposition...");
Normalizer* norm = new Normalizer("", UNORM_NFD);
iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 1);
norm->setMode(UNORM_NFKD);
// And finally, make sure you can do it in reverse too
logln("Reverse iteration...");
norm->setMode(UNORM_NFD);
for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
backAndForth(norm, hangulCanon[i][0]);
}
delete norm;
}
/**
* The Tibetan vowel sign AA, 0f71, was messed up prior to Unicode version 2.1.9.
*/
void BasicNormalizerTest::TestTibetan(void) {
UnicodeString decomp[1][3];
decomp[0][0] = str("\\u0f77");
decomp[0][1] = str("\\u0f77");
decomp[0][2] = str("\\u0fb2\\u0f71\\u0f80");
UnicodeString compose[1][3];
compose[0][0] = str("\\u0fb2\\u0f71\\u0f80");
compose[0][1] = str("\\u0fb2\\u0f71\\u0f80");
compose[0][2] = str("\\u0fb2\\u0f71\\u0f80");
staticTest(UNORM_NFD, 0, decomp, ARRAY_LENGTH(decomp), 1);
staticTest(UNORM_NFKD, 0, decomp, ARRAY_LENGTH(decomp), 2);
staticTest(UNORM_NFC, 0, compose, ARRAY_LENGTH(compose), 1);
staticTest(UNORM_NFKC, 0, compose, ARRAY_LENGTH(compose), 2);
}
/**
* Make sure characters in the CompositionExclusion.txt list do not get
* composed to.
*/
void BasicNormalizerTest::TestCompositionExclusion(void) {
// This list is generated from CompositionExclusion.txt.
// Update whenever the normalizer tables are updated. Note
// that we test all characters listed, even those that can be
// derived from the Unicode DB and are therefore commented
// out.
// ### TODO read composition exclusion from source/data/unidata file
// and test against that
UnicodeString EXCLUDED = str(
"\\u0340\\u0341\\u0343\\u0344\\u0374\\u037E\\u0387\\u0958"
"\\u0959\\u095A\\u095B\\u095C\\u095D\\u095E\\u095F\\u09DC"
"\\u09DD\\u09DF\\u0A33\\u0A36\\u0A59\\u0A5A\\u0A5B\\u0A5E"
"\\u0B5C\\u0B5D\\u0F43\\u0F4D\\u0F52\\u0F57\\u0F5C\\u0F69"
"\\u0F73\\u0F75\\u0F76\\u0F78\\u0F81\\u0F93\\u0F9D\\u0FA2"
"\\u0FA7\\u0FAC\\u0FB9\\u1F71\\u1F73\\u1F75\\u1F77\\u1F79"
"\\u1F7B\\u1F7D\\u1FBB\\u1FBE\\u1FC9\\u1FCB\\u1FD3\\u1FDB"
"\\u1FE3\\u1FEB\\u1FEE\\u1FEF\\u1FF9\\u1FFB\\u1FFD\\u2000"
"\\u2001\\u2126\\u212A\\u212B\\u2329\\u232A\\uF900\\uFA10"
"\\uFA12\\uFA15\\uFA20\\uFA22\\uFA25\\uFA26\\uFA2A\\uFB1F"
"\\uFB2A\\uFB2B\\uFB2C\\uFB2D\\uFB2E\\uFB2F\\uFB30\\uFB31"
"\\uFB32\\uFB33\\uFB34\\uFB35\\uFB36\\uFB38\\uFB39\\uFB3A"
"\\uFB3B\\uFB3C\\uFB3E\\uFB40\\uFB41\\uFB43\\uFB44\\uFB46"
"\\uFB47\\uFB48\\uFB49\\uFB4A\\uFB4B\\uFB4C\\uFB4D\\uFB4E"
);
UErrorCode status = U_ZERO_ERROR;
for (int32_t i=0; i<EXCLUDED.length(); ++i) {
UnicodeString a(EXCLUDED.charAt(i));
UnicodeString b;
UnicodeString c;
Normalizer::normalize(a, UNORM_NFKD, 0, b, status);
Normalizer::normalize(b, UNORM_NFC, 0, c, status);
if (c == a) {
errln("FAIL: " + hex(a) + " x DECOMP_COMPAT => " +
hex(b) + " x COMPOSE => " +
hex(c));
} else if (verbose) {
logln("Ok: " + hex(a) + " x DECOMP_COMPAT => " +
hex(b) + " x COMPOSE => " +
hex(c));
}
}
}
/**
* Test for a problem that showed up just before ICU 1.6 release
* having to do with combining characters with an index of zero.
* Such characters do not participate in any canonical
* decompositions. However, having an index of zero means that
* they all share one typeMask[] entry, that is, they all have to
* map to the same canonical class, which is not the case, in
* reality.
*/
void BasicNormalizerTest::TestZeroIndex(void) {
const char* DATA[] = {
// Expect col1 x COMPOSE_COMPAT => col2
// Expect col2 x DECOMP => col3
"A\\u0316\\u0300", "\\u00C0\\u0316", "A\\u0316\\u0300",
"A\\u0300\\u0316", "\\u00C0\\u0316", "A\\u0316\\u0300",
"A\\u0327\\u0300", "\\u00C0\\u0327", "A\\u0327\\u0300",
"c\\u0321\\u0327", "c\\u0321\\u0327", "c\\u0321\\u0327",
"c\\u0327\\u0321", "\\u00E7\\u0321", "c\\u0327\\u0321",
};
int32_t DATA_length = UPRV_LENGTHOF(DATA);
for (int32_t i=0; i<DATA_length; i+=3) {
UErrorCode status = U_ZERO_ERROR;
UnicodeString a(DATA[i], "");
a = a.unescape();
UnicodeString b;
Normalizer::normalize(a, UNORM_NFKC, 0, b, status);
if (U_FAILURE(status)) {
dataerrln("Error calling normalize UNORM_NFKC: %s", u_errorName(status));
} else {
UnicodeString exp(DATA[i+1], "");
exp = exp.unescape();
if (b == exp) {
logln((UnicodeString)"Ok: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b));
} else {
errln((UnicodeString)"FAIL: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b) +
", expect " + hex(exp));
}
}
Normalizer::normalize(b, UNORM_NFD, 0, a, status);
if (U_FAILURE(status)) {
dataerrln("Error calling normalize UNORM_NFD: %s", u_errorName(status));
} else {
UnicodeString exp = UnicodeString(DATA[i+2], "").unescape();
if (a == exp) {
logln((UnicodeString)"Ok: " + hex(b) + " x DECOMP => " + hex(a));
} else {
errln((UnicodeString)"FAIL: " + hex(b) + " x DECOMP => " + hex(a) +
", expect " + hex(exp));
}
}
}
}
/**
* Run a few specific cases that are failing for Verisign.
