scuffed-code/icu4c/source/i18n/regexcmp.cpp
Andy Heninger 14bcaaf58e ICU-20876 Regex Grapheme Cluster matching with Break Iterators.
Change the implementation of grapheme cluster matching in regex to use an ICU
break iterator instead of a little one-off state machine.

The old implementation had fallen behind the Unicode UAX-29 specification for
graphem clusters, and could not be easily updated.

The implementation follows the same general pattern that is used for finding
word boundaries with an ICU break iterator. In reviewing that code, a few
improvements to the handling of ICU error codes were also made.

Also note that this change adds a new dependency on Break Iteration.  Regex
patterns that previously would work with ICU builds that were configured with
no break iteration will now fail. But only if they include \X for matching
grapheme cluster boundaries.
2020-02-18 18:28:10 -08:00

4655 lines
177 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
//
// file: regexcmp.cpp
//
// Copyright (C) 2002-2016 International Business Machines Corporation and others.
// All Rights Reserved.
//
// This file contains the ICU regular expression compiler, which is responsible
// for processing a regular expression pattern into the compiled form that
// is used by the match finding engine.
//
#include "unicode/utypes.h"
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
#include "unicode/ustring.h"
#include "unicode/unistr.h"
#include "unicode/uniset.h"
#include "unicode/uchar.h"
#include "unicode/uchriter.h"
#include "unicode/parsepos.h"
#include "unicode/parseerr.h"
#include "unicode/regex.h"
#include "unicode/utf.h"
#include "unicode/utf16.h"
#include "patternprops.h"
#include "putilimp.h"
#include "cmemory.h"
#include "cstr.h"
#include "cstring.h"
#include "uvectr32.h"
#include "uvectr64.h"
#include "uassert.h"
#include "uinvchar.h"
#include "regeximp.h"
#include "regexcst.h" // Contains state table for the regex pattern parser.
// generated by a Perl script.
#include "regexcmp.h"
#include "regexst.h"
#include "regextxt.h"
U_NAMESPACE_BEGIN
//------------------------------------------------------------------------------
//
// Constructor.
//
//------------------------------------------------------------------------------
RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
fParenStack(status), fSetStack(status), fSetOpStack(status)
{
// Lazy init of all shared global sets (needed for init()'s empty text)
RegexStaticSets::initGlobals(&status);
fStatus = &status;
fRXPat = rxp;
fScanIndex = 0;
fLastChar = -1;
fPeekChar = -1;
fLineNum = 1;
fCharNum = 0;
fQuoteMode = FALSE;
fInBackslashQuote = FALSE;
fModeFlags = fRXPat->fFlags | 0x80000000;
fEOLComments = TRUE;
fMatchOpenParen = -1;
fMatchCloseParen = -1;
fCaptureName = NULL;
fLastSetLiteral = U_SENTINEL;
if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
status = rxp->fDeferredStatus;
}
}
static const UChar chAmp = 0x26; // '&'
static const UChar chDash = 0x2d; // '-'
//------------------------------------------------------------------------------
//
// Destructor
//
//------------------------------------------------------------------------------
RegexCompile::~RegexCompile() {
delete fCaptureName; // Normally will be NULL, but can exist if pattern
// compilation stops with a syntax error.
}
static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) {
set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec));
}
//------------------------------------------------------------------------------
//
// Compile regex pattern. The state machine for rexexp pattern parsing is here.
// The state tables are hand-written in the file regexcst.txt,
// and converted to the form used here by a perl
// script regexcst.pl
//
//------------------------------------------------------------------------------
void RegexCompile::compile(
const UnicodeString &pat, // Source pat to be compiled.
UParseError &pp, // Error position info
UErrorCode &e) // Error Code
{
fRXPat->fPatternString = new UnicodeString(pat);
UText patternText = UTEXT_INITIALIZER;
utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e);
if (U_SUCCESS(e)) {
compile(&patternText, pp, e);
utext_close(&patternText);
}
}
//
// compile, UText mode
// All the work is actually done here.
//
void RegexCompile::compile(
UText *pat, // Source pat to be compiled.
UParseError &pp, // Error position info
UErrorCode &e) // Error Code
{
fStatus = &e;
fParseErr = &pp;
fStackPtr = 0;
fStack[fStackPtr] = 0;
if (U_FAILURE(*fStatus)) {
return;
}
// There should be no pattern stuff in the RegexPattern object. They can not be reused.
U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0);
// Prepare the RegexPattern object to receive the compiled pattern.
fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus);
if (U_FAILURE(*fStatus)) {
return;
}
// Initialize the pattern scanning state machine
fPatternLength = utext_nativeLength(pat);
uint16_t state = 1;
const RegexTableEl *tableEl;
// UREGEX_LITERAL force entire pattern to be treated as a literal string.
if (fModeFlags & UREGEX_LITERAL) {
fQuoteMode = TRUE;
}
nextChar(fC); // Fetch the first char from the pattern string.
//
// Main loop for the regex pattern parsing state machine.
// Runs once per state transition.
// Each time through optionally performs, depending on the state table,
// - an advance to the the next pattern char
// - an action to be performed.
// - pushing or popping a state to/from the local state return stack.
// file regexcst.txt is the source for the state table. The logic behind
// recongizing the pattern syntax is there, not here.
//
for (;;) {
// Bail out if anything has gone wrong.
// Regex pattern parsing stops on the first error encountered.
if (U_FAILURE(*fStatus)) {
break;
}
U_ASSERT(state != 0);
// Find the state table element that matches the input char from the pattern, or the
// class of the input character. Start with the first table row for this
// state, then linearly scan forward until we find a row that matches the
// character. The last row for each state always matches all characters, so
// the search will stop there, if not before.
//
tableEl = &gRuleParseStateTable[state];
REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ",
fC.fChar, fLineNum, fCharNum, RegexStateNames[state]));
for (;;) { // loop through table rows belonging to this state, looking for one
// that matches the current input char.
REGEX_SCAN_DEBUG_PRINTF(("."));
if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
// Table row specified an individual character, not a set, and
// the input character is not quoted, and
// the input character matched it.
break;
}
if (tableEl->fCharClass == 255) {
// Table row specified default, match anything character class.
break;
}
if (tableEl->fCharClass == 254 && fC.fQuoted) {
// Table row specified "quoted" and the char was quoted.
break;
}
if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) {
// Table row specified eof and we hit eof on the input.
break;
}
if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
fC.fQuoted == FALSE && // char is not escaped &&
fC.fChar != (UChar32)-1) { // char is not EOF
U_ASSERT(tableEl->fCharClass <= 137);
if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
// Table row specified a character class, or set of characters,
// and the current char matches it.
break;
}
}
// No match on this row, advance to the next row for this state,
tableEl++;
}
REGEX_SCAN_DEBUG_PRINTF(("\n"));
//
// We've found the row of the state table that matches the current input
// character from the rules string.
// Perform any action specified by this row in the state table.
if (doParseActions(tableEl->fAction) == FALSE) {
// Break out of the state machine loop if the
// the action signalled some kind of error, or
// the action was to exit, occurs on normal end-of-rules-input.
break;
}
if (tableEl->fPushState != 0) {
fStackPtr++;
if (fStackPtr >= kStackSize) {
error(U_REGEX_INTERNAL_ERROR);
REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
fStackPtr--;
}
fStack[fStackPtr] = tableEl->fPushState;
}
//
// NextChar. This is where characters are actually fetched from the pattern.
// Happens under control of the 'n' tag in the state table.
//
if (tableEl->fNextChar) {
nextChar(fC);
}
// Get the next state from the table entry, or from the
// state stack if the next state was specified as "pop".
if (tableEl->fNextState != 255) {
state = tableEl->fNextState;
} else {
state = fStack[fStackPtr];
fStackPtr--;
if (fStackPtr < 0) {
// state stack underflow
// This will occur if the user pattern has mis-matched parentheses,
// with extra close parens.
//
fStackPtr++;
error(U_REGEX_MISMATCHED_PAREN);
}
}
}
if (U_FAILURE(*fStatus)) {
// Bail out if the pattern had errors.
// Set stack cleanup: a successful compile would have left it empty,
// but errors can leave temporary sets hanging around.
while (!fSetStack.empty()) {
delete (UnicodeSet *)fSetStack.pop();
}
return;
}
//
// The pattern has now been read and processed, and the compiled code generated.
//
//
// The pattern's fFrameSize so far has accumulated the requirements for
// storage for capture parentheses, counters, etc. that are encountered
// in the pattern. Add space for the two variables that are always
// present in the saved state: the input string position (int64_t) and
// the position in the compiled pattern.
//
allocateStackData(RESTACKFRAME_HDRCOUNT);
//
// Optimization pass 1: NOPs, back-references, and case-folding
//
stripNOPs();
//
// Get bounds for the minimum and maximum length of a string that this
// pattern can match. Used to avoid looking for matches in strings that
// are too short.
