scuffed-code/icu4c/source/tools/gennames/gennames.c

1142 lines
32 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 1999, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: gennames.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 1999sep30
* created by: Markus W. Scherer
*
* This program reads the Unicode character database text file,
* parses it, and extracts the character code,
* the "modern" character name, and optionally the
* Unicode 1.0 character name.
* It then tokenizes and compresses the names and builds
* compact binary tables for random-access lookup
* in a u_charName() API function.
*
* unames.dat file format (after UDataInfo header etc. - see udata.c)
* (all data is static const)
*
* UDataInfo fields:
* dataFormat "unam"
* formatVersion 1.0
* dataVersion = Unicode version from -u or --unicode command line option, defaults to 3.0.0
*
* -- data-based names
* uint32_t tokenStringOffset,
* groupsOffset,
* groupStringOffset,
* algNamesOffset;
*
* uint16_t tokenCount;
* uint16_t tokenTable[tokenCount];
*
* char tokenStrings[]; -- padded to even count
*
* -- strings (groupStrings) are tokenized as follows:
* for each character c
* if(c>=tokenCount) write that character c directly
* else
* token=tokenTable[c];
* if(token==0xfffe) -- lead byte of double-byte token
* token=tokenTable[c<<8|next character];
* if(token==-1)
* write c directly
* else
* tokenString=tokenStrings+token; (tokenStrings=start of names data + tokenStringOffset;)
* append zero-terminated tokenString;
*
* uint16_t groupCount;
* struct {
* uint16_t groupMSB; -- for a group of 32 character names stored, this is code point>>5
* uint16_t offsetHigh; -- group strings are at start of names data + groupStringsOffset + this 32 bit-offset
* uint16_t offsetLow;
* } groupTable[groupCount];
*
* char groupStrings[]; -- padded to 4-count
*
* -- The actual, tokenized group strings are not zero-terminated because
* that would take up too much space.
* Instead, they are preceeded by their length, written in a variable-length sequence:
* For each of the 32 group strings, one or two nibbles are stored for its length.
* Nibbles (4-bit values, half-bytes) are read MSB first.
* A nibble with a value of 0..11 directly indicates the length of the name string.
* A nibble n with a value of 12..15 is a lead nibble and forms a value with the following nibble m
* by (((n-12)<<4)|m)+12, reaching values of 12..75.
* These lengths are sequentially for each tokenized string, not for the de-tokenized result.
* For the de-tokenizing, see token description above; the strings immediately follow the
* 32 lengths.
*
* -- algorithmic names
*
* typedef struct AlgorithmicRange {
* uint32_t rangeStart, rangeEnd;
* uint8_t algorithmType, algorithmVariant;
* uint16_t rangeSize;
* } AlgorithmicRange;
*
* uint32_t algRangesCount; -- number of data blocks for ranges of
* algorithmic names (Unicode 3.0.0: 3, hardcoded in gennames)
*
* struct {
* AlgorithmicRange algRange;
* uint8_t algRangeData[]; -- padded to 4-count except in last range
* } algRanges[algNamesCount];
* -- not a real array because each part has a different size
* of algRange.rangeSize (including AlgorithmicRange)
*
* -- algorithmic range types:
*
* 0 Names are formed from a string prefix that is stored in
* the algRangeData (zero-terminated), followed by the Unicode code point
* of the character in hexadecimal digits;
* algRange.algorithmVariant digits are written
*
* 1 Names are formed by calculating modulo-factors of the code point value as follows:
* algRange.algorithmVariant is the count of modulo factors
* algRangeData contains
* uint16_t factors[algRange.algorithmVariant];
* char strings[];
* the first zero-terminated string is written as the prefix; then:
*
* The rangeStart is subtracted; with the difference, here "code":
* for(i=algRange.algorithmVariant-1 to 0 step -1)
* index[i]=code%factor[i];
* code/=factor[i];
*
* The strings after the prefix are short pieces that are then appended to the result
* according to index[0..algRange.algorithmVariant-1].