*/
void BasicNormalizerTest::TestVerisign(void) {
/*
> Their input:
> 05B8 05B9 05B1 0591 05C3 05B0 05AC 059F
> Their output (supposedly from ICU):
> 05B8 05B1 05B9 0591 05C3 05B0 05AC 059F
> My output from charlint:
> 05B1 05B8 05B9 0591 05C3 05B0 05AC 059F
05B8 05B9 05B1 0591 05C3 05B0 05AC 059F => 05B1 05B8 05B9 0591 05C3 05B0
05AC 059F
U+05B8 18 E HEBREW POINT QAMATS
U+05B9 19 F HEBREW POINT HOLAM
U+05B1 11 HEBREW POINT HATAF SEGOL
U+0591 220 HEBREW ACCENT ETNAHTA
U+05C3 0 HEBREW PUNCTUATION SOF PASUQ
U+05B0 10 HEBREW POINT SHEVA
U+05AC 230 HEBREW ACCENT ILUY
U+059F 230 HEBREW ACCENT QARNEY PARA
U+05B1 11 HEBREW POINT HATAF SEGOL
U+05B8 18 HEBREW POINT QAMATS
U+05B9 19 HEBREW POINT HOLAM
U+0591 220 HEBREW ACCENT ETNAHTA
U+05C3 0 HEBREW PUNCTUATION SOF PASUQ
U+05B0 10 HEBREW POINT SHEVA
U+05AC 230 HEBREW ACCENT ILUY
U+059F 230 HEBREW ACCENT QARNEY PARA
Wrong result:
U+05B8 18 HEBREW POINT QAMATS
U+05B1 11 HEBREW POINT HATAF SEGOL
U+05B9 19 HEBREW POINT HOLAM
U+0591 220 HEBREW ACCENT ETNAHTA
U+05C3 0 HEBREW PUNCTUATION SOF PASUQ
U+05B0 10 HEBREW POINT SHEVA
U+05AC 230 HEBREW ACCENT ILUY
U+059F 230 HEBREW ACCENT QARNEY PARA
> Their input:
>0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD
>Their output (supposedly from ICU):
>0592 05B0 05B7 05BC 05A5 05C0 05AD 05C4
>My output from charlint:
>05B0 05B7 05BC 05A5 0592 05C0 05AD 05C4
0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD => 05B0 05B7 05BC 05A5 0592 05C0
05AD 05C4
U+0592 230 HEBREW ACCENT SEGOL
U+05B7 17 HEBREW POINT PATAH
U+05BC 21 HEBREW POINT DAGESH OR MAPIQ
U+05A5 220 HEBREW ACCENT MERKHA
U+05B0 10 HEBREW POINT SHEVA
U+05C0 0 HEBREW PUNCTUATION PASEQ
U+05C4 230 HEBREW MARK UPPER DOT
U+05AD 222 HEBREW ACCENT DEHI
U+05B0 10 HEBREW POINT SHEVA
U+05B7 17 HEBREW POINT PATAH
U+05BC 21 HEBREW POINT DAGESH OR MAPIQ
U+05A5 220 HEBREW ACCENT MERKHA
U+0592 230 HEBREW ACCENT SEGOL
U+05C0 0 HEBREW PUNCTUATION PASEQ
U+05AD 222 HEBREW ACCENT DEHI
U+05C4 230 HEBREW MARK UPPER DOT
Wrong result:
U+0592 230 HEBREW ACCENT SEGOL
U+05B0 10 HEBREW POINT SHEVA
U+05B7 17 HEBREW POINT PATAH
U+05BC 21 HEBREW POINT DAGESH OR MAPIQ
U+05A5 220 HEBREW ACCENT MERKHA
U+05C0 0 HEBREW PUNCTUATION PASEQ
U+05AD 222 HEBREW ACCENT DEHI
U+05C4 230 HEBREW MARK UPPER DOT
*/
UnicodeString data[2][3];
data[0][0] = str("\\u05B8\\u05B9\\u05B1\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
data[0][1] = str("\\u05B1\\u05B8\\u05B9\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
data[0][2] = str("");
data[1][0] = str("\\u0592\\u05B7\\u05BC\\u05A5\\u05B0\\u05C0\\u05C4\\u05AD");
data[1][1] = str("\\u05B0\\u05B7\\u05BC\\u05A5\\u0592\\u05C0\\u05AD\\u05C4");
data[1][2] = str("");
staticTest(UNORM_NFD, 0, data, ARRAY_LENGTH(data), 1);
staticTest(UNORM_NFC, 0, data, ARRAY_LENGTH(data), 1);
}
//------------------------------------------------------------------------
// Internal utilities
//
UnicodeString BasicNormalizerTest::hex(UChar ch) {
UnicodeString result;
return appendHex(ch, 4, result);
}
UnicodeString BasicNormalizerTest::hex(const UnicodeString& s) {
UnicodeString result;
for (int i = 0; i < s.length(); ++i) {
if (i != 0) result += (UChar)0x2c/*,*/;
appendHex(s[i], 4, result);
}
return result;
}
inline static void insert(UnicodeString& dest, int pos, UChar32 ch)
{
dest.replace(pos, 0, ch);
}
void BasicNormalizerTest::backAndForth(Normalizer* iter, const UnicodeString& input)
{
UChar32 ch;
UErrorCode status = U_ZERO_ERROR;
iter->setText(input, status);
// Run through the iterator forwards and stick it into a StringBuffer
UnicodeString forward;
for (ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
forward += ch;
}
// Now do it backwards
UnicodeString reverse;
for (ch = iter->last(); ch != iter->DONE; ch = iter->previous()) {
insert(reverse, 0, ch);
}
if (forward != reverse) {
errln("Forward/reverse mismatch for input " + hex(input)
+ ", forward: " + hex(forward) + ", backward: " + hex(reverse));
}
}
void BasicNormalizerTest::staticTest(UNormalizationMode mode, int options,
UnicodeString tests[][3], int length,
int outCol)
{
UErrorCode status = U_ZERO_ERROR;
for (int i = 0; i < length; i++)
{
UnicodeString& input = tests[i][0];
UnicodeString& expect = tests[i][outCol];
logln("Normalizing '" + input + "' (" + hex(input) + ")" );
UnicodeString output;
Normalizer::normalize(input, mode, options, output, status);
if (output != expect) {
dataerrln(UnicodeString("ERROR: case ") + i + " normalized " + hex(input) + "\n"
+ " expected " + hex(expect) + "\n"
+ " static got " + hex(output) );
}
}
}
void BasicNormalizerTest::iterateTest(Normalizer* iter,
UnicodeString tests[][3], int length,
int outCol)
{
UErrorCode status = U_ZERO_ERROR;
for (int i = 0; i < length; i++)
{
UnicodeString& input = tests[i][0];
UnicodeString& expect = tests[i][outCol];
logln("Normalizing '" + input + "' (" + hex(input) + ")" );
iter->setText(input, status);
assertEqual(input, expect, iter, UnicodeString("ERROR: case ") + i + " ");
}
}
void BasicNormalizerTest::assertEqual(const UnicodeString& input,
const UnicodeString& expected,
Normalizer* iter,
const UnicodeString& errPrefix)
{
UnicodeString result;
for (UChar32 ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
result += ch;
}
if (result != expected) {
dataerrln(errPrefix + "normalized " + hex(input) + "\n"
+ " expected " + hex(expected) + "\n"
+ " iterate got " + hex(result) );
}
}
// helper class for TestPreviousNext()
// simple UTF-32 character iterator
class UChar32Iterator {
public:
UChar32Iterator(const UChar32 *text, int32_t len, int32_t index) :
s(text), length(len), i(index) {}
UChar32 current() {
if(i<length) {
return s[i];
} else {
return 0xffff;
}
}
UChar32 next() {
if(i<length) {
return s[i++];
} else {
return 0xffff;
}
}
UChar32 previous() {
if(i>0) {
return s[--i];
} else {
return 0xffff;
}
}
int32_t getIndex() {
return i;
}
private:
const UChar32 *s;
int32_t length, i;
};
void
BasicNormalizerTest::TestPreviousNext(const UChar *src, int32_t srcLength,
const UChar32 *expect, int32_t expectLength,
const int32_t *expectIndex, // its length=expectLength+1
int32_t srcMiddle, int32_t expectMiddle,