//
fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1);
//
// Optimization pass 2: match start type
//
matchStartType();
//
// Set up fast latin-1 range sets
//
int32_t numSets = fRXPat->fSets->size();
fRXPat->fSets8 = new Regex8BitSet[numSets];
// Null pointer check.
if (fRXPat->fSets8 == NULL) {
e = *fStatus = U_MEMORY_ALLOCATION_ERROR;
return;
}
int32_t i;
for (i=0; i<numSets; i++) {
UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i);
fRXPat->fSets8[i].init(s);
}
}
//------------------------------------------------------------------------------
//
// doParseAction Do some action during regex pattern parsing.
// Called by the parse state machine.
//
// Generation of the match engine PCode happens here, or
// in functions called from the parse actions defined here.
//
//
//------------------------------------------------------------------------------
UBool RegexCompile::doParseActions(int32_t action)
{
UBool returnVal = TRUE;
switch ((Regex_PatternParseAction)action) {
case doPatStart:
// Start of pattern compiles to:
//0 SAVE 2 Fall back to position of FAIL
//1 jmp 3
//2 FAIL Stop if we ever reach here.
//3 NOP Dummy, so start of pattern looks the same as
// the start of an ( grouping.
//4 NOP Resreved, will be replaced by a save if there are
// OR | operators at the top level
appendOp(URX_STATE_SAVE, 2);
appendOp(URX_JMP, 3);
appendOp(URX_FAIL, 0);
// Standard open nonCapture paren action emits the two NOPs and
// sets up the paren stack frame.
doParseActions(doOpenNonCaptureParen);
break;
case doPatFinish:
// We've scanned to the end of the pattern
// The end of pattern compiles to:
// URX_END
// which will stop the runtime match engine.
// Encountering end of pattern also behaves like a close paren,
// and forces fixups of the State Save at the beginning of the compiled pattern
// and of any OR operations at the top level.
//
handleCloseParen();
if (fParenStack.size() > 0) {
// Missing close paren in pattern.
error(U_REGEX_MISMATCHED_PAREN);
}
// add the END operation to the compiled pattern.
appendOp(URX_END, 0);
// Terminate the pattern compilation state machine.
returnVal = FALSE;
break;
case doOrOperator:
// Scanning a '|', as in (A|B)
{
// Generate code for any pending literals preceding the '|'
fixLiterals(FALSE);
// Insert a SAVE operation at the start of the pattern section preceding
// this OR at this level. This SAVE will branch the match forward
// to the right hand side of the OR in the event that the left hand
// side fails to match and backtracks. Locate the position for the
// save from the location on the top of the parentheses stack.
int32_t savePosition = fParenStack.popi();
int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
fRXPat->fCompiledPat->setElementAt(op, savePosition);
// Append an JMP operation into the compiled pattern. The operand for
// the JMP will eventually be the location following the ')' for the
// group. This will be patched in later, when the ')' is encountered.
appendOp(URX_JMP, 0);
// Push the position of the newly added JMP op onto the parentheses stack.
// This registers if for fixup when this block's close paren is encountered.
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
// Append a NOP to the compiled pattern. This is the slot reserved
// for a SAVE in the event that there is yet another '|' following
// this one.
appendOp(URX_NOP, 0);
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
}
break;
case doBeginNamedCapture:
// Scanning (?<letter.
// The first letter of the name will come through again under doConinueNamedCapture.
fCaptureName = new UnicodeString();
if (fCaptureName == NULL) {
error(U_MEMORY_ALLOCATION_ERROR);
}
break;
case doContinueNamedCapture:
fCaptureName->append(fC.fChar);
break;
case doBadNamedCapture:
error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
break;
case doOpenCaptureParen:
// Open Capturing Paren, possibly named.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - START_CAPTURE n where n is stack frame offset to the capture group variables.
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
//
// Each capture group gets three slots in the save stack frame:
// 0: Capture Group start position (in input string being matched.)
// 1: Capture Group end position.
// 2: Start of Match-in-progress.
// The first two locations are for a completed capture group, and are
// referred to by back references and the like.
// The third location stores the capture start position when an START_CAPTURE is
// encountered. This will be promoted to a completed capture when (and if) the corresponding
// END_CAPTURE is encountered.
{
fixLiterals();
appendOp(URX_NOP, 0);
int32_t varsLoc = allocateStackData(3); // Reserve three slots in match stack frame.
appendOp(URX_START_CAPTURE, varsLoc);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs. Depending on what follows in the pattern, the
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
// address of the end of the parenthesized group.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(capturing, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
// Save the mapping from group number to stack frame variable position.
fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
// If this is a named capture group, add the name->group number mapping.
if (fCaptureName != NULL) {
if (!fRXPat->initNamedCaptureMap()) {
if (U_SUCCESS(*fStatus)) {
error(fRXPat->fDeferredStatus);
}
break;
}
int32_t groupNumber = fRXPat->fGroupMap->size();
int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus);
fCaptureName = NULL; // hash table takes ownership of the name (key) string.
if (previousMapping > 0 && U_SUCCESS(*fStatus)) {
error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
}
}
}
break;
case doOpenNonCaptureParen:
// Open non-caputuring (grouping only) Paren.
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals();
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(plain, *fStatus); // Begin a new frame.
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
}
break;
case doOpenAtomicParen:
// Open Atomic Paren. (?>
// Compile to a
// - NOP, which later may be replaced if the parenthesized group
// has a quantifier, followed by
// - STO_SP save state stack position, so it can be restored at the ")"
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals();
appendOp(URX_NOP, 0);
int32_t varLoc = allocateData(1); // Reserve a data location for saving the state stack ptr.
appendOp(URX_STO_SP, varLoc);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs. Depending on what follows in the pattern, the
// NOPs may be changed to SAVE_STATE or JMP ops, with a target
// address of the end of the parenthesized group.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(atomic, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
}
break;
case doOpenLookAhead:
// Positive Look-ahead (?= stuff )
//
// Note: Addition of transparent input regions, with the need to
// restore the original regions when failing out of a lookahead
// block, complicated this sequence. Some conbined opcodes
// might make sense - or might not, lookahead aren't that common.
//
// Caution: min match length optimization knows about this
// sequence; don't change without making updates there too.
//
// Compiles to
// 1 LA_START dataLoc Saves SP, Input Pos, Active input region.
// 2. STATE_SAVE 4 on failure of lookahead, goto 4
// 3 JMP 6 continue ...
//
// 4. LA_END Look Ahead failed. Restore regions.
// 5. BACKTRACK and back track again.
//
// 6. NOP reserved for use by quantifiers on the block.
// Look-ahead can't have quantifiers, but paren stack
// compile time conventions require the slot anyhow.
// 7. NOP may be replaced if there is are '|' ops in the block.
// 8. code for parenthesized stuff.
// 9. LA_END
//
// Four data slots are reserved, for saving state on entry to the look-around
// 0: stack pointer on entry.
// 1: input position on entry.
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
{
fixLiterals();
int32_t dataLoc = allocateData(4);
appendOp(URX_LA_START, dataLoc);
appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
appendOp(URX_LA_END, dataLoc);
appendOp(URX_BACKTRACK, 0);
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the NOPs.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookAhead, *fStatus); // Frame type.
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
}
break;
case doOpenLookAheadNeg:
// Negated Lookahead. (?! stuff )
// Compiles to
// 1. LA_START dataloc
// 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
// // which continues with the match.
// 3. NOP // Std. Open Paren sequence, for possible '|'
// 4. code for parenthesized stuff.
// 5. LA_END // Cut back stack, remove saved state from step 2.
// 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
// 7. END_LA // Restore match region, in case look-ahead was using
// an alternate (transparent) region.
// Four data slots are reserved, for saving state on entry to the look-around
// 0: stack pointer on entry.
// 1: input position on entry.
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
{
fixLiterals();
int32_t dataLoc = allocateData(4);
appendOp(URX_LA_START, dataLoc);
appendOp(URX_STATE_SAVE, 0); // dest address will be patched later.
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the StateSave and NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(negLookAhead, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
// Instructions #5 - #7 will be added when the ')' is encountered.
}
break;
case doOpenLookBehind:
{
// Compile a (?<= look-behind open paren.
//
// Compiles to
// 0 URX_LB_START dataLoc
// 1 URX_LB_CONT dataLoc
// 2 MinMatchLen
// 3 MaxMatchLen
// 4 URX_NOP Standard '(' boilerplate.
// 5 URX_NOP Reserved slot for use with '|' ops within (block).
// 6 <code for LookBehind expression>
// 7 URX_LB_END dataLoc # Check match len, restore input len
// 8 URX_LA_END dataLoc # Restore stack, input pos
//
// Allocate a block of matcher data, to contain (when running a match)
// 0: Stack ptr on entry
// 1: Input Index on entry
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
// 4: Start index of match current match attempt.
// The first four items must match the layout of data for LA_START / LA_END
// Generate match code for any pending literals.
fixLiterals();
// Allocate data space
int32_t dataLoc = allocateData(5);
// Emit URX_LB_START
appendOp(URX_LB_START, dataLoc);
// Emit URX_LB_CONT
appendOp(URX_LB_CONT, dataLoc);
appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
// Emit the NOPs
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the URX_LB_CONT and the NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookBehind, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
// The final two instructions will be added when the ')' is encountered.