*/
#include <stdio.h>
#include <stdlib.h>
#include "unicode/utypes.h"
#include "cmemory.h"
#include "cstring.h"
#include "unicode/udata.h"
#include "unewdata.h"
#include "uoptions.h"
#include "uparse.h"
#define STRING_STORE_SIZE 1000000
#define GROUP_STORE_SIZE 5000
#define GROUP_SHIFT 5
#define LINES_PER_GROUP (1UL<<GROUP_SHIFT)
#define GROUP_MASK (LINES_PER_GROUP-1)
#define MAX_LINE_COUNT 50000
#define MAX_WORD_COUNT 20000
#define MAX_GROUP_COUNT 5000
#define DATA_NAME "unames"
#define DATA_TYPE "dat"
#define VERSION_STRING "unam"
#define NAME_SEPARATOR_CHAR ';'
/* UDataInfo cf. udata.h */
static UDataInfo dataInfo={
sizeof(UDataInfo),
0,
U_IS_BIG_ENDIAN,
U_CHARSET_FAMILY,
sizeof(UChar),
0,
0x75, 0x6e, 0x61, 0x6d, /* dataFormat="unam" */
1, 0, 0, 0, /* formatVersion */
3, 0, 0, 0 /* dataVersion */
};
static UBool beVerbose=FALSE, beQuiet=FALSE, haveCopyright=TRUE;
static uint8_t stringStore[STRING_STORE_SIZE],
groupStore[GROUP_STORE_SIZE],
lineLengths[LINES_PER_GROUP];
static uint32_t lineTop=0, wordBottom=STRING_STORE_SIZE, lineLengthsTop;
typedef struct {
uint32_t code;
int16_t length;
uint8_t *s;
} Line;
typedef struct {
int32_t weight; /* -(cost for token) + (number of occurences) * (length-1) */
int16_t count;
int16_t length;
uint8_t *s;
} Word;
static Line lines[MAX_LINE_COUNT];
static Word words[MAX_WORD_COUNT];
static uint32_t lineCount=0, wordCount=0, groupCount=0;
static int16_t leadByteCount;
#define LEADBYTE_LIMIT 16
static int16_t tokens[LEADBYTE_LIMIT*256];
static uint32_t tokenCount;
/* prototypes --------------------------------------------------------------- */
static void
init();
static void
parseDB(const char *filename, UBool store10Names);
static void
parseName(char *name, int16_t length);
static int16_t
skipNoise(char *line, int16_t start, int16_t limit);
static int16_t
getWord(char *line, int16_t start, int16_t limit);
static void
compress();
static void
compressLines();
static int16_t
compressLine(uint8_t *s, int16_t length, int16_t *pGroupTop);
static int
compareWords(const void *word1, const void *word2);
static void
generateData(const char *dataDir);
static uint32_t
generateAlgorithmicData(UNewDataMemory *pData);
static int16_t
findToken(uint8_t *s, int16_t length);
static Word *
findWord(char *s, int16_t length);
static Word *
addWord(char *s, int16_t length);
static void
countWord(Word *word);
static void
addLine(uint32_t code, char *name1, int16_t name1Length, char *name2, int16_t name2Length);
static void
addGroup(uint32_t groupMSB, uint8_t *strings, int16_t length);
static uint32_t
addToken(uint8_t *s, int16_t length);
static void
appendLineLength(int16_t length);
static void
appendLineLengthNibble(uint8_t nibble);
static uint8_t *
allocLine(uint32_t length);
static uint8_t *
allocWord(uint32_t length);
/* -------------------------------------------------------------------------- */
static UOption options[]={
UOPTION_HELP_H,
UOPTION_HELP_QUESTION_MARK,
UOPTION_VERBOSE,
UOPTION_QUIET,
UOPTION_COPYRIGHT,
UOPTION_DESTDIR,
UOPTION_SOURCEDIR,
{ "unicode", NULL, NULL, NULL, 'u', UOPT_REQUIRES_ARG, 0 },