const char *moves,
UNormalizationMode mode,
const char *name) {
// iterators
Normalizer iter(src, srcLength, mode);
// test getStaticClassID and getDynamicClassID
if(iter.getDynamicClassID() != Normalizer::getStaticClassID()) {
errln("getStaticClassID != getDynamicClassID for Normalizer.");
}
UChar32Iterator iter32(expect, expectLength, expectMiddle);
UChar32 c1, c2;
char m;
// initially set the indexes into the middle of the strings
iter.setIndexOnly(srcMiddle);
// move around and compare the iteration code points with
// the expected ones
const char *move=moves;
while((m=*move++)!=0) {
if(m=='-') {
c1=iter.previous();
c2=iter32.previous();
} else if(m=='0') {
c1=iter.current();
c2=iter32.current();
} else /* m=='+' */ {
c1=iter.next();
c2=iter32.next();
}
// compare results
if(c1!=c2) {
// copy the moves until the current (m) move, and terminate
char history[64];
uprv_strcpy(history, moves);
history[move-moves]=0;
dataerrln("error: mismatch in Normalizer iteration (%s) at %s: "
"got c1=U+%04lx != expected c2=U+%04lx",
name, history, c1, c2);
break;
}
// compare indexes
if(iter.getIndex()!=expectIndex[iter32.getIndex()]) {
// copy the moves until the current (m) move, and terminate
char history[64];
uprv_strcpy(history, moves);
history[move-moves]=0;
errln("error: index mismatch in Normalizer iteration (%s) at %s: "
"Normalizer index %ld expected %ld\n",
name, history, iter.getIndex(), expectIndex[iter32.getIndex()]);
break;
}
}
}
void
BasicNormalizerTest::TestPreviousNext() {
// src and expect strings
static const UChar src[]={
U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
U16_LEAD(0x1d15f), U16_TRAIL(0x1d15f),
0xc4,
0x1ed0
};
static const UChar32 expect[]={
0x831d,
0x1d158, 0x1d165,
0x41, 0x308,
0x4f, 0x302, 0x301
};
// expected src indexes corresponding to expect indexes
static const int32_t expectIndex[]={
0,
2, 2,
4, 4,
5, 5, 5,
6 // behind last character
};
// src and expect strings for regression test for j2911
static const UChar src_j2911[]={
U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
0xc4,
0x4f, 0x302, 0x301
};
static const UChar32 expect_j2911[]={
0x831d,
0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
0xc4,
0x1ed0
};
// expected src indexes corresponding to expect indexes
static const int32_t expectIndex_j2911[]={
0,
2, 3,
4,
5,
8 // behind last character
};
// initial indexes into the src and expect strings
// for both sets of test data
enum {
SRC_MIDDLE=4,
EXPECT_MIDDLE=3,
SRC_MIDDLE_2=2,
EXPECT_MIDDLE_2=1
};
// movement vector
// - for previous(), 0 for current(), + for next()
// for both sets of test data
static const char *const moves="0+0+0--0-0-+++0--+++++++0--------";
TestPreviousNext(src, UPRV_LENGTHOF(src),
expect, UPRV_LENGTHOF(expect),
expectIndex,
SRC_MIDDLE, EXPECT_MIDDLE,
moves, UNORM_NFD, "basic");
TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
expect_j2911, UPRV_LENGTHOF(expect_j2911),
expectIndex_j2911,
SRC_MIDDLE, EXPECT_MIDDLE,
moves, UNORM_NFKC, "j2911");
// try again from different "middle" indexes
TestPreviousNext(src, UPRV_LENGTHOF(src),
expect, UPRV_LENGTHOF(expect),
expectIndex,
SRC_MIDDLE_2, EXPECT_MIDDLE_2,
moves, UNORM_NFD, "basic_2");
TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
expect_j2911, UPRV_LENGTHOF(expect_j2911),
expectIndex_j2911,
SRC_MIDDLE_2, EXPECT_MIDDLE_2,
moves, UNORM_NFKC, "j2911_2");
}
void BasicNormalizerTest::TestConcatenate() {
static const char *const
cases[][4]={
/* mode, left, right, result */
{
"C",
"re",
"\\u0301sum\\u00e9",
"r\\u00e9sum\\u00e9"
},
{
"C",
"a\\u1100",
"\\u1161bcdefghijk",
"a\\uac00bcdefghijk"
},
/* ### TODO: add more interesting cases */
{
"D",
"\\u03B1\\u0345",
"\\u0C4D\\U000110BA\\U0001D169",
"\\u03B1\\U0001D169\\U000110BA\\u0C4D\\u0345"
}
};
UnicodeString left, right, expect, result, r;
UErrorCode errorCode;
UNormalizationMode mode;
int32_t i;
/* test concatenation */
for(i=0; i<UPRV_LENGTHOF(cases); ++i) {
switch(*cases[i][0]) {
case 'C': mode=UNORM_NFC; break;
case 'D': mode=UNORM_NFD; break;
case 'c': mode=UNORM_NFKC; break;
case 'd': mode=UNORM_NFKD; break;
default: mode=UNORM_NONE; break;
}
left=UnicodeString(cases[i][1], "").unescape();
right=UnicodeString(cases[i][2], "").unescape();
expect=UnicodeString(cases[i][3], "").unescape();
//result=r=UnicodeString();
errorCode=U_ZERO_ERROR;
r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
if(U_FAILURE(errorCode) || /*result!=r ||*/ result!=expect) {
dataerrln("error in Normalizer::concatenate(), cases[] fails with "+
UnicodeString(u_errorName(errorCode))+", result==expect: expected: "+
hex(expect)+" =========> got: " + hex(result));
}
}
/* test error cases */
/* left.getBuffer()==result.getBuffer() */
result=r=expect=UnicodeString("zz", "");
errorCode=U_UNEXPECTED_TOKEN;
r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
if(errorCode!=U_UNEXPECTED_TOKEN || result!=r || !result.isBogus()) {
errln("error in Normalizer::concatenate(), violates UErrorCode protocol");
}
left.setToBogus();
errorCode=U_ZERO_ERROR;
r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR || result!=r || !result.isBogus()) {
errln("error in Normalizer::concatenate(), does not detect left.isBogus()");
}
}
// reference implementation of Normalizer::compare
static int32_t
ref_norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
UnicodeString r1, r2, t1, t2;
int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
if(options&U_COMPARE_IGNORE_CASE) {
Normalizer::decompose(s1, FALSE, normOptions, r1, errorCode);
Normalizer::decompose(s2, FALSE, normOptions, r2, errorCode);
r1.foldCase(options);
r2.foldCase(options);
} else {
r1=s1;
r2=s2;
}
Normalizer::decompose(r1, FALSE, normOptions, t1, errorCode);
Normalizer::decompose(r2, FALSE, normOptions, t2, errorCode);
if(options&U_COMPARE_CODE_POINT_ORDER) {
return t1.compareCodePointOrder(t2);
} else {
return t1.compare(t2);
}
}
// test wrapper for Normalizer::compare, sets UNORM_INPUT_IS_FCD appropriately
static int32_t
_norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
if( UNORM_YES==Normalizer::quickCheck(s1, UNORM_FCD, normOptions, errorCode) &&