}
break;
case doOpenLookBehindNeg:
{
// Compile a (?<! negated look-behind open paren.
//
// Compiles to
// 0 URX_LB_START dataLoc # Save entry stack, input len
// 1 URX_LBN_CONT dataLoc # Iterate possible match positions
// 2 MinMatchLen
// 3 MaxMatchLen
// 4 continueLoc (9)
// 5 URX_NOP Standard '(' boilerplate.
// 6 URX_NOP Reserved slot for use with '|' ops within (block).
// 7 <code for LookBehind expression>
// 8 URX_LBN_END dataLoc # Check match len, cause a FAIL
// 9 ...
//
// Allocate a block of matcher data, to contain (when running a match)
// 0: Stack ptr on entry
// 1: Input Index on entry
// 2: fActiveStart, the active bounds start on entry.
// 3: fActiveLimit, the active bounds limit on entry.
// 4: Start index of match current match attempt.
// The first four items must match the layout of data for LA_START / LA_END
// Generate match code for any pending literals.
fixLiterals();
// Allocate data space
int32_t dataLoc = allocateData(5);
// Emit URX_LB_START
appendOp(URX_LB_START, dataLoc);
// Emit URX_LBN_CONT
appendOp(URX_LBN_CONT, dataLoc);
appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later.
appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later.
appendOp(URX_RESERVED_OP, 0); // Continue Loc. To be filled later.
// Emit the NOPs
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the URX_LB_CONT and the NOP.
fParenStack.push(fModeFlags, *fStatus); // Match mode state
fParenStack.push(lookBehindN, *fStatus); // Frame type
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
// The final two instructions will be added when the ')' is encountered.
}
break;
case doConditionalExpr:
// Conditionals such as (?(1)a:b)
case doPerlInline:
// Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them.
error(U_REGEX_UNIMPLEMENTED);
break;
case doCloseParen:
handleCloseParen();
if (fParenStack.size() <= 0) {
// Extra close paren, or missing open paren.
error(U_REGEX_MISMATCHED_PAREN);
}
break;
case doNOP:
break;
case doBadOpenParenType:
case doRuleError:
error(U_REGEX_RULE_SYNTAX);
break;
case doMismatchedParenErr:
error(U_REGEX_MISMATCHED_PAREN);
break;
case doPlus:
// Normal '+' compiles to
// 1. stuff to be repeated (already built)
// 2. jmp-sav 1
// 3. ...
//
// Or, if the item to be repeated can match a zero length string,
// 1. STO_INP_LOC data-loc
// 2. body of stuff to be repeated
// 3. JMP_SAV_X 2
// 4. ...
//
// Or, if the item to be repeated is simple
// 1. Item to be repeated.
// 2. LOOP_SR_I set number (assuming repeated item is a set ref)
// 3. LOOP_C stack location
{
int32_t topLoc = blockTopLoc(FALSE); // location of item #1
int32_t frameLoc;
// Check for simple constructs, which may get special optimized code.
if (topLoc == fRXPat->fCompiledPat->size() - 1) {
int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
if (URX_TYPE(repeatedOp) == URX_SETREF) {
// Emit optimized code for [char set]+
appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
frameLoc = allocateStackData(1);
appendOp(URX_LOOP_C, frameLoc);
break;
}
if (URX_TYPE(repeatedOp) == URX_DOTANY ||
URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
// Emit Optimized code for .+ operations.
int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
// URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
loopOpI |= 1;
}
if (fModeFlags & UREGEX_UNIX_LINES) {
loopOpI |= 2;
}
appendOp(loopOpI);
frameLoc = allocateStackData(1);
appendOp(URX_LOOP_C, frameLoc);
break;
}
}
// General case.
// Check for minimum match length of zero, which requires
// extra loop-breaking code.
if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) {
// Zero length match is possible.
// Emit the code sequence that can handle it.
insertOp(topLoc);
frameLoc = allocateStackData(1);
int32_t op = buildOp(URX_STO_INP_LOC, frameLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
appendOp(URX_JMP_SAV_X, topLoc+1);
} else {
// Simpler code when the repeated body must match something non-empty
appendOp(URX_JMP_SAV, topLoc);
}
}
break;
case doNGPlus:
// Non-greedy '+?' compiles to
// 1. stuff to be repeated (already built)
// 2. state-save 1
// 3. ...
{
int32_t topLoc = blockTopLoc(FALSE);
appendOp(URX_STATE_SAVE, topLoc);
}
break;
case doOpt:
// Normal (greedy) ? quantifier.
// Compiles to
// 1. state save 3
// 2. body of optional block
// 3. ...
// Insert the state save into the compiled pattern, and we're done.
{
int32_t saveStateLoc = blockTopLoc(TRUE);
int32_t saveStateOp = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
}
break;
case doNGOpt:
// Non-greedy ?? quantifier
// compiles to
// 1. jmp 4
// 2. body of optional block
// 3 jmp 5
// 4. state save 2
// 5 ...
// This code is less than ideal, with two jmps instead of one, because we can only
// insert one instruction at the top of the block being iterated.
{
int32_t jmp1_loc = blockTopLoc(TRUE);
int32_t jmp2_loc = fRXPat->fCompiledPat->size();
int32_t jmp1_op = buildOp(URX_JMP, jmp2_loc+1);
fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
appendOp(URX_JMP, jmp2_loc+2);
appendOp(URX_STATE_SAVE, jmp1_loc+1);
}
break;
case doStar:
// Normal (greedy) * quantifier.
// Compiles to
// 1. STATE_SAVE 4
// 2. body of stuff being iterated over
// 3. JMP_SAV 2
// 4. ...
//
// Or, if the body is a simple [Set],
// 1. LOOP_SR_I set number
// 2. LOOP_C stack location
// ...
//
// Or if this is a .*
// 1. LOOP_DOT_I (. matches all mode flag)
// 2. LOOP_C stack location
//
// Or, if the body can match a zero-length string, to inhibit infinite loops,
// 1. STATE_SAVE 5
// 2. STO_INP_LOC data-loc
// 3. body of stuff
// 4. JMP_SAV_X 2
// 5. ...
{
// location of item #1, the STATE_SAVE
int32_t topLoc = blockTopLoc(FALSE);
int32_t dataLoc = -1;
// Check for simple *, where the construct being repeated
// compiled to single opcode, and might be optimizable.
if (topLoc == fRXPat->fCompiledPat->size() - 1) {
int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
if (URX_TYPE(repeatedOp) == URX_SETREF) {
// Emit optimized code for a [char set]*
int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp));
fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
dataLoc = allocateStackData(1);
appendOp(URX_LOOP_C, dataLoc);
break;
}
if (URX_TYPE(repeatedOp) == URX_DOTANY ||
URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
// Emit Optimized code for .* operations.
int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0);
if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
// URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
loopOpI |= 1;
}
if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
loopOpI |= 2;
}
fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
dataLoc = allocateStackData(1);
appendOp(URX_LOOP_C, dataLoc);
break;
}
}
// Emit general case code for this *
// The optimizations did not apply.
int32_t saveStateLoc = blockTopLoc(TRUE);
int32_t jmpOp = buildOp(URX_JMP_SAV, saveStateLoc+1);
// Check for minimum match length of zero, which requires
// extra loop-breaking code.
if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
insertOp(saveStateLoc);
dataLoc = allocateStackData(1);
int32_t op = buildOp(URX_STO_INP_LOC, dataLoc);
fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
jmpOp = buildOp(URX_JMP_SAV_X, saveStateLoc+2);
}
// Locate the position in the compiled pattern where the match will continue
// after completing the *. (4 or 5 in the comment above)
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
// Put together the save state op and store it into the compiled code.
int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
// Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
appendOp(jmpOp);
}
break;
case doNGStar:
// Non-greedy *? quantifier
// compiles to
// 1. JMP 3
// 2. body of stuff being iterated over
// 3. STATE_SAVE 2
// 4 ...
{
int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
int32_t jmpOp = buildOp(URX_JMP, saveLoc);
fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
appendOp(URX_STATE_SAVE, jmpLoc+1);
}
break;
case doIntervalInit:
// The '{' opening an interval quantifier was just scanned.
// Init the counter varaiables that will accumulate the values as the digits
// are scanned.
fIntervalLow = 0;
fIntervalUpper = -1;
break;
case doIntevalLowerDigit:
// Scanned a digit from the lower value of an {lower,upper} interval
{
int32_t digitValue = u_charDigitValue(fC.fChar);
U_ASSERT(digitValue >= 0);
int64_t val = (int64_t)fIntervalLow*10 + digitValue;
if (val > INT32_MAX) {
error(U_REGEX_NUMBER_TOO_BIG);
} else {
fIntervalLow = (int32_t)val;
}
}
break;
case doIntervalUpperDigit:
// Scanned a digit from the upper value of an {lower,upper} interval
{
if (fIntervalUpper < 0) {
fIntervalUpper = 0;
}
int32_t digitValue = u_charDigitValue(fC.fChar);
U_ASSERT(digitValue >= 0);
int64_t val = (int64_t)fIntervalUpper*10 + digitValue;
if (val > INT32_MAX) {
error(U_REGEX_NUMBER_TOO_BIG);
} else {
fIntervalUpper = (int32_t)val;
}
}
break;
case doIntervalSame:
// Scanned a single value interval like {27}. Upper = Lower.
fIntervalUpper = fIntervalLow;
break;
case doInterval:
// Finished scanning a normal {lower,upper} interval. Generate the code for it.
if (compileInlineInterval() == FALSE) {
compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
}
break;
case doPossessiveInterval:
// Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
{
// Remember the loc for the top of the block being looped over.