{ "unicode1names", NULL, NULL, NULL, '1', UOPT_NO_ARG, 0 }
};
extern int
main(int argc, char* argv[]) {
UVersionInfo version;
UBool store10Names=FALSE;
/* preset then read command line options */
options[5].value=u_getDataDirectory();
options[6].value="";
options[7].value="3.0.0";
argc=u_parseArgs(argc, argv, sizeof(options)/sizeof(options[0]), options);
/* error handling, printing usage message */
if(argc<0) {
fprintf(stderr,
"error in command line argument \"%s\"\n",
argv[-argc]);
} else if(argc<2) {
argc=-1;
}
if(argc<0 || options[0].doesOccur || options[1].doesOccur) {
fprintf(stderr,
"usage: %s [-1[+|-]] [-v[+|-]] [-c[+|-]] filename\n"
"\tread the UnicodeData.txt file and \n"
"\tcreate a binary file " DATA_NAME "." DATA_TYPE " with the character names\n"
"\t\tfilename absolute path/filename for the\n"
"\t\t\tUnicode database text file (default: standard input)\n"
"\toptions:\n"
"\t\t-h or -? or --help this usage text\n"
"\t\t-v or --verbose verbose output\n"
"\t\t-q or --quiet no output\n"
"\t\t-c or --copyright include a copyright notice\n"
"\t\t-d or --destdir destination directory, followed by the path\n"
"\t\t-s or --sourcedir source directory, followed by the path\n"
"\t\t-u or --unicode Unicode version, followed by the version like 3.0.0\n"
"\t\t-1 or --unicode1names store Unicode 1.0 character names\n",
argv[0]);
return argc<0 ? U_ILLEGAL_ARGUMENT_ERROR : U_ZERO_ERROR;
}
/* get the options values */
beVerbose=options[2].doesOccur;
beQuiet=options[3].doesOccur;
haveCopyright=options[4].doesOccur;
store10Names=options[8].doesOccur;
/* set the Unicode version */
u_versionFromString(version, options[7].value);
uprv_memcpy(dataInfo.dataVersion, version, 4);
init();
parseDB(argc>=2 ? argv[1] : "-", store10Names);
compress();
generateData(options[5].value);
return 0;
}
static void
init() {
int i;
for(i=0; i<256; ++i) {
tokens[i]=0;
}
}
/* parsing ------------------------------------------------------------------ */
static void
lineFn(void *context,
char *fields[][2], int32_t fieldCount,
UErrorCode *pErrorCode) {
uint32_t code=0;
char *name1Start, *name2Start;
int16_t name1Length, name2Length;
if(U_FAILURE(*pErrorCode)) {
return;
}
/* get the character code */
code=uprv_strtoul(fields[0][0], NULL, 16);
/* get the character name */
name1Start=fields[1][0];
if(fields[1][0][0]!='<') {
name1Length=(int16_t)(fields[1][1]-name1Start);
} else {
/* do not store pseudo-names in <> brackets */
name1Length=0;
}
/* store 1.0 names */
/* get the second character name, the one from Unicode 1.0 */
/* do not store pseudo-names in <> brackets */
name2Start=fields[10][0];
if(*(UBool *)context && fields[10][0][0]!='<') {
name2Length=(int16_t)(fields[10][1]-name2Start);
} else {
name2Length=0;
}
if(name1Length+name2Length>0) {
/* printf("%lx:%.*s(%.*s)\n", code, name1Length, line+name1Start, name2Length, line+name2Start); */
parseName(name1Start, name1Length);
parseName(name2Start, name2Length);
addLine(code, name1Start, name1Length, name2Start, name2Length);
}
}
static void
parseDB(const char *filename, UBool store10Names) {
char *fields[11][2];