UNORM_YES==Normalizer::quickCheck(s2, UNORM_FCD, normOptions, errorCode)) {
options|=UNORM_INPUT_IS_FCD;
}
return Normalizer::compare(s1, s2, options, errorCode);
}
// reference implementation of UnicodeString::caseCompare
static int32_t
ref_case_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options) {
UnicodeString t1, t2;
t1=s1;
t2=s2;
t1.foldCase(options);
t2.foldCase(options);
if(options&U_COMPARE_CODE_POINT_ORDER) {
return t1.compareCodePointOrder(t2);
} else {
return t1.compare(t2);
}
}
// reduce an integer to -1/0/1
static inline int32_t
_sign(int32_t value) {
if(value==0) {
return 0;
} else {
return (value>>31)|1;
}
}
static const char *
_signString(int32_t value) {
if(value<0) {
return "<0";
} else if(value==0) {
return "=0";
} else /* value>0 */ {
return ">0";
}
}
void
BasicNormalizerTest::TestCompare() {
// test Normalizer::compare and unorm_compare (thinly wrapped by the former)
// by comparing it with its semantic equivalent
// since we trust the pieces, this is sufficient
// test each string with itself and each other
// each time with all options
static const char *const
strings[]={
// some cases from NormalizationTest.txt
// 0..3
"D\\u031B\\u0307\\u0323",
"\\u1E0C\\u031B\\u0307",
"D\\u031B\\u0323\\u0307",
"d\\u031B\\u0323\\u0307",
// 4..6
"\\u00E4",
"a\\u0308",
"A\\u0308",
// Angstrom sign = A ring
// 7..10
"\\u212B",
"\\u00C5",
"A\\u030A",
"a\\u030A",
// 11.14
"a\\u059A\\u0316\\u302A\\u032Fb",
"a\\u302A\\u0316\\u032F\\u059Ab",
"a\\u302A\\u0316\\u032F\\u059Ab",
"A\\u059A\\u0316\\u302A\\u032Fb",
// from ICU case folding tests
// 15..20
"A\\u00df\\u00b5\\ufb03\\U0001040c\\u0131",
"ass\\u03bcffi\\U00010434i",
"\\u0061\\u0042\\u0131\\u03a3\\u00df\\ufb03\\ud93f\\udfff",
"\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udfff",
"\\u0041\\u0062\\u0131\\u03c3\\u0053\\u0073\\u0066\\u0046\\u0069\\ud93f\\udfff",
"\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udffd",
// U+d800 U+10001 see implementation comment in unorm_cmpEquivFold
// vs. U+10000 at bottom - code point order
// 21..22
"\\ud800\\ud800\\udc01",
"\\ud800\\udc00",
// other code point order tests from ustrtest.cpp
// 23..31
"\\u20ac\\ud801",
"\\u20ac\\ud800\\udc00",
"\\ud800",
"\\ud800\\uff61",
"\\udfff",
"\\uff61\\udfff",
"\\uff61\\ud800\\udc02",
"\\ud800\\udc02",
"\\ud84d\\udc56",
// long strings, see cnormtst.c/TestNormCoverage()
// equivalent if case-insensitive
// 32..33
"\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
"\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"aaaaaaaaaaaaaaaaaazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
"ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
"ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
"\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
"d\\u031B\\u0307\\u0323",
"\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
"\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
"aaaaaaaaaaAAAAAAAAZZZZZZZZZZZZZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
"ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
"ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
"\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
"\\u1E0C\\u031B\\u0307",
// some strings that may make a difference whether the compare function
// case-folds or decomposes first
// 34..41
"\\u0360\\u0345\\u0334",
"\\u0360\\u03b9\\u0334",
"\\u0360\\u1f80\\u0334",
"\\u0360\\u03b1\\u0313\\u03b9\\u0334",
"\\u0360\\u1ffc\\u0334",
"\\u0360\\u03c9\\u03b9\\u0334",
"a\\u0360\\u0345\\u0360\\u0345b",
"a\\u0345\\u0360\\u0345\\u0360b",
// interesting cases for canonical caseless match with turkic i handling
// 42..43
"\\u00cc",
"\\u0069\\u0300",
// strings with post-Unicode 3.2 normalization or normalization corrections
// 44..45
"\\u00e4\\u193b\\U0002f868",
"\\u0061\\u193b\\u0308\\u36fc",
// empty string
// 46
""
};
UnicodeString s[100]; // at least as many items as in strings[] !
// all combinations of options
// UNORM_INPUT_IS_FCD is set automatically if both input strings fulfill FCD conditions
// set UNORM_UNICODE_3_2 in one additional combination
static const struct {
uint32_t options;
const char *name;
} opt[]={
{ 0, "default" },
{ U_COMPARE_CODE_POINT_ORDER, "c.p. order" },
{ U_COMPARE_IGNORE_CASE, "ignore case" },
{ U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE, "c.p. order & ignore case" },
{ U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "ignore case & special i" },
{ U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "c.p. order & ignore case & special i" },
{ UNORM_UNICODE_3_2<<UNORM_COMPARE_NORM_OPTIONS_SHIFT, "Unicode 3.2" }
};
int32_t i, j, k, count=UPRV_LENGTHOF(strings);
int32_t result, refResult;
UErrorCode errorCode;
// create the UnicodeStrings
for(i=0; i<count; ++i) {
s[i]=UnicodeString(strings[i], "").unescape();
}
// test them each with each other
for(i=0; i<count; ++i) {
for(j=i; j<count; ++j) {
for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
// test Normalizer::compare
errorCode=U_ZERO_ERROR;
result=_norm_compare(s[i], s[j], opt[k].options, errorCode);
refResult=ref_norm_compare(s[i], s[j], opt[k].options, errorCode);
if(_sign(result)!=_sign(refResult)) {
errln("Normalizer::compare(%d, %d, %s)%s should be %s %s",
i, j, opt[k].name, _signString(result), _signString(refResult),
U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
}
// test UnicodeString::caseCompare - same internal implementation function
if(opt[k].options&U_COMPARE_IGNORE_CASE) {
errorCode=U_ZERO_ERROR;
result=s[i].caseCompare(s[j], opt[k].options);
refResult=ref_case_compare(s[i], s[j], opt[k].options);
if(_sign(result)!=_sign(refResult)) {
errln("UniStr::caseCompare(%d, %d, %s)%s should be %s %s",
i, j, opt[k].name, _signString(result), _signString(refResult),
U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
}
}
}
}
}
// test cases with i and I to make sure Turkic works
static const UChar iI[]={ 0x49, 0x69, 0x130, 0x131 };
UnicodeSet iSet, set;
UnicodeString s1, s2;
const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode);
if(U_FAILURE(errorCode) || !nfcImpl->ensureCanonIterData(errorCode)) {