// (Can not reserve a slot in the compiled pattern at this time, because
// compileInterval needs to reserve also, and blockTopLoc can only reserve
// once per block.)
int32_t topLoc = blockTopLoc(FALSE);
// Produce normal looping code.
compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
// Surround the just-emitted normal looping code with a STO_SP ... LD_SP
// just as if the loop was inclosed in atomic parentheses.
// First the STO_SP before the start of the loop
insertOp(topLoc);
int32_t varLoc = allocateData(1); // Reserve a data location for saving the
int32_t op = buildOp(URX_STO_SP, varLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
loopOp++; // point LoopOp after the just-inserted STO_SP
fRXPat->fCompiledPat->push(loopOp, *fStatus);
// Then the LD_SP after the end of the loop
appendOp(URX_LD_SP, varLoc);
}
break;
case doNGInterval:
// Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
break;
case doIntervalError:
error(U_REGEX_BAD_INTERVAL);
break;
case doLiteralChar:
// We've just scanned a "normal" character from the pattern,
literalChar(fC.fChar);
break;
case doEscapedLiteralChar:
// We've just scanned an backslashed escaped character with no
// special meaning. It represents itself.
if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
(fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
literalChar(fC.fChar);
break;
case doDotAny:
// scanned a ".", match any single character.
{
fixLiterals(FALSE);
if (fModeFlags & UREGEX_DOTALL) {
appendOp(URX_DOTANY_ALL, 0);
} else if (fModeFlags & UREGEX_UNIX_LINES) {
appendOp(URX_DOTANY_UNIX, 0);
} else {
appendOp(URX_DOTANY, 0);
}
}
break;
case doCaret:
{
fixLiterals(FALSE);
if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_CARET, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_CARET_M, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_CARET, 0); // Only testing true start of input.
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_CARET_M_UNIX, 0);
}
}
break;
case doDollar:
{
fixLiterals(FALSE);
if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_DOLLAR, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
appendOp(URX_DOLLAR_M, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_DOLLAR_D, 0);
} else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
appendOp(URX_DOLLAR_MD, 0);
}
}
break;
case doBackslashA:
fixLiterals(FALSE);
appendOp(URX_CARET, 0);
break;
case doBackslashB:
{
#if UCONFIG_NO_BREAK_ITERATION==1
if (fModeFlags & UREGEX_UWORD) {
error(U_UNSUPPORTED_ERROR);
}
#endif
fixLiterals(FALSE);
int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
appendOp(op, 1);
}
break;
case doBackslashb:
{
#if UCONFIG_NO_BREAK_ITERATION==1
if (fModeFlags & UREGEX_UWORD) {
error(U_UNSUPPORTED_ERROR);
}
#endif
fixLiterals(FALSE);
int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
appendOp(op, 0);
}
break;
case doBackslashD:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_D, 1);
break;
case doBackslashd:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_D, 0);
break;
case doBackslashG:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_G, 0);
break;
case doBackslashH:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_H, 1);
break;
case doBackslashh:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_H, 0);
break;
case doBackslashR:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_R, 0);
break;
case doBackslashS:
fixLiterals(FALSE);
appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET);
break;
case doBackslashs:
fixLiterals(FALSE);
appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET);
break;
case doBackslashV:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_V, 1);
break;
case doBackslashv:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_V, 0);
break;
case doBackslashW:
fixLiterals(FALSE);
appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET);
break;
case doBackslashw:
fixLiterals(FALSE);
appendOp(URX_STATIC_SETREF, URX_ISWORD_SET);
break;
case doBackslashX:
#if UCONFIG_NO_BREAK_ITERATION==1
// Grapheme Cluster Boundary requires ICU break iteration.
error(U_UNSUPPORTED_ERROR);
#endif
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_X, 0);
break;
case doBackslashZ:
fixLiterals(FALSE);
appendOp(URX_DOLLAR, 0);
break;
case doBackslashz:
fixLiterals(FALSE);
appendOp(URX_BACKSLASH_Z, 0);
break;
case doEscapeError:
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
break;
case doExit:
fixLiterals(FALSE);
returnVal = FALSE;
break;
case doProperty:
{
fixLiterals(FALSE);
UnicodeSet *theSet = scanProp();
compileSet(theSet);
}
break;
case doNamedChar:
{
UChar32 c = scanNamedChar();
literalChar(c);
}
break;
case doBackRef:
// BackReference. Somewhat unusual in that the front-end can not completely parse
// the regular expression, because the number of digits to be consumed
// depends on the number of capture groups that have been defined. So
// we have to do it here instead.
{
int32_t numCaptureGroups = fRXPat->fGroupMap->size();
int32_t groupNum = 0;
UChar32 c = fC.fChar;
for (;;) {
// Loop once per digit, for max allowed number of digits in a back reference.
int32_t digit = u_charDigitValue(c);
groupNum = groupNum * 10 + digit;
if (groupNum >= numCaptureGroups) {
break;
}
c = peekCharLL();
if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) {
break;
}
nextCharLL();
}
// Scan of the back reference in the source regexp is complete. Now generate
// the compiled code for it.
// Because capture groups can be forward-referenced by back-references,
// we fill the operand with the capture group number. At the end
// of compilation, it will be changed to the variable's location.
U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence,
// and shouldn't enter this code path at all.
fixLiterals(FALSE);
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
appendOp(URX_BACKREF_I, groupNum);
} else {
appendOp(URX_BACKREF, groupNum);
}
}
break;
case doBeginNamedBackRef:
U_ASSERT(fCaptureName == NULL);
fCaptureName = new UnicodeString;
if (fCaptureName == NULL) {
error(U_MEMORY_ALLOCATION_ERROR);
}
break;
case doContinueNamedBackRef:
fCaptureName->append(fC.fChar);
break;
case doCompleteNamedBackRef:
{
int32_t groupNumber =
fRXPat->fNamedCaptureMap ? uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName) : 0;
if (groupNumber == 0) {
// Group name has not been defined.
// Could be a forward reference. If we choose to support them at some
// future time, extra mechanism will be required at this point.
error(U_REGEX_INVALID_CAPTURE_GROUP_NAME);
} else {
// Given the number, handle identically to a \n numbered back reference.
// See comments above, under doBackRef
fixLiterals(FALSE);
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
appendOp(URX_BACKREF_I, groupNumber);
} else {
appendOp(URX_BACKREF, groupNumber);
}
}
delete fCaptureName;
fCaptureName = NULL;
break;
}
case doPossessivePlus:
// Possessive ++ quantifier.
// Compiles to
// 1. STO_SP
// 2. body of stuff being iterated over
// 3. STATE_SAVE 5
// 4. JMP 2
// 5. LD_SP
// 6. ...
//
// Note: TODO: This is pretty inefficient. A mass of saved state is built up
// then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
//
{
// Emit the STO_SP
int32_t topLoc = blockTopLoc(TRUE);
int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the STATE_SAVE
appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
// Emit the JMP
appendOp(URX_JMP, topLoc+1);
// Emit the LD_SP
appendOp(URX_LD_SP, stoLoc);
}
break;
case doPossessiveStar:
// Possessive *+ quantifier.
// Compiles to
// 1. STO_SP loc
// 2. STATE_SAVE 5
// 3. body of stuff being iterated over
// 4. JMP 2
// 5. LD_SP loc
// 6 ...
// TODO: do something to cut back the state stack each time through the loop.
{
// Reserve two slots at the top of the block.
int32_t topLoc = blockTopLoc(TRUE);
insertOp(topLoc);
// emit STO_SP loc
int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the SAVE_STATE 5
int32_t L7 = fRXPat->fCompiledPat->size()+1;
op = buildOp(URX_STATE_SAVE, L7);
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
// Append the JMP operation.
appendOp(URX_JMP, topLoc+1);
// Emit the LD_SP loc
appendOp(URX_LD_SP, stoLoc);
}
break;
case doPossessiveOpt:
// Possessive ?+ quantifier.
// Compiles to
// 1. STO_SP loc
// 2. SAVE_STATE 5
// 3. body of optional block
// 4. LD_SP loc
// 5. ...