UErrorCode errorCode=U_ZERO_ERROR;
/* parsing the 11 fields 0..10 is enough for gennames */
u_parseDelimitedFile(filename, ';', fields, 11, lineFn, &store10Names, &errorCode);
if(U_FAILURE(errorCode)) {
exit(errorCode);
}
if(!beQuiet) {
printf("size of all names in the database: %lu\n", lineTop);
printf("number of named Unicode characters: %lu\n", lineCount);
printf("number of words in the dictionary from these names: %lu\n", wordCount);
}
}
static void
parseName(char *name, int16_t length) {
int16_t start=0, limit, wordLength/*, prevStart=-1*/;
Word *word;
while(start<length) {
/* skip any "noise" characters */
limit=skipNoise(name, start, length);
if(start<limit) {
/*prevStart=-1;*/
start=limit;
}
if(start==length) {
break;
}
/* get a word and add it if it is longer than 1 */
limit=getWord(name, start, length);
wordLength=(int16_t)(limit-start);
if(wordLength>1) {
word=findWord(name+start, wordLength);
if(word==NULL) {
word=addWord(name+start, wordLength);
}
countWord(word);
}
#if 0
/*
* if there was a word before this
* (with no noise in between), then add the pair of words, too
*/
if(prevStart!=-1) {
wordLength=limit-prevStart;
word=findWord(name+prevStart, wordLength);
if(word==NULL) {
word=addWord(name+prevStart, wordLength);
}
countWord(word);
}
#endif
/*prevStart=start;*/
start=limit;
}
}
static int16_t
skipNoise(char *line, int16_t start, int16_t limit) {
char c;
/* skip anything that is not part of a word in this sense */
while(start<limit && !(('A'<=(c=line[start]) && c<='Z') || ('0'<=c && c<='9'))) {
++start;
}
return start;
}
static int16_t
getWord(char *line, int16_t start, int16_t limit) {
char c=0; /* initialize to avoid a compiler warning although the code was safe */
/* a unicode character name word consists of A-Z0-9 */
while(start<limit && (('A'<=(c=line[start]) && c<='Z') || ('0'<=c && c<='9'))) {
++start;
}
/* include a following space or dash */
if(start<limit && (c==' ' || c=='-')) {
++start;
}
return start;
}
/* compressing -------------------------------------------------------------- */
static void
compress() {
uint32_t i, letterCount;
int16_t wordNumber;
/* sort the words in reverse order by weight */
qsort(words, wordCount, sizeof(Word), compareWords);
/* remove the words that do not save anything */
while(wordCount>0 && words[wordCount-1].weight<1) {
--wordCount;
}
/* count the letters in the token range */
letterCount=0;
for(i=LEADBYTE_LIMIT; i<256; ++i) {
if(tokens[i]==-1) {
++letterCount;
}
}
if(!beQuiet) {
printf("number of letters used in the names: %d\n", letterCount);
}
/* do we need double-byte tokens? */
if(wordCount+letterCount<=256) {
/* no, single-byte tokens are enough */
leadByteCount=0;
for(i=0, wordNumber=0; wordNumber<(int16_t)wordCount; ++i) {
if(tokens[i]!=-1) {
tokens[i]=wordNumber;
if(beVerbose) {
printf("tokens[0x%03x]: word%8ld \"%.*s\"\n",
i, words[wordNumber].weight,
words[wordNumber].length, words[wordNumber].s);
}
++wordNumber;
}
}
tokenCount=i;
} else {
/*
* The tokens that need two token bytes
* get their weight reduced by their count
* because they save less.