dataerrln("Normalizer2Factory::getNFCImpl().ensureCanonIterData() failed: %s",
u_errorName(errorCode));
return;
}
// collect all sets into one for contiguous output
for(i=0; i<UPRV_LENGTHOF(iI); ++i) {
if(nfcImpl->getCanonStartSet(iI[i], iSet)) {
set.addAll(iSet);
}
}
// test all of these precomposed characters
const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
UnicodeSetIterator it(set);
while(it.next() && !it.isString()) {
UChar32 c=it.getCodepoint();
if(!nfcNorm2->getDecomposition(c, s2)) {
dataerrln("NFC.getDecomposition(i-composite U+%04lx) failed", (long)c);
return;
}
s1.setTo(c);
for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
// test Normalizer::compare
errorCode=U_ZERO_ERROR;
result=_norm_compare(s1, s2, opt[k].options, errorCode);
refResult=ref_norm_compare(s1, s2, opt[k].options, errorCode);
if(_sign(result)!=_sign(refResult)) {
errln("Normalizer::compare(U+%04x with its NFD, %s)%s should be %s %s",
c, opt[k].name, _signString(result), _signString(refResult),
U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
}
// test UnicodeString::caseCompare - same internal implementation function
if(opt[k].options&U_COMPARE_IGNORE_CASE) {
errorCode=U_ZERO_ERROR;
result=s1.caseCompare(s2, opt[k].options);
refResult=ref_case_compare(s1, s2, opt[k].options);
if(_sign(result)!=_sign(refResult)) {
errln("UniStr::caseCompare(U+%04x with its NFD, %s)%s should be %s %s",
c, opt[k].name, _signString(result), _signString(refResult),
U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
}
}
}
}
// test getDecomposition() for some characters that do not decompose
if( nfcNorm2->getDecomposition(0x20, s2) ||
nfcNorm2->getDecomposition(0x4e00, s2) ||
nfcNorm2->getDecomposition(0x20002, s2)
) {
errln("NFC.getDecomposition() returns TRUE for characters which do not have decompositions");
}
// test getRawDecomposition() for some characters that do not decompose
if( nfcNorm2->getRawDecomposition(0x20, s2) ||
nfcNorm2->getRawDecomposition(0x4e00, s2) ||
nfcNorm2->getRawDecomposition(0x20002, s2)
) {
errln("NFC.getRawDecomposition() returns TRUE for characters which do not have decompositions");
}
// test composePair() for some pairs of characters that do not compose
if( nfcNorm2->composePair(0x20, 0x301)>=0 ||
nfcNorm2->composePair(0x61, 0x305)>=0 ||
nfcNorm2->composePair(0x1100, 0x1160)>=0 ||
nfcNorm2->composePair(0xac00, 0x11a7)>=0
) {
errln("NFC.composePair() incorrectly composes some pairs of characters");
}
// test FilteredNormalizer2::getDecomposition()
UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff]"), errorCode);
FilteredNormalizer2 fn2(*nfcNorm2, filter);
if( fn2.getDecomposition(0xe4, s1) || !fn2.getDecomposition(0x100, s2) ||
s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
) {
errln("FilteredNormalizer2(NFC, ^A0-FF).getDecomposition() failed");
}
// test FilteredNormalizer2::getRawDecomposition()
if( fn2.getRawDecomposition(0xe4, s1) || !fn2.getRawDecomposition(0x100, s2) ||
s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
) {
errln("FilteredNormalizer2(NFC, ^A0-FF).getRawDecomposition() failed");
}
// test FilteredNormalizer2::composePair()
if( 0x100!=fn2.composePair(0x41, 0x304) ||
fn2.composePair(0xc7, 0x301)>=0 // unfiltered result: U+1E08
) {
errln("FilteredNormalizer2(NFC, ^A0-FF).composePair() failed");
}
}
// verify that case-folding does not un-FCD strings
int32_t
BasicNormalizerTest::countFoldFCDExceptions(uint32_t foldingOptions) {
UnicodeString s, fold, d;
UChar32 c;
int32_t count;
uint8_t cc, trailCC, foldCC, foldTrailCC;
UNormalizationCheckResult qcResult;
int8_t category;
UBool isNFD;
UErrorCode errorCode;
logln("Test if case folding may un-FCD a string (folding options %04lx)", foldingOptions);
count=0;
for(c=0; c<=0x10ffff; ++c) {
errorCode = U_ZERO_ERROR;
category=u_charType(c);
if(category==U_UNASSIGNED) {
continue; // skip unassigned code points
}
if(c==0xac00) {
c=0xd7a3; // skip Hangul - no case folding there
continue;
}
// skip Han blocks - no case folding there either
if(c==0x3400) {
c=0x4db5;
continue;
}
if(c==0x4e00) {
c=0x9fa5;
continue;
}
if(c==0x20000) {
c=0x2a6d6;
continue;
}
s.setTo(c);
// get leading and trailing cc for c
Normalizer::decompose(s, FALSE, 0, d, errorCode);
isNFD= s==d;
cc=u_getCombiningClass(d.char32At(0));
trailCC=u_getCombiningClass(d.char32At(d.length()-1));
// get leading and trailing cc for the case-folding of c
s.foldCase(foldingOptions);
Normalizer::decompose(s, FALSE, 0, d, errorCode);
foldCC=u_getCombiningClass(d.char32At(0));
foldTrailCC=u_getCombiningClass(d.char32At(d.length()-1));
qcResult=Normalizer::quickCheck(s, UNORM_FCD, errorCode);
if (U_FAILURE(errorCode)) {
++count;
dataerrln("U+%04lx: Failed with error %s", u_errorName(errorCode));
}
// bad:
// - character maps to empty string: adjacent characters may then need reordering
// - folding has different leading/trailing cc's, and they don't become just 0
// - folding itself is not FCD
if( qcResult!=UNORM_YES ||
s.isEmpty() ||
(cc!=foldCC && foldCC!=0) || (trailCC!=foldTrailCC && foldTrailCC!=0)
) {
++count;
dataerrln("U+%04lx: case-folding may un-FCD a string (folding options %04lx)", c, foldingOptions);
dataerrln(" cc %02x trailCC %02x foldCC(U+%04lx) %02x foldTrailCC(U+%04lx) %02x quickCheck(folded)=%d", cc, trailCC, d.char32At(0), foldCC, d.char32At(d.length()-1), foldTrailCC, qcResult);
continue;
}
// also bad:
// if a code point is in NFD but its case folding is not, then
// unorm_compare will also fail
if(isNFD && UNORM_YES!=Normalizer::quickCheck(s, UNORM_NFD, errorCode)) {
++count;
errln("U+%04lx: case-folding un-NFDs this character (folding options %04lx)", c, foldingOptions);
}
}
logln("There are %ld code points for which case-folding may un-FCD a string (folding options %04lx)", count, foldingOptions);
return count;
}
void
BasicNormalizerTest::FindFoldFCDExceptions() {
int32_t count;
count=countFoldFCDExceptions(0);
count+=countFoldFCDExceptions(U_FOLD_CASE_EXCLUDE_SPECIAL_I);
if(count>0) {
/*
* If case-folding un-FCDs any strings, then unorm_compare() must be
* re-implemented.