//
{
// Reserve two slots at the top of the block.
int32_t topLoc = blockTopLoc(TRUE);
insertOp(topLoc);
// Emit the STO_SP
int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr.
int32_t op = buildOp(URX_STO_SP, stoLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc);
// Emit the SAVE_STATE
int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
op = buildOp(URX_STATE_SAVE, continueLoc);
fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
// Emit the LD_SP
appendOp(URX_LD_SP, stoLoc);
}
break;
case doBeginMatchMode:
fNewModeFlags = fModeFlags;
fSetModeFlag = TRUE;
break;
case doMatchMode: // (?i) and similar
{
int32_t bit = 0;
switch (fC.fChar) {
case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break;
case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break;
case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break;
case 0x73: /* 's' */ bit = UREGEX_DOTALL; break;
case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break;
case 0x77: /* 'w' */ bit = UREGEX_UWORD; break;
case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break;
case 0x2d: /* '-' */ fSetModeFlag = FALSE; break;
default:
UPRV_UNREACHABLE; // Should never happen. Other chars are filtered out
// by the scanner.
}
if (fSetModeFlag) {
fNewModeFlags |= bit;
} else {
fNewModeFlags &= ~bit;
}
}
break;
case doSetMatchMode:
// Emit code to match any pending literals, using the not-yet changed match mode.
fixLiterals();
// We've got a (?i) or similar. The match mode is being changed, but
// the change is not scoped to a parenthesized block.
U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
break;
case doMatchModeParen:
// We've got a (?i: or similar. Begin a parenthesized block, save old
// mode flags so they can be restored at the close of the block.
//
// Compile to a
// - NOP, which later may be replaced by a save-state if the
// parenthesized group gets a * quantifier, followed by
// - NOP, which may later be replaced by a save-state if there
// is an '|' alternation within the parens.
{
fixLiterals(FALSE);
appendOp(URX_NOP, 0);
appendOp(URX_NOP, 0);
// On the Parentheses stack, start a new frame and add the postions
// of the two NOPs (a normal non-capturing () frame, except for the
// saving of the orignal mode flags.)
fParenStack.push(fModeFlags, *fStatus);
fParenStack.push(flags, *fStatus); // Frame Marker
fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
// Set the current mode flags to the new values.
U_ASSERT(fNewModeFlags < 0);
fModeFlags = fNewModeFlags;
}
break;
case doBadModeFlag:
error(U_REGEX_INVALID_FLAG);
break;
case doSuppressComments:
// We have just scanned a '(?'. We now need to prevent the character scanner from
// treating a '#' as a to-the-end-of-line comment.
// (This Perl compatibility just gets uglier and uglier to do...)
fEOLComments = FALSE;
break;
case doSetAddAmp:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->add(chAmp);
}
break;
case doSetAddDash:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->add(chDash);
}
break;
case doSetBackslash_s:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
break;
}
case doSetBackslash_S:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet SSet;
SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]).complement();
set->addAll(SSet);
break;
}
case doSetBackslash_d:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
// TODO - make a static set, ticket 6058.
addCategory(set, U_GC_ND_MASK, *fStatus);
break;
}
case doSetBackslash_D:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet digits;
// TODO - make a static set, ticket 6058.
digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
digits.complement();
set->addAll(digits);
break;
}
case doSetBackslash_h:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet h;
h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
h.add((UChar32)9); // Tab
set->addAll(h);
break;
}
case doSetBackslash_H:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet h;
h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
h.add((UChar32)9); // Tab
h.complement();
set->addAll(h);
break;
}
case doSetBackslash_v:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->add((UChar32)0x0a, (UChar32)0x0d); // add range
set->add((UChar32)0x85);
set->add((UChar32)0x2028, (UChar32)0x2029);
break;
}
case doSetBackslash_V:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet v;
v.add((UChar32)0x0a, (UChar32)0x0d); // add range
v.add((UChar32)0x85);
v.add((UChar32)0x2028, (UChar32)0x2029);
v.complement();
set->addAll(v);
break;
}
case doSetBackslash_w:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
break;
}
case doSetBackslash_W:
{
UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
UnicodeSet SSet;
SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]).complement();
set->addAll(SSet);
break;
}
case doSetBegin:
fixLiterals(FALSE);
fSetStack.push(new UnicodeSet(), *fStatus);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetBeginDifference1:
// We have scanned something like [[abc]-[
// Set up a new UnicodeSet for the set beginning with the just-scanned '['
// Push a Difference operator, which will cause the new set to be subtracted from what
// went before once it is created.
setPushOp(setDifference1);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetBeginIntersection1:
// We have scanned something like [[abc]&[
// Need both the '&' operator and the open '[' operator.
setPushOp(setIntersection1);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetBeginUnion:
// We have scanned something like [[abc][
// Need to handle the union operation explicitly [[abc] | [
setPushOp(setUnion);
fSetOpStack.push(setStart, *fStatus);
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
fSetOpStack.push(setCaseClose, *fStatus);
}
break;
case doSetDifference2:
// We have scanned something like [abc--
// Consider this to unambiguously be a set difference operator.
setPushOp(setDifference2);
break;
case doSetEnd:
// Have encountered the ']' that closes a set.
// Force the evaluation of any pending operations within this set,
// leave the completed set on the top of the set stack.
setEval(setEnd);
U_ASSERT(fSetOpStack.peeki()==setStart);
fSetOpStack.popi();
break;
case doSetFinish:
{
// Finished a complete set expression, including all nested sets.
// The close bracket has already triggered clearing out pending set operators,
// the operator stack should be empty and the operand stack should have just
// one entry, the result set.
U_ASSERT(fSetOpStack.empty());
UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
U_ASSERT(fSetStack.empty());
compileSet(theSet);
break;
}
case doSetIntersection2:
// Have scanned something like [abc&&
setPushOp(setIntersection2);
break;
case doSetLiteral:
// Union the just-scanned literal character into the set being built.
// This operation is the highest precedence set operation, so we can always do
// it immediately, without waiting to see what follows. It is necessary to perform
// any pending '-' or '&' operation first, because these have the same precedence
// as union-ing in a literal'
{
setEval(setUnion);
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fC.fChar);
fLastSetLiteral = fC.fChar;
break;
}
case doSetLiteralEscaped:
// A back-slash escaped literal character was encountered.
// Processing is the same as with setLiteral, above, with the addition of
// the optional check for errors on escaped ASCII letters.
{
if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
(fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
setEval(setUnion);
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fC.fChar);
fLastSetLiteral = fC.fChar;
break;
}
case doSetNamedChar:
// Scanning a \N{UNICODE CHARACTER NAME}
// Aside from the source of the character, the processing is identical to doSetLiteral,
// above.
{
UChar32 c = scanNamedChar();
setEval(setUnion);
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(c);
fLastSetLiteral = c;
break;
}
case doSetNamedRange:
// We have scanned literal-\N{CHAR NAME}. Add the range to the set.
// The left character is already in the set, and is saved in fLastSetLiteral.
// The right side needs to be picked up, the scan is at the 'N'.
// Lower Limit > Upper limit being an error matches both Java
// and ICU UnicodeSet behavior.
{
UChar32 c = scanNamedChar();
if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) {
error(U_REGEX_INVALID_RANGE);
}
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fLastSetLiteral, c);
fLastSetLiteral = c;
break;
}
case doSetNegate:
// Scanned a '^' at the start of a set.
// Push the negation operator onto the set op stack.
// A twist for case-insensitive matching:
// the case closure operation must happen _before_ negation.
// But the case closure operation will already be on the stack if it's required.
// This requires checking for case closure, and swapping the stack order
// if it is present.
{
int32_t tosOp = fSetOpStack.peeki();
if (tosOp == setCaseClose) {
fSetOpStack.popi();
fSetOpStack.push(setNegation, *fStatus);
fSetOpStack.push(setCaseClose, *fStatus);
} else {
fSetOpStack.push(setNegation, *fStatus);
}
}
break;
case doSetNoCloseError:
error(U_REGEX_MISSING_CLOSE_BRACKET);
break;
case doSetOpError:
error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal.
break;
case doSetPosixProp:
{
UnicodeSet *s = scanPosixProp();
if (s != NULL) {
UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
tos->addAll(*s);
delete s;
} // else error. scanProp() reported the error status already.
}
break;
case doSetProp:
// Scanned a \p \P within [brackets].
{
UnicodeSet *s = scanProp();
if (s != NULL) {
UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
tos->addAll(*s);
delete s;
} // else error. scanProp() reported the error status already.
}
break;
case doSetRange:
// We have scanned literal-literal. Add the range to the set.
// The left character is already in the set, and is saved in fLastSetLiteral.
// The right side is the current character.
// Lower Limit > Upper limit being an error matches both Java
// and ICU UnicodeSet behavior.
{
if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) {
error(U_REGEX_INVALID_RANGE);
}
UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
s->add(fLastSetLiteral, fC.fChar);
break;
}
default:
UPRV_UNREACHABLE;
}
if (U_FAILURE(*fStatus)) {
returnVal = FALSE;
}
return returnVal;
}
//------------------------------------------------------------------------------
//
// literalChar We've encountered a literal character from the pattern,
// or an escape sequence that reduces to a character.
// Add it to the string containing all literal chars/strings from
// the pattern.
//
//------------------------------------------------------------------------------
void RegexCompile::literalChar(UChar32 c) {
fLiteralChars.append(c);
}
//------------------------------------------------------------------------------
//
// fixLiterals When compiling something that can follow a literal
// string in a pattern, emit the code to match the
// accumulated literal string.