*/
tokenCount=256-letterCount;
for(i=tokenCount; i<wordCount; ++i) {
words[i].weight-=words[i].count;
}
/* sort these words in reverse order by weight */
qsort(words+tokenCount, wordCount-tokenCount, sizeof(Word), compareWords);
/* remove the words that do not save anything */
while(wordCount>0 && words[wordCount-1].weight<1) {
--wordCount;
}
/* how many tokens and lead bytes do we have now? */
tokenCount=wordCount+letterCount+(LEADBYTE_LIMIT-1);
leadByteCount=(int16_t)(tokenCount>>8);
if(leadByteCount<LEADBYTE_LIMIT) {
/* adjust for the real number of lead bytes */
tokenCount-=(LEADBYTE_LIMIT-1)-leadByteCount;
} else {
/* limit the number of lead bytes */
leadByteCount=LEADBYTE_LIMIT-1;
tokenCount=LEADBYTE_LIMIT*256;
wordCount=tokenCount-letterCount-(LEADBYTE_LIMIT-1);
}
/* set token 0 to word 0 */
tokens[0]=0;
if(beVerbose) {
printf("tokens[0x000]: word%8ld \"%.*s\"\n",
words[0].weight,
words[0].length, words[0].s);
}
wordNumber=1;
/* set the lead byte tokens */
for(i=1; (int16_t)i<=leadByteCount; ++i) {
tokens[i]=-2;
}
/* set the tokens */
for(; i<256; ++i) {
if(tokens[i]!=-1) {
tokens[i]=wordNumber;
if(beVerbose) {
printf("tokens[0x%03x]: word%8ld \"%.*s\"\n",
i, words[wordNumber].weight,
words[wordNumber].length, words[wordNumber].s);
}
++wordNumber;
}
}
/* continue above 255 where there are no letters */
for(; i<tokenCount; ++i) {
tokens[i]=wordNumber;
if(beVerbose) {
printf("tokens[0x%03x]: word%8ld \"%.*s\"\n",
i, words[wordNumber].weight,
words[wordNumber].length, words[wordNumber].s);
}
++wordNumber;
}
}
if(!beQuiet) {
printf("number of lead bytes: %d\n", leadByteCount);
printf("number of single-byte tokens: %lu\n", 256-letterCount-leadByteCount);
printf("number of tokens: %lu\n", tokenCount);
}
compressLines();
}
static void
compressLines() {
Line *line;
uint32_t i=0, inLine, outLine=0xffffffff /* (uint32_t)(-1) */,
groupMSB=0xffff, lineCount2;
int16_t groupTop=0;
/* store the groups like lines, reusing the lines' memory */
lineTop=0;
lineCount2=lineCount;
lineCount=0;
/* loop over all lines */
while(i<lineCount2) {
line=lines+i++;
inLine=line->code;
/* segment the lines to groups of 32 */
if(inLine>>GROUP_SHIFT!=groupMSB) {
/* finish the current group with empty lines */
while((++outLine&GROUP_MASK)!=0) {
appendLineLength(0);
}
/* store the group like a line */
if(groupTop>0) {
if(groupTop>GROUP_STORE_SIZE) {
fprintf(stderr, "gennames: group store overflow\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
addGroup(groupMSB, groupStore, groupTop);
if(lineTop>(uint32_t)(line->s-stringStore)) {
fprintf(stderr, "gennames: group store runs into string store\n");
exit(U_INTERNAL_PROGRAM_ERROR);
}
}
/* start the new group */
lineLengthsTop=0;
groupTop=0;
groupMSB=inLine>>GROUP_SHIFT;
outLine=(inLine&~GROUP_MASK)-1;
}
/* write empty lines between the previous line in the group and this one */
while(++outLine<inLine) {
appendLineLength(0);
}
/* write characters and tokens for this line */
appendLineLength(compressLine(line->s, line->length, &groupTop));
}
/* finish and store the last group */
if(groupMSB!=0xffff) {
/* finish the current group with empty lines */
while((++outLine&GROUP_MASK)!=0) {
appendLineLength(0);
}
/* store the group like a line */
if(groupTop>0) {
if(groupTop>GROUP_STORE_SIZE) {
fprintf(stderr, "gennames: group store overflow\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
addGroup(groupMSB, groupStore, groupTop);
if(lineTop>(uint32_t)(line->s-stringStore)) {
fprintf(stderr, "gennames: group store runs into string store\n");
exit(U_INTERNAL_PROGRAM_ERROR);
}
}
}
if(!beQuiet) {
printf("number of groups: %lu\n", lineCount);
}
}
static int16_t