* It currently assumes that one can check for FCD then case-fold
* and then still have FCD strings for raw decomposition without reordering.
*/
dataerrln("error: There are %ld code points for which case-folding may un-FCD a string for all folding options.\n"
"See comment in BasicNormalizerTest::FindFoldFCDExceptions()!", count);
}
}
static void
initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT], UErrorCode &errorCode) {
skipSets[UNORM_NFD].applyPattern(
UNICODE_STRING_SIMPLE("[[:NFD_QC=Yes:]&[:ccc=0:]]"), errorCode);
skipSets[UNORM_NFC].applyPattern(
UNICODE_STRING_SIMPLE("[[:NFC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
skipSets[UNORM_NFKD].applyPattern(
UNICODE_STRING_SIMPLE("[[:NFKD_QC=Yes:]&[:ccc=0:]]"), errorCode);
skipSets[UNORM_NFKC].applyPattern(
UNICODE_STRING_SIMPLE("[[:NFKC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
// Remove from the NFC and NFKC sets all those characters that change
// when a back-combining character is added.
// First, get all of the back-combining characters and their combining classes.
UnicodeSet combineBack("[:NFC_QC=Maybe:]", errorCode);
int32_t numCombineBack=combineBack.size();
int32_t *combineBackCharsAndCc=new int32_t[numCombineBack*2];
UnicodeSetIterator iter(combineBack);
for(int32_t i=0; i<numCombineBack; ++i) {
iter.next();
UChar32 c=iter.getCodepoint();
combineBackCharsAndCc[2*i]=c;
combineBackCharsAndCc[2*i+1]=u_getCombiningClass(c);
}
// We need not look at control codes, Han characters nor Hangul LVT syllables because they
// do not combine forward. LV syllables are already removed.
UnicodeSet notInteresting("[[:C:][:Unified_Ideograph:][:HST=LVT:]]", errorCode);
LocalPointer<UnicodeSet> unsure(&((UnicodeSet *)(skipSets[UNORM_NFC].clone()))->removeAll(notInteresting));
// System.out.format("unsure.size()=%d\n", unsure.size());
// For each character about which we are unsure, see if it changes when we add
// one of the back-combining characters.
const Normalizer2 *norm2=Normalizer2::getNFCInstance(errorCode);
UnicodeString s;
iter.reset(*unsure);
while(iter.next()) {
UChar32 c=iter.getCodepoint();
s.setTo(c);
int32_t cLength=s.length();
int32_t tccc=u_getIntPropertyValue(c, UCHAR_TRAIL_CANONICAL_COMBINING_CLASS);
for(int32_t i=0; i<numCombineBack; ++i) {
// If c's decomposition ends with a character with non-zero combining class, then
// c can only change if it combines with a character with a non-zero combining class.
int32_t cc2=combineBackCharsAndCc[2*i+1];
if(tccc==0 || cc2!=0) {
UChar32 c2=combineBackCharsAndCc[2*i];
s.append(c2);
if(!norm2->isNormalized(s, errorCode)) {
// System.out.format("remove U+%04x (tccc=%d) + U+%04x (cc=%d)\n", c, tccc, c2, cc2);
skipSets[UNORM_NFC].remove(c);
skipSets[UNORM_NFKC].remove(c);
break;
}
s.truncate(cLength);
}
}
}
delete [] combineBackCharsAndCc;
}
static const char *const kModeStrings[UNORM_MODE_COUNT] = {
"?", "none", "D", "KD", "C", "KC", "FCD"
};
void
BasicNormalizerTest::TestSkippable() {
UnicodeSet diff, skipSets[UNORM_MODE_COUNT], expectSets[UNORM_MODE_COUNT];
UnicodeString s, pattern;
/* build NF*Skippable sets from runtime data */
IcuTestErrorCode errorCode(*this, "TestSkippable");
skipSets[UNORM_NFD].applyPattern(UNICODE_STRING_SIMPLE("[:NFD_Inert:]"), errorCode);
skipSets[UNORM_NFKD].applyPattern(UNICODE_STRING_SIMPLE("[:NFKD_Inert:]"), errorCode);
skipSets[UNORM_NFC].applyPattern(UNICODE_STRING_SIMPLE("[:NFC_Inert:]"), errorCode);
skipSets[UNORM_NFKC].applyPattern(UNICODE_STRING_SIMPLE("[:NFKC_Inert:]"), errorCode);
if(errorCode.logDataIfFailureAndReset("UnicodeSet(NF..._Inert) failed")) {
return;
}
/* get expected sets from hardcoded patterns */
initExpectedSkippables(expectSets, errorCode);
errorCode.assertSuccess();
for(int32_t i=UNORM_NONE; i<UNORM_MODE_COUNT; ++i) {
if(skipSets[i]!=expectSets[i]) {
const char *ms=kModeStrings[i];
errln("error: TestSkippable skipSets[%s]!=expectedSets[%s]\n", ms, ms);
// Note: This used to depend on hardcoded UnicodeSet patterns generated by
// Mark's unicodetools.com.ibm.text.UCD.NFSkippable, by
// running com.ibm.text.UCD.Main with the option NFSkippable.
// Since ICU 4.6/Unicode 6, we are generating the
// expectSets ourselves in initSkippables().
s=UNICODE_STRING_SIMPLE("skip-expect=");
(diff=skipSets[i]).removeAll(expectSets[i]).toPattern(pattern, TRUE);
s.append(pattern);
pattern.remove();
s.append(UNICODE_STRING_SIMPLE("\n\nexpect-skip="));
(diff=expectSets[i]).removeAll(skipSets[i]).toPattern(pattern, TRUE);
s.append(pattern);
s.append(UNICODE_STRING_SIMPLE("\n\n"));
errln(s);
}
}
}
struct StringPair { const char *input, *expected; };
void
BasicNormalizerTest::TestCustomComp() {
static const StringPair pairs[]={
{ "\\uD801\\uE000\\uDFFE", "" },
{ "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
{ "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
{ "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE002\\U000110B9\\u0327\\u0345" },
{ "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
{ "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
{ "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
{ "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
};
IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomComp");
const Normalizer2 *customNorm2=
Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
UNORM2_COMPOSE, errorCode);
if(errorCode.logDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
return;
}
for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
const StringPair &pair=pairs[i];
UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
UnicodeString result=customNorm2->normalize(input, errorCode);
if(result!=expected) {
errln("custom compose Normalizer2 did not normalize input %d as expected", i);
}
}
}
void
BasicNormalizerTest::TestCustomFCC() {
static const StringPair pairs[]={
{ "\\uD801\\uE000\\uDFFE", "" },
{ "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
{ "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
// The following expected result is different from CustomComp
// because of only-contiguous composition.