//
// Optionally, split the last char of the string off into
// a single "ONE_CHAR" operation, so that quantifiers can
// apply to that char alone. Example: abc*
// The * must apply to the 'c' only.
//
//------------------------------------------------------------------------------
void RegexCompile::fixLiterals(UBool split) {
// If no literal characters have been scanned but not yet had code generated
// for them, nothing needs to be done.
if (fLiteralChars.length() == 0) {
return;
}
int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
// Split: We need to ensure that the last item in the compiled pattern
// refers only to the last literal scanned in the pattern, so that
// quantifiers (*, +, etc.) affect only it, and not a longer string.
// Split before case folding for case insensitive matches.
if (split) {
fLiteralChars.truncate(indexOfLastCodePoint);
fixLiterals(FALSE); // Recursive call, emit code to match the first part of the string.
// Note that the truncated literal string may be empty, in which case
// nothing will be emitted.
literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal.
fixLiterals(FALSE); // Second recursive call, code for the final code point.
return;
}
// If we are doing case-insensitive matching, case fold the string. This may expand
// the string, e.g. the German sharp-s turns into "ss"
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
fLiteralChars.foldCase();
indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1);
lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint);
}
if (indexOfLastCodePoint == 0) {
// Single character, emit a URX_ONECHAR op to match it.
if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) {
appendOp(URX_ONECHAR_I, lastCodePoint);
} else {
appendOp(URX_ONECHAR, lastCodePoint);
}
} else {
// Two or more chars, emit a URX_STRING to match them.
if (fLiteralChars.length() > 0x00ffffff || fRXPat->fLiteralText.length() > 0x00ffffff) {
error(U_REGEX_PATTERN_TOO_BIG);
}
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
appendOp(URX_STRING_I, fRXPat->fLiteralText.length());
} else {
// TODO here: add optimization to split case sensitive strings of length two
// into two single char ops, for efficiency.
appendOp(URX_STRING, fRXPat->fLiteralText.length());
}
appendOp(URX_STRING_LEN, fLiteralChars.length());
// Add this string into the accumulated strings of the compiled pattern.
fRXPat->fLiteralText.append(fLiteralChars);
}
fLiteralChars.remove();
}
int32_t RegexCompile::buildOp(int32_t type, int32_t val) {
if (U_FAILURE(*fStatus)) {
return 0;
}
if (type < 0 || type > 255) {
UPRV_UNREACHABLE;
}
if (val > 0x00ffffff) {
UPRV_UNREACHABLE;
}
if (val < 0) {
if (!(type == URX_RESERVED_OP_N || type == URX_RESERVED_OP)) {
UPRV_UNREACHABLE;
}
if (URX_TYPE(val) != 0xff) {
UPRV_UNREACHABLE;
}
type = URX_RESERVED_OP_N;
}
return (type << 24) | val;
}
//------------------------------------------------------------------------------
//
// appendOp() Append a new instruction onto the compiled pattern
// Includes error checking, limiting the size of the
// pattern to lengths that can be represented in the
// 24 bit operand field of an instruction.
//
//------------------------------------------------------------------------------
void RegexCompile::appendOp(int32_t op) {
if (U_FAILURE(*fStatus)) {
return;
}
fRXPat->fCompiledPat->addElement(op, *fStatus);
if ((fRXPat->fCompiledPat->size() > 0x00fffff0) && U_SUCCESS(*fStatus)) {
error(U_REGEX_PATTERN_TOO_BIG);
}
}
void RegexCompile::appendOp(int32_t type, int32_t val) {
appendOp(buildOp(type, val));
}
//------------------------------------------------------------------------------
//
// insertOp() Insert a slot for a new opcode into the already
// compiled pattern code.
//
// Fill the slot with a NOP. Our caller will replace it
// with what they really wanted.
//
//------------------------------------------------------------------------------
void RegexCompile::insertOp(int32_t where) {
UVector64 *code = fRXPat->fCompiledPat;
U_ASSERT(where>0 && where < code->size());
int32_t nop = buildOp(URX_NOP, 0);
code->insertElementAt(nop, where, *fStatus);
// Walk through the pattern, looking for any ops with targets that
// were moved down by the insert. Fix them.
int32_t loc;
for (loc=0; loc<code->size(); loc++) {
int32_t op = (int32_t)code->elementAti(loc);
int32_t opType = URX_TYPE(op);
int32_t opValue = URX_VAL(op);
if ((opType == URX_JMP ||
opType == URX_JMPX ||
opType == URX_STATE_SAVE ||
opType == URX_CTR_LOOP ||
opType == URX_CTR_LOOP_NG ||
opType == URX_JMP_SAV ||
opType == URX_JMP_SAV_X ||
opType == URX_RELOC_OPRND) && opValue > where) {
// Target location for this opcode is after the insertion point and
// needs to be incremented to adjust for the insertion.
opValue++;
op = buildOp(opType, opValue);
code->setElementAt(op, loc);
}
}
// Now fix up the parentheses stack. All positive values in it are locations in
// the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
for (loc=0; loc<fParenStack.size(); loc++) {
int32_t x = fParenStack.elementAti(loc);
U_ASSERT(x < code->size());
if (x>where) {
x++;
fParenStack.setElementAt(x, loc);
}
}
if (fMatchCloseParen > where) {
fMatchCloseParen++;
}
if (fMatchOpenParen > where) {
fMatchOpenParen++;
}
}
//------------------------------------------------------------------------------
//
// allocateData() Allocate storage in the matcher's static data area.
// Return the index for the newly allocated data.
// The storage won't actually exist until we are running a match
// operation, but the storage indexes are inserted into various
// opcodes while compiling the pattern.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::allocateData(int32_t size) {
if (U_FAILURE(*fStatus)) {
return 0;
}
if (size <= 0 || size > 0x100 || fRXPat->fDataSize < 0) {
error(U_REGEX_INTERNAL_ERROR);
return 0;
}
int32_t dataIndex = fRXPat->fDataSize;
fRXPat->fDataSize += size;
if (fRXPat->fDataSize >= 0x00fffff0) {
error(U_REGEX_INTERNAL_ERROR);
}
return dataIndex;
}
//------------------------------------------------------------------------------
//
// allocateStackData() Allocate space in the back-tracking stack frame.
// Return the index for the newly allocated data.
// The frame indexes are inserted into various
// opcodes while compiling the pattern, meaning that frame
// size must be restricted to the size that will fit
// as an operand (24 bits).
//
//------------------------------------------------------------------------------
int32_t RegexCompile::allocateStackData(int32_t size) {
if (U_FAILURE(*fStatus)) {
return 0;
}
if (size <= 0 || size > 0x100 || fRXPat->fFrameSize < 0) {
error(U_REGEX_INTERNAL_ERROR);
return 0;
}
int32_t dataIndex = fRXPat->fFrameSize;
fRXPat->fFrameSize += size;
if (fRXPat->fFrameSize >= 0x00fffff0) {
error(U_REGEX_PATTERN_TOO_BIG);
}
return dataIndex;
}
//------------------------------------------------------------------------------
//
// blockTopLoc() Find or create a location in the compiled pattern
// at the start of the operation or block that has
// just been compiled. Needed when a quantifier (* or
// whatever) appears, and we need to add an operation
// at the start of the thing being quantified.
//
// (Parenthesized Blocks) have a slot with a NOP that
// is reserved for this purpose. .* or similar don't
// and a slot needs to be added.
//
// parameter reserveLoc : TRUE - ensure that there is space to add an opcode
// at the returned location.
// FALSE - just return the address,
// do not reserve a location there.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
int32_t theLoc;
fixLiterals(TRUE); // Emit code for any pending literals.
// If last item was a string, emit separate op for the its last char.
if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
{
// The item just processed is a parenthesized block.
theLoc = fMatchOpenParen; // A slot is already reserved for us.
U_ASSERT(theLoc > 0);
U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
}
else {
// Item just compiled is a single thing, a ".", or a single char, a string or a set reference.
// No slot for STATE_SAVE was pre-reserved in the compiled code.
// We need to make space now.
theLoc = fRXPat->fCompiledPat->size()-1;
int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc);
if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) {
// Strings take two opcode, we want the position of the first one.
// We can have a string at this point if a single character case-folded to two.
theLoc--;
}
if (reserveLoc) {
int32_t nop = buildOp(URX_NOP, 0);
fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
}
}
return theLoc;
}
//------------------------------------------------------------------------------
//
// handleCloseParen When compiling a close paren, we need to go back
// and fix up any JMP or SAVE operations within the
// parenthesized block that need to target the end
// of the block. The locations of these are kept on
// the paretheses stack.
//
// This function is called both when encountering a
// real ) and at the end of the pattern.
//
//------------------------------------------------------------------------------
void RegexCompile::handleCloseParen() {
int32_t patIdx;
int32_t patOp;
if (fParenStack.size() <= 0) {
error(U_REGEX_MISMATCHED_PAREN);
return;
}
// Emit code for any pending literals.
fixLiterals(FALSE);
// Fixup any operations within the just-closed parenthesized group
// that need to reference the end of the (block).