compressLine(uint8_t *s, int16_t length, int16_t *pGroupTop) {
int16_t start, limit, token, groupTop=*pGroupTop;
start=0;
do {
/* write any "noise" characters */
limit=skipNoise((char *)s, start, length);
while(start<limit) {
groupStore[groupTop++]=s[start++];
}
if(start==length) {
break;
}
/* write a word, as token or directly */
limit=getWord((char *)s, start, length);
if(limit-start==1) {
groupStore[groupTop++]=s[start++];
} else {
token=findToken(s+start, (int16_t)(limit-start));
if(token!=-1) {
if(token>0xff) {
groupStore[groupTop++]=(uint8_t)(token>>8);
}
groupStore[groupTop++]=(uint8_t)token;
start=limit;
} else {
while(start<limit) {
groupStore[groupTop++]=s[start++];
}
}
}
} while(start<length);
length=(int16_t)(groupTop-*pGroupTop);
*pGroupTop=groupTop;
return length;
}
static int
compareWords(const void *word1, const void *word2) {
/* reverse sort by word weight */
return ((Word *)word2)->weight-((Word *)word1)->weight;
}
/* generate output data ----------------------------------------------------- */
static void
generateData(const char *dataDir) {
UNewDataMemory *pData;
UErrorCode errorCode=U_ZERO_ERROR;
uint16_t groupWords[3];
uint32_t i, groupTop=lineTop, offset, size,
tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset;
long dataLength;
int16_t token;
pData=udata_create(dataDir, DATA_TYPE, DATA_NAME, &dataInfo,
haveCopyright ? U_COPYRIGHT_STRING : NULL, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "gennames: unable to create data memory, error %d\n", errorCode);
exit(errorCode);
}
/* first, see how much space we need, and prepare the token strings */
for(i=0; i<tokenCount; ++i) {
token=tokens[i];
if(token!=-1 && token!=-2) {
tokens[i]=(int16_t)(addToken(words[token].s, words[token].length)-groupTop);
}
}
/*
* Calculate the total size in bytes of the data including:
* - the offset to the token strings, uint32_t (4)
* - the offset to the group table, uint32_t (4)
* - the offset to the group strings, uint32_t (4)
* - the offset to the algorithmic names, uint32_t (4)
*
* - the number of tokens, uint16_t (2)
* - the token table, uint16_t[tokenCount] (2*tokenCount)
*
* - the token strings, each zero-terminated (tokenSize=(lineTop-groupTop)), 2-padded
*
* - the number of groups, uint16_t (2)
* - the group table, { uint16_t groupMSB, uint16_t offsetHigh, uint16_t offsetLow }[6*groupCount]
*
* - the group strings (groupTop), 2-padded
*
* - the size of the data for the algorithmic names
*/
tokenStringOffset=4+4+4+4+2+2*tokenCount;
groupsOffset=tokenStringOffset+(lineTop-groupTop+1)&~1;
groupStringOffset=groupsOffset+2+6*lineCount;
algNamesOffset=(groupStringOffset+groupTop+3)&~3;
offset=generateAlgorithmicData(NULL);
size=algNamesOffset+offset;
if(!beQuiet) {
printf("size of the Unicode Names data:\n"
"total data length %lu, token strings %lu, compressed strings %lu, algorithmic names %lu\n",
size, (lineTop-groupTop), groupTop, offset);
}
/* write the data to the file */
/* offsets */
udata_write32(pData, tokenStringOffset);
udata_write32(pData, groupsOffset);
udata_write32(pData, groupStringOffset);
udata_write32(pData, algNamesOffset);
/* token table */
udata_write16(pData, (uint16_t)tokenCount);
udata_writeBlock(pData, tokens, 2*tokenCount);
/* token strings */
udata_writeBlock(pData, stringStore+groupTop, lineTop-groupTop);
if((lineTop-groupTop)&1) {
/* 2-padding */
udata_writePadding(pData, 1);
}
/* group table */
udata_write16(pData, (uint16_t)lineCount);
for(i=0; i<lineCount; ++i) {
/* groupMSB */
groupWords[0]=(uint16_t)lines[i].code;
/* offset */
offset=lines[i].s-stringStore;
groupWords[1]=(uint16_t)(offset>>16);
groupWords[2]=(uint16_t)(offset);