{ "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE001\\U000110B9\\u0327\\u0308\\u0345" },
{ "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
{ "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
{ "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
{ "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
};
IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomFCC");
const Normalizer2 *customNorm2=
Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
UNORM2_COMPOSE_CONTIGUOUS, errorCode);
if(errorCode.logDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
return;
}
for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
const StringPair &pair=pairs[i];
UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
UnicodeString result=customNorm2->normalize(input, errorCode);
if(result!=expected) {
errln("custom FCC Normalizer2 did not normalize input %d as expected", i);
}
}
}
/* Improve code coverage of Normalizer2 */
void
BasicNormalizerTest::TestFilteredNormalizer2Coverage() {
UErrorCode errorCode = U_ZERO_ERROR;
const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
if (U_FAILURE(errorCode)) {
dataerrln("Normalizer2::getNFCInstance() call failed - %s", u_errorName(errorCode));
return;
}
UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff\\u0310-\\u031f]"), errorCode);
FilteredNormalizer2 fn2(*nfcNorm2, filter);
UChar32 char32 = 0x0054;
if (fn2.isInert(char32)) {
errln("FilteredNormalizer2.isInert() failed.");
}
if (fn2.hasBoundaryAfter(char32)) {
errln("FilteredNormalizer2.hasBoundaryAfter() failed.");
}
UChar32 c;
for(c=0; c<=0x3ff; ++c) {
uint8_t expectedCC= filter.contains(c) ? nfcNorm2->getCombiningClass(c) : 0;
uint8_t cc=fn2.getCombiningClass(c);
if(cc!=expectedCC) {
errln(
UnicodeString("FilteredNormalizer2(NFC, ^A0-FF,310-31F).getCombiningClass(U+")+
hex(c)+
")==filtered NFC.getCC()");
}
}
UnicodeString newString1 = UNICODE_STRING_SIMPLE("[^\\u0100-\\u01ff]");
UnicodeString newString2 = UNICODE_STRING_SIMPLE("[^\\u0200-\\u02ff]");
fn2.append(newString1, newString2, errorCode);
if (U_FAILURE(errorCode)) {
errln("FilteredNormalizer2.append() failed.");
}
}
void
BasicNormalizerTest::TestNormalizeUTF8WithEdits() {
IcuTestErrorCode errorCode(*this, "TestNormalizeUTF8WithEdits");
const Normalizer2 *nfkc_cf=Normalizer2::getNFKCCasefoldInstance(errorCode);
if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCCasefoldInstance() call failed")) {
return;
}
static const char *const src =
u8" AÄA\u0308A\u0308\u00ad\u0323Ä\u0323,\u00ad\u1100\u1161\u11A8\u3133 ";
std::string expected = u8" aääạ\u0308\u0308,가각갃 ";
std::string result;
StringByteSink<std::string> sink(&result, expected.length());
Edits edits;
nfkc_cf->normalizeUTF8(0, src, sink, &edits, errorCode);
assertSuccess("normalizeUTF8 with Edits", errorCode.get());
assertEquals("normalizeUTF8 with Edits", expected.c_str(), result.c_str());
static const EditChange expectedChanges[] = {
{ FALSE, 2, 2 }, // 2 spaces
{ TRUE, 1, 1 }, // A→a
{ TRUE, 2, 2 }, // Ä→ä
{ TRUE, 3, 2 }, // A\u0308→ä
{ TRUE, 7, 5 }, // A\u0308\u00ad\u0323→ạ\u0308 removes the soft hyphen
{ TRUE, 4, 5 }, // Ä\u0323→ ạ\u0308
{ FALSE, 1, 1 }, // comma
{ TRUE, 2, 0 }, // U+00AD soft hyphen maps to empty
{ TRUE, 6, 3 }, // \u1100\u1161→ 가
{ TRUE, 6, 3 }, // 가\u11A8→ 각
{ TRUE, 6, 3 }, // 가\u3133→ 갃
{ FALSE, 2, 2 } // 2 spaces
};
assertTrue("normalizeUTF8 with Edits hasChanges", edits.hasChanges());
assertEquals("normalizeUTF8 with Edits numberOfChanges", 9, edits.numberOfChanges());
TestUtility::checkEditsIter(*this, u"normalizeUTF8 with Edits",
edits.getFineIterator(), edits.getFineIterator(),
expectedChanges, UPRV_LENGTHOF(expectedChanges),
TRUE, errorCode);
assertFalse("isNormalizedUTF8(source)", nfkc_cf->isNormalizedUTF8(src, errorCode));
assertTrue("isNormalizedUTF8(normalized)", nfkc_cf->isNormalizedUTF8(result, errorCode));
// Omit unchanged text.
expected = u8"aääạ\u0308\u0308가각갃";
result.clear();
edits.reset();
nfkc_cf->normalizeUTF8(U_OMIT_UNCHANGED_TEXT, src, sink, &edits, errorCode);
assertSuccess("normalizeUTF8 omit unchanged", errorCode.get());
assertEquals("normalizeUTF8 omit unchanged", expected.c_str(), result.c_str());
assertTrue("normalizeUTF8 omit unchanged hasChanges", edits.hasChanges());
assertEquals("normalizeUTF8 omit unchanged numberOfChanges", 9, edits.numberOfChanges());
TestUtility::checkEditsIter(*this, u"normalizeUTF8 omit unchanged",
edits.getFineIterator(), edits.getFineIterator(),
expectedChanges, UPRV_LENGTHOF(expectedChanges),
TRUE, errorCode);
// With filter: The normalization code does not see the "A" substrings.
UnicodeSet filter(u"[^A]", errorCode);
FilteredNormalizer2 fn2(*nfkc_cf, filter);
expected = u8" AäA\u0308A\u0323\u0308\u0308,가각갃 ";
result.clear();
edits.reset();
fn2.normalizeUTF8(0, src, sink, &edits, errorCode);
assertSuccess("filtered normalizeUTF8", errorCode.get());
assertEquals("filtered normalizeUTF8", expected.c_str(), result.c_str());
static const EditChange filteredChanges[] = {
{ FALSE, 3, 3 }, // 2 spaces + A
{ TRUE, 2, 2 }, // Ä→ä
{ FALSE, 4, 4 }, // A\u0308A
{ TRUE, 6, 4 }, // \u0308\u00ad\u0323→\u0323\u0308 removes the soft hyphen
{ TRUE, 4, 5 }, // Ä\u0323→ ạ\u0308
{ FALSE, 1, 1 }, // comma
{ TRUE, 2, 0 }, // U+00AD soft hyphen maps to empty
{ TRUE, 6, 3 }, // \u1100\u1161→ 가
{ TRUE, 6, 3 }, // 가\u11A8→ 각
{ TRUE, 6, 3 }, // 가\u3133→ 갃
{ FALSE, 2, 2 } // 2 spaces
};
assertTrue("filtered normalizeUTF8 hasChanges", edits.hasChanges());
assertEquals("filtered normalizeUTF8 numberOfChanges", 7, edits.numberOfChanges());
TestUtility::checkEditsIter(*this, u"filtered normalizeUTF8",
edits.getFineIterator(), edits.getFineIterator(),
filteredChanges, UPRV_LENGTHOF(filteredChanges),
TRUE, errorCode);
assertFalse("filtered isNormalizedUTF8(source)", fn2.isNormalizedUTF8(src, errorCode));
assertTrue("filtered isNormalizedUTF8(normalized)", fn2.isNormalizedUTF8(result, errorCode));
// Omit unchanged text.