// (The first one popped from the stack is an unused slot for
// alternation (OR) state save, but applying the fixup to it does no harm.)
for (;;) {
patIdx = fParenStack.popi();
if (patIdx < 0) {
// value < 0 flags the start of the frame on the paren stack.
break;
}
U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx);
U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
patOp |= fRXPat->fCompiledPat->size(); // Set it now.
fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
fMatchOpenParen = patIdx;
}
// At the close of any parenthesized block, restore the match mode flags to
// the value they had at the open paren. Saved value is
// at the top of the paren stack.
fModeFlags = fParenStack.popi();
U_ASSERT(fModeFlags < 0);
// DO any additional fixups, depending on the specific kind of
// parentesized grouping this is
switch (patIdx) {
case plain:
case flags:
// No additional fixups required.
// (Grouping-only parentheses)
break;
case capturing:
// Capturing Parentheses.
// Insert a End Capture op into the pattern.
// The frame offset of the variables for this cg is obtained from the
// start capture op and put it into the end-capture op.
{
int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
int32_t frameVarLocation = URX_VAL(captureOp);
appendOp(URX_END_CAPTURE, frameVarLocation);
}
break;
case atomic:
// Atomic Parenthesis.
// Insert a LD_SP operation to restore the state stack to the position
// it was when the atomic parens were entered.
{
int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
int32_t stoLoc = URX_VAL(stoOp);
appendOp(URX_LD_SP, stoLoc);
}
break;
case lookAhead:
{
int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
int32_t dataLoc = URX_VAL(startOp);
appendOp(URX_LA_END, dataLoc);
}
break;
case negLookAhead:
{
// See comment at doOpenLookAheadNeg
int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
int32_t dataLoc = URX_VAL(startOp);
appendOp(URX_LA_END, dataLoc);
appendOp(URX_BACKTRACK, 0);
appendOp(URX_LA_END, dataLoc);
// Patch the URX_SAVE near the top of the block.
// The destination of the SAVE is the final LA_END that was just added.
int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
int32_t dest = fRXPat->fCompiledPat->size()-1;
saveOp = buildOp(URX_STATE_SAVE, dest);
fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
}
break;
case lookBehind:
{
// See comment at doOpenLookBehind.
// Append the URX_LB_END and URX_LA_END to the compiled pattern.
int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
int32_t dataLoc = URX_VAL(startOp);
appendOp(URX_LB_END, dataLoc);
appendOp(URX_LA_END, dataLoc);
// Determine the min and max bounds for the length of the
// string that the pattern can match.
// An unbounded upper limit is an error.
int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
if (URX_TYPE(maxML) != 0) {
error(U_REGEX_LOOK_BEHIND_LIMIT);
break;
}
if (maxML == INT32_MAX) {
error(U_REGEX_LOOK_BEHIND_LIMIT);
break;
}
if (minML == INT32_MAX) {
// This condition happens when no match is possible, such as with a
// [set] expression containing no elements.
// In principle, the generated code to evaluate the expression could be deleted,
// but it's probably not worth the complication.
minML = 0;
}
U_ASSERT(minML <= maxML);
// Insert the min and max match len bounds into the URX_LB_CONT op that
// appears at the top of the look-behind block, at location fMatchOpenParen+1
fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2);
fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1);
}
break;
case lookBehindN:
{
// See comment at doOpenLookBehindNeg.
// Append the URX_LBN_END to the compiled pattern.
int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
int32_t dataLoc = URX_VAL(startOp);
appendOp(URX_LBN_END, dataLoc);
// Determine the min and max bounds for the length of the
// string that the pattern can match.
// An unbounded upper limit is an error.
int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
if (URX_TYPE(maxML) != 0) {
error(U_REGEX_LOOK_BEHIND_LIMIT);
break;
}
if (maxML == INT32_MAX) {
error(U_REGEX_LOOK_BEHIND_LIMIT);
break;
}
if (minML == INT32_MAX) {
// This condition happens when no match is possible, such as with a
// [set] expression containing no elements.
// In principle, the generated code to evaluate the expression could be deleted,
// but it's probably not worth the complication.
minML = 0;
}
U_ASSERT(minML <= maxML);
// Insert the min and max match len bounds into the URX_LB_CONT op that
// appears at the top of the look-behind block, at location fMatchOpenParen+1
fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3);
fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2);
// Insert the pattern location to continue at after a successful match
// as the last operand of the URX_LBN_CONT
int32_t op = buildOp(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1);
}
break;
default:
UPRV_UNREACHABLE;
}
// remember the next location in the compiled pattern.
// The compilation of Quantifiers will look at this to see whether its looping
// over a parenthesized block or a single item
fMatchCloseParen = fRXPat->fCompiledPat->size();
}
//------------------------------------------------------------------------------
//
// compileSet Compile the pattern operations for a reference to a
// UnicodeSet.
//
//------------------------------------------------------------------------------
void RegexCompile::compileSet(UnicodeSet *theSet)
{
if (theSet == NULL) {
return;
}
// Remove any strings from the set.
// There shoudn't be any, but just in case.
// (Case Closure can add them; if we had a simple case closure avaialble that
// ignored strings, that would be better.)
theSet->removeAllStrings();
int32_t setSize = theSet->size();
switch (setSize) {
case 0:
{
// Set of no elements. Always fails to match.
appendOp(URX_BACKTRACK, 0);
delete theSet;
}
break;
case 1:
{
// The set contains only a single code point. Put it into
// the compiled pattern as a single char operation rather
// than a set, and discard the set itself.
literalChar(theSet->charAt(0));
delete theSet;
}
break;
default:
{
// The set contains two or more chars. (the normal case)
// Put it into the compiled pattern as a set.
theSet->freeze();
int32_t setNumber = fRXPat->fSets->size();
fRXPat->fSets->addElement(theSet, *fStatus);
appendOp(URX_SETREF, setNumber);
}
}
}
//------------------------------------------------------------------------------
//
// compileInterval Generate the code for a {min, max} style interval quantifier.
// Except for the specific opcodes used, the code is the same
// for all three types (greedy, non-greedy, possessive) of
// intervals. The opcodes are supplied as parameters.
// (There are two sets of opcodes - greedy & possessive use the
// same ones, while non-greedy has it's own.)
//
// The code for interval loops has this form:
// 0 CTR_INIT counter loc (in stack frame)
// 1 5 patt address of CTR_LOOP at bottom of block
// 2 min count
// 3 max count (-1 for unbounded)
// 4 ... block to be iterated over
// 5 CTR_LOOP
//
// In
//------------------------------------------------------------------------------
void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp)
{
// The CTR_INIT op at the top of the block with the {n,m} quantifier takes
// four slots in the compiled code. Reserve them.
int32_t topOfBlock = blockTopLoc(TRUE);
insertOp(topOfBlock);
insertOp(topOfBlock);
insertOp(topOfBlock);
// The operands for the CTR_INIT opcode include the index in the matcher data
// of the counter. Allocate it now. There are two data items
// counterLoc --> Loop counter
// +1 --> Input index (for breaking non-progressing loops)
// (Only present if unbounded upper limit on loop)
int32_t dataSize = fIntervalUpper < 0 ? 2 : 1;
int32_t counterLoc = allocateStackData(dataSize);
int32_t op = buildOp(InitOp, counterLoc);
fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
// The second operand of CTR_INIT is the location following the end of the loop.
// Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
// compilation of something later on causes the code to grow and the target
// position to move.
int32_t loopEnd = fRXPat->fCompiledPat->size();
op = buildOp(URX_RELOC_OPRND, loopEnd);
fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
// Followed by the min and max counts.
fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2);
fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3);
// Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
// Goes at end of the block being looped over, so just append to the code so far.
appendOp(LoopOp, topOfBlock);
if ((fIntervalLow & 0xff000000) != 0 ||
(fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) {
error(U_REGEX_NUMBER_TOO_BIG);
}
if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
error(U_REGEX_MAX_LT_MIN);
}
}
UBool RegexCompile::compileInlineInterval() {
if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) {
// Too big to inline. Fail, which will cause looping code to be generated.
// (Upper < Lower picks up unbounded upper and errors, both.)
return FALSE;
}
int32_t topOfBlock = blockTopLoc(FALSE);
if (fIntervalUpper == 0) {
// Pathological case. Attempt no matches, as if the block doesn't exist.
// Discard the generated code for the block.
// If the block included parens, discard the info pertaining to them as well.
fRXPat->fCompiledPat->setSize(topOfBlock);
if (fMatchOpenParen >= topOfBlock) {
fMatchOpenParen = -1;
}
if (fMatchCloseParen >= topOfBlock) {
fMatchCloseParen = -1;
}
return TRUE;
}
if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) {
// The thing being repeated is not a single op, but some
// more complex block. Do it as a loop, not inlines.
// Note that things "repeated" a max of once are handled as inline, because
// the one copy of the code already generated is just fine.
return FALSE;
}
// Pick up the opcode that is to be repeated
//
int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock);
// Compute the pattern location where the inline sequence
// will end, and set up the state save op that will be needed.