udata_writeBlock(pData, groupWords, 6);
}
/* group strings */
udata_writeBlock(pData, stringStore, groupTop);
/* 4-align the algorithmic names data */
udata_writePadding(pData, algNamesOffset-(groupStringOffset+groupTop));
generateAlgorithmicData(pData);
/* finish up */
dataLength=udata_finish(pData, &errorCode);
if(U_FAILURE(errorCode)) {
fprintf(stderr, "gennames: error %d writing the output file\n", errorCode);
exit(errorCode);
}
if(dataLength!=(long)size) {
fprintf(stderr, "gennames: data length %ld != calculated size %lu\n", dataLength, size);
exit(U_INTERNAL_PROGRAM_ERROR);
}
}
/* the structure for algorithmic names needs to be 4-aligned */
typedef struct AlgorithmicRange {
uint32_t rangeStart, rangeEnd;
uint8_t algorithmType, algorithmVariant;
uint16_t rangeSize;
} AlgorithmicRange;
static uint32_t
generateAlgorithmicData(UNewDataMemory *pData) {
static char prefix[] = "CJK UNIFIED IDEOGRAPH-";
# define PREFIX_LENGTH 23
# define PREFIX_LENGTH_4 24
static AlgorithmicRange cjkExtA={
0x3400, 0x4db5,
0, 4,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static AlgorithmicRange cjk={
0x4e00, 0x9fa5,
0, 4,
sizeof(AlgorithmicRange)+PREFIX_LENGTH_4
};
static char jamo[]=
"HANGUL SYLLABLE \0"
"G\0GG\0N\0D\0DD\0R\0M\0B\0BB\0"
"S\0SS\0\0J\0JJ\0C\0K\0T\0P\0H\0"
"A\0AE\0YA\0YAE\0EO\0E\0YEO\0YE\0O\0"
"WA\0WAE\0OE\0YO\0U\0WEO\0WE\0WI\0"
"YU\0EU\0YI\0I\0"
"\0G\0GG\0GS\0N\0NJ\0NH\0D\0L\0LG\0LM\0"
"LB\0LS\0LT\0LP\0LH\0M\0B\0BS\0"
"S\0SS\0NG\0J\0C\0K\0T\0P\0H"
;
static AlgorithmicRange hangul={
0xac00, 0xd7a3,
1, 3,
sizeof(AlgorithmicRange)+6+sizeof(jamo)
};
/* modulo factors, maximum 8 */
/* 3 factors: 19, 21, 28, most-to-least-significant */
static uint16_t hangulFactors[3]={
19, 21, 28
};
uint32_t size;
size=0;
/* number of ranges of algorithmic names */
if(pData!=NULL) {
udata_write32(pData, 3);
} else {
size+=4;
}
/*
* each range:
* uint32_t rangeStart
* uint32_t rangeEnd
* uint8_t algorithmType
* uint8_t algorithmVariant
* uint16_t size of range data
* uint8_t[size] data
*/
/* range 0: cjk extension a */
if(pData!=NULL) {
udata_writeBlock(pData, &cjkExtA, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
/* range 1: cjk */
if(pData!=NULL) {
udata_writeBlock(pData, &cjk, sizeof(AlgorithmicRange));
udata_writeString(pData, prefix, PREFIX_LENGTH);
if(PREFIX_LENGTH<PREFIX_LENGTH_4) {
udata_writePadding(pData, PREFIX_LENGTH_4-PREFIX_LENGTH);
}
} else {
size+=sizeof(AlgorithmicRange)+PREFIX_LENGTH_4;
}
/* range 2: hangul syllables */
if(pData!=NULL) {
udata_writeBlock(pData, &hangul, sizeof(AlgorithmicRange));
udata_writeBlock(pData, hangulFactors, 6);
udata_writeString(pData, jamo, sizeof(jamo));
} else {
size+=sizeof(AlgorithmicRange)+6+sizeof(jamo);
}
return size;
}
/* helpers ------------------------------------------------------------------ */
static int16_t
findToken(uint8_t *s, int16_t length) {
int16_t i, token;
for(i=0; i<(int16_t)tokenCount; ++i) {
token=tokens[i];
if(token!=-1 && length==words[token].length && 0==uprv_memcmp(s, words[token].s, length)) {
return i;
}
}
return -1;
}
static Word *
findWord(char *s, int16_t length) {
uint32_t i;
for(i=0; i<wordCount; ++i) {
if(length==words[i].length && 0==uprv_memcmp(s, words[i].s, length)) {
return words+i;
}
}
return NULL;
}
static Word *
addWord(char *s, int16_t length) {
uint8_t *stringStart;
Word *word;
if(wordCount==MAX_WORD_COUNT) {
fprintf(stderr, "gennames: too many words\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
stringStart=allocWord(length);
uprv_memcpy(stringStart, s, length);
word=words+wordCount;
/*
* Initialize the weight with the costs for this token:
* a zero-terminated string and a 16-bit offset.