// Note that the result is not normalized because the inner normalizer
// does not see text across filter spans.
expected = u8"ä\u0323\u0308\u0308가각갃";
result.clear();
edits.reset();
fn2.normalizeUTF8(U_OMIT_UNCHANGED_TEXT, src, sink, &edits, errorCode);
assertSuccess("filtered normalizeUTF8 omit unchanged", errorCode.get());
assertEquals("filtered normalizeUTF8 omit unchanged", expected.c_str(), result.c_str());
assertTrue("filtered normalizeUTF8 omit unchanged hasChanges", edits.hasChanges());
assertEquals("filtered normalizeUTF8 omit unchanged numberOfChanges", 7, edits.numberOfChanges());
TestUtility::checkEditsIter(*this, u"filtered normalizeUTF8 omit unchanged",
edits.getFineIterator(), edits.getFineIterator(),
filteredChanges, UPRV_LENGTHOF(filteredChanges),
TRUE, errorCode);
}
void
BasicNormalizerTest::TestLowMappingToEmpty_D() {
IcuTestErrorCode errorCode(*this, "TestLowMappingToEmpty_D");
const Normalizer2 *n2 = Normalizer2::getInstance(
nullptr, "nfkc_cf", UNORM2_DECOMPOSE, errorCode);
if (errorCode.logDataIfFailureAndReset("Normalizer2::getInstance() call failed")) {
return;
}
checkLowMappingToEmpty(*n2);
UnicodeString sh(u'\u00AD');
assertFalse("soft hyphen is not normalized", n2->isNormalized(sh, errorCode));
UnicodeString result = n2->normalize(sh, errorCode);
assertTrue("soft hyphen normalizes to empty", result.isEmpty());
assertEquals("soft hyphen QC=No", UNORM_NO, n2->quickCheck(sh, errorCode));
assertEquals("soft hyphen spanQuickCheckYes", 0, n2->spanQuickCheckYes(sh, errorCode));
UnicodeString s(u"\u00ADÄ\u00AD\u0323");
result = n2->normalize(s, errorCode);
assertEquals("normalize string with soft hyphens", u"a\u0323\u0308", result);
}
void
BasicNormalizerTest::TestLowMappingToEmpty_FCD() {
IcuTestErrorCode errorCode(*this, "TestLowMappingToEmpty_FCD");
const Normalizer2 *n2 = Normalizer2::getInstance(
nullptr, "nfkc_cf", UNORM2_FCD, errorCode);
if (errorCode.logDataIfFailureAndReset("Normalizer2::getInstance() call failed")) {
return;
}
checkLowMappingToEmpty(*n2);
UnicodeString sh(u'\u00AD');
assertTrue("soft hyphen is FCD", n2->isNormalized(sh, errorCode));
UnicodeString s(u"\u00ADÄ\u00AD\u0323");
UnicodeString result = n2->normalize(s, errorCode);
assertEquals("normalize string with soft hyphens", u"\u00ADa\u0323\u0308", result);
}
void
BasicNormalizerTest::checkLowMappingToEmpty(const Normalizer2 &n2) {
UnicodeString mapping;
assertTrue("getDecomposition(soft hyphen)", n2.getDecomposition(0xad, mapping));
assertTrue("soft hyphen maps to empty", mapping.isEmpty());
assertFalse("soft hyphen has no boundary before", n2.hasBoundaryBefore(0xad));
assertFalse("soft hyphen has no boundary after", n2.hasBoundaryAfter(0xad));
assertFalse("soft hyphen is not inert", n2.isInert(0xad));
}
void
BasicNormalizerTest::TestNormalizeIllFormedText() {
IcuTestErrorCode errorCode(*this, "TestNormalizeIllFormedText");
const Normalizer2 *nfkc_cf = Normalizer2::getNFKCCasefoldInstance(errorCode);
if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCCasefoldInstance() call failed")) {
return;
}
// Normalization behavior for ill-formed text is not defined.
// ICU currently treats ill-formed sequences as normalization-inert
// and copies them unchanged.
UnicodeString src(u" A");
src.append((char16_t)0xD800).append(u"ÄA\u0308").append((char16_t)0xD900).
append(u"A\u0308\u00ad\u0323").append((char16_t)0xDBFF).
append(u"Ä\u0323,\u00ad").append((char16_t)0xDC00).
append(u"\u1100\u1161\u11A8\u3133 ").append((char16_t)0xDFFF);
UnicodeString expected(u" a");
expected.append((char16_t)0xD800).append(u"ää").append((char16_t)0xD900).
append(u"\u0308").append((char16_t)0xDBFF).
append(u"\u0308,").append((char16_t)0xDC00).
append(u"가각갃 ").append((char16_t)0xDFFF);
UnicodeString result = nfkc_cf->normalize(src, errorCode);
assertSuccess("normalize", errorCode.get());
assertEquals("normalize", expected, result);
std::string src8(u8" A");
src8.append("\x80").append(u8"ÄA\u0308").append("\xC0\x80").
append(u8"A\u0308\u00ad\u0323").append("\xED\xA0\x80").
append(u8"Ä\u0323,\u00ad").append("\xF4\x90\x80\x80").
append(u8"\u1100\u1161\u11A8\u3133 ").append("\xF0");
std::string expected8(u8" a");
expected8.append("\x80").append(u8"ää").append("\xC0\x80").
append(u8"\u0308").append("\xED\xA0\x80").
append(u8"\u0308,").append("\xF4\x90\x80\x80").
append(u8"가각갃 ").append("\xF0");
std::string result8;
StringByteSink<std::string> sink(&result8);
nfkc_cf->normalizeUTF8(0, src8, sink, nullptr, errorCode);
assertSuccess("normalizeUTF8", errorCode.get());
assertEquals("normalizeUTF8", expected8.c_str(), result8.c_str());
}
void
BasicNormalizerTest::TestComposeJamoTBase() {
// Algorithmic composition of Hangul syllables must not combine with JAMO_T_BASE = U+11A7
// which is not a conjoining Jamo Trailing consonant.
IcuTestErrorCode errorCode(*this, "TestComposeJamoTBase");
const Normalizer2 *nfkc = Normalizer2::getNFKCInstance(errorCode);
if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCInstance() call failed")) {
return;
}
UnicodeString s(u"\u1100\u1161\u11A7\u1100\u314F\u11A7\u11A7");
UnicodeString expected(u"\u11A7\u11A7\u11A7");
UnicodeString result = nfkc->normalize(s, errorCode);
assertSuccess("normalize(LV+11A7)", errorCode.get());
assertEquals("normalize(LV+11A7)", expected, result);
assertFalse("isNormalized(LV+11A7)", nfkc->isNormalized(s, errorCode));
assertTrue("isNormalized(normalized)", nfkc->isNormalized(result, errorCode));
std::string s8(u8"\u1100\u1161\u11A7\u1100\u314F\u11A7\u11A7");
std::string expected8(u8"\u11A7\u11A7\u11A7");
std::string result8;
StringByteSink<std::string> sink(&result8, expected8.length());
nfkc->normalizeUTF8(0, s8, sink, nullptr, errorCode);
assertSuccess("normalizeUTF8(LV+11A7)", errorCode.get());
assertEquals("normalizeUTF8(LV+11A7)", expected8.c_str(), result8.c_str());
assertFalse("isNormalizedUTF8(LV+11A7)", nfkc->isNormalizedUTF8(s8, errorCode));
assertTrue("isNormalizedUTF8(normalized)", nfkc->isNormalizedUTF8(result8, errorCode));
}
#endif /* #if !UCONFIG_NO_NORMALIZATION */