//
int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1
+ fIntervalUpper + (fIntervalUpper-fIntervalLow);
int32_t saveOp = buildOp(URX_STATE_SAVE, endOfSequenceLoc);
if (fIntervalLow == 0) {
insertOp(topOfBlock);
fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock);
}
// Loop, emitting the op for the thing being repeated each time.
// Loop starts at 1 because one instance of the op already exists in the pattern,
// it was put there when it was originally encountered.
int32_t i;
for (i=1; i<fIntervalUpper; i++ ) {
if (i >= fIntervalLow) {
appendOp(saveOp);
}
appendOp(op);
}
return TRUE;
}
//------------------------------------------------------------------------------
//
// caseInsensitiveStart given a single code point from a pattern string, determine the
// set of characters that could potentially begin a case-insensitive
// match of a string beginning with that character, using full Unicode
// case insensitive matching.
//
// This is used in optimizing find().
//
// closeOver(USET_CASE_INSENSITIVE) does most of what is needed, but
// misses cases like this:
// A string from the pattern begins with 'ss' (although all we know
// in this context is that it begins with 's')
// The pattern could match a string beginning with a German sharp-s
//
// To the ordinary case closure for a character c, we add all other
// characters cx where the case closure of cx incudes a string form that begins
// with the original character c.
//
// This function could be made smarter. The full pattern string is available
// and it would be possible to verify that the extra characters being added
// to the starting set fully match, rather than having just a first-char of the
// folded form match.
//
//------------------------------------------------------------------------------
void RegexCompile::findCaseInsensitiveStarters(UChar32 c, UnicodeSet *starterChars) {
// Machine Generated below.
// It may need updating with new versions of Unicode.
// Intltest test RegexTest::TestCaseInsensitiveStarters will fail if an update is needed.
// The update tool is here: svn+ssh://source.icu-project.org/repos/icu/tools/trunk/unicode/c/genregexcasing
// Machine Generated Data. Do not hand edit.
static const UChar32 RECaseFixCodePoints[] = {
0x61, 0x66, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x77, 0x79, 0x2bc,
0x3ac, 0x3ae, 0x3b1, 0x3b7, 0x3b9, 0x3c1, 0x3c5, 0x3c9, 0x3ce, 0x565,
0x574, 0x57e, 0x1f00, 0x1f01, 0x1f02, 0x1f03, 0x1f04, 0x1f05, 0x1f06, 0x1f07,
0x1f20, 0x1f21, 0x1f22, 0x1f23, 0x1f24, 0x1f25, 0x1f26, 0x1f27, 0x1f60, 0x1f61,
0x1f62, 0x1f63, 0x1f64, 0x1f65, 0x1f66, 0x1f67, 0x1f70, 0x1f74, 0x1f7c, 0x110000};
static const int16_t RECaseFixStringOffsets[] = {
0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xd, 0xe, 0xf, 0x10,
0x11, 0x12, 0x13, 0x17, 0x1b, 0x20, 0x21, 0x2a, 0x2e, 0x2f,
0x30, 0x34, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43,
0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57,
0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x66, 0x67, 0};
static const int16_t RECaseFixCounts[] = {
0x1, 0x5, 0x1, 0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1,
0x1, 0x1, 0x4, 0x4, 0x5, 0x1, 0x9, 0x4, 0x1, 0x1,
0x4, 0x1, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2,
0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x1, 0x1, 0x1, 0};
static const UChar RECaseFixData[] = {
0x1e9a, 0xfb00, 0xfb01, 0xfb02, 0xfb03, 0xfb04, 0x1e96, 0x130, 0x1f0, 0xdf,
0x1e9e, 0xfb05, 0xfb06, 0x1e97, 0x1e98, 0x1e99, 0x149, 0x1fb4, 0x1fc4, 0x1fb3,
0x1fb6, 0x1fb7, 0x1fbc, 0x1fc3, 0x1fc6, 0x1fc7, 0x1fcc, 0x390, 0x1fd2, 0x1fd3,
0x1fd6, 0x1fd7, 0x1fe4, 0x3b0, 0x1f50, 0x1f52, 0x1f54, 0x1f56, 0x1fe2, 0x1fe3,
0x1fe6, 0x1fe7, 0x1ff3, 0x1ff6, 0x1ff7, 0x1ffc, 0x1ff4, 0x587, 0xfb13, 0xfb14,
0xfb15, 0xfb17, 0xfb16, 0x1f80, 0x1f88, 0x1f81, 0x1f89, 0x1f82, 0x1f8a, 0x1f83,
0x1f8b, 0x1f84, 0x1f8c, 0x1f85, 0x1f8d, 0x1f86, 0x1f8e, 0x1f87, 0x1f8f, 0x1f90,
0x1f98, 0x1f91, 0x1f99, 0x1f92, 0x1f9a, 0x1f93, 0x1f9b, 0x1f94, 0x1f9c, 0x1f95,
0x1f9d, 0x1f96, 0x1f9e, 0x1f97, 0x1f9f, 0x1fa0, 0x1fa8, 0x1fa1, 0x1fa9, 0x1fa2,
0x1faa, 0x1fa3, 0x1fab, 0x1fa4, 0x1fac, 0x1fa5, 0x1fad, 0x1fa6, 0x1fae, 0x1fa7,
0x1faf, 0x1fb2, 0x1fc2, 0x1ff2, 0};
// End of machine generated data.
if (c < UCHAR_MIN_VALUE || c > UCHAR_MAX_VALUE) {
// This function should never be called with an invalid input character.
UPRV_UNREACHABLE;
} else if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
UChar32 caseFoldedC = u_foldCase(c, U_FOLD_CASE_DEFAULT);
starterChars->set(caseFoldedC, caseFoldedC);
int32_t i;
for (i=0; RECaseFixCodePoints[i]<c ; i++) {
// Simple linear search through the sorted list of interesting code points.
}
if (RECaseFixCodePoints[i] == c) {
int32_t dataIndex = RECaseFixStringOffsets[i];
int32_t numCharsToAdd = RECaseFixCounts[i];
UChar32 cpToAdd = 0;
for (int32_t j=0; j<numCharsToAdd; j++) {
U16_NEXT_UNSAFE(RECaseFixData, dataIndex, cpToAdd);
starterChars->add(cpToAdd);
}
}
starterChars->closeOver(USET_CASE_INSENSITIVE);
starterChars->removeAllStrings();
} else {
// Not a cased character. Just return it alone.
starterChars->set(c, c);
}
}
// Increment with overflow check.
// val and delta will both be positive.
static int32_t safeIncrement(int32_t val, int32_t delta) {
if (INT32_MAX - val > delta) {
return val + delta;
} else {
return INT32_MAX;
}
}
//------------------------------------------------------------------------------
//
// matchStartType Determine how a match can start.
// Used to optimize find() operations.
//
// Operation is very similar to minMatchLength(). Walk the compiled
// pattern, keeping an on-going minimum-match-length. For any
// op where the min match coming in is zero, add that ops possible
// starting matches to the possible starts for the overall pattern.
//
//------------------------------------------------------------------------------
void RegexCompile::matchStartType() {
if (U_FAILURE(*fStatus)) {
return;
}
int32_t loc; // Location in the pattern of the current op being processed.
int32_t op; // The op being processed
int32_t opType; // The opcode type of the op
int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern
int32_t numInitialStrings = 0; // Number of strings encountered that could match at start.
UBool atStart = TRUE; // True if no part of the pattern yet encountered
// could have advanced the position in a match.
// (Maximum match length so far == 0)
// forwardedLength is a vector holding minimum-match-length values that
// are propagated forward in the pattern by JMP or STATE_SAVE operations.
// It must be one longer than the pattern being checked because some ops
// will jmp to a end-of-block+1 location from within a block, and we must
// count those when checking the block.
int32_t end = fRXPat->fCompiledPat->size();
UVector32 forwardedLength(end+1, *fStatus);
forwardedLength.setSize(end+1);
for (loc=3; loc<end; loc++) {
forwardedLength.setElementAt(INT32_MAX, loc);
}
for (loc = 3; loc<end; loc++) {
op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
opType = URX_TYPE(op);
// The loop is advancing linearly through the pattern.
// If the op we are now at was the destination of a branch in the pattern,
// and that path has a shorter minimum length than the current accumulated value,
// replace the current accumulated value.
if (forwardedLength.elementAti(loc) < currentLen) {
currentLen = forwardedLength.elementAti(loc);
U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
}
switch (opType) {
// Ops that don't change the total length matched
case URX_RESERVED_OP:
case URX_END:
case URX_FAIL:
case URX_STRING_LEN:
case URX_NOP:
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_BACKSLASH_B:
case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_Z:
case URX_DOLLAR:
case URX_DOLLAR_M:
case URX_DOLLAR_D:
case URX_DOLLAR_MD:
case URX_RELOC_OPRND:
case URX_STO_INP_LOC:
case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
case URX_BACKREF_I:
case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
case URX_LD_SP:
break