*/
word->weight=-(length+1+2);
word->count=0;
word->length=length;
word->s=stringStart;
++wordCount;
return word;
}
static void
countWord(Word *word) {
/* add to the weight the savings: the length of the word minus 1 byte for the token */
word->weight+=word->length-1;
++word->count;
}
static void
addLine(uint32_t code, char *name1, int16_t name1Length, char *name2, int16_t name2Length) {
uint8_t *stringStart;
Line *line;
int16_t length;
if(lineCount==MAX_LINE_COUNT) {
fprintf(stderr, "gennames: too many lines\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
length=name1Length;
if(name2Length>0) {
length=(int16_t)(length+1+name2Length);
}
stringStart=allocLine(length);
if(name1Length>0) {
uprv_memcpy(stringStart, name1, name1Length);
}
if(name2Length>0) {
stringStart[name1Length]=NAME_SEPARATOR_CHAR;
uprv_memcpy(stringStart+name1Length+1, name2, name2Length);
}
line=lines+lineCount;
line->code=code;
line->length=length;
line->s=stringStart;
++lineCount;
/* prevent a character value that is actually in a name from becoming a token */
while(length>0) {
tokens[stringStart[--length]]=-1;
}
}
static void
addGroup(uint32_t groupMSB, uint8_t *strings, int16_t length) {
uint8_t *stringStart;
Line *line;
if(lineCount==MAX_LINE_COUNT) {
fprintf(stderr, "gennames: too many groups\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
/* store the line lengths first, then the strings */
lineLengthsTop=(lineLengthsTop+1)/2;
stringStart=allocLine(lineLengthsTop+length);
uprv_memcpy(stringStart, lineLengths, lineLengthsTop);
uprv_memcpy(stringStart+lineLengthsTop, strings, length);
line=lines+lineCount;
line->code=groupMSB;
line->length=length;
line->s=stringStart;
++lineCount;
}
static uint32_t
addToken(uint8_t *s, int16_t length) {
uint8_t *stringStart;
stringStart=allocLine(length+1);
uprv_memcpy(stringStart, s, length);
stringStart[length]=0;
return stringStart-stringStore;
}
static void
appendLineLength(int16_t length) {
if(length>=76) {
fprintf(stderr, "gennames: compressed line too long\n");
exit(U_BUFFER_OVERFLOW_ERROR);
}
if(length>=12) {
length-=12;
appendLineLengthNibble((uint8_t)((length>>4)|12));
}
appendLineLengthNibble((uint8_t)length);
}
static void
appendLineLengthNibble(uint8_t nibble) {
if((lineLengthsTop&1)==0) {
lineLengths[lineLengthsTop/2]=(uint8_t)(nibble<<4);
} else {
lineLengths[lineLengthsTop/2]|=nibble&0xf;
}
++lineLengthsTop;
}
static uint8_t *
allocLine(uint32_t length) {
uint32_t top=lineTop+length;
uint8_t *p;
if(top>wordBottom) {
fprintf(stderr, "gennames: out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
p=stringStore+lineTop;
lineTop=top;
return p;
}
static uint8_t *
allocWord(uint32_t length) {
uint32_t bottom=wordBottom-length;
if(lineTop>bottom) {
fprintf(stderr, "gennames: out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
wordBottom=bottom;
return stringStore+bottom;
}
/*
* Hey, Emacs, please set the following:
*
* Local Variables:
* indent-tabs-mode: nil
* End:
*
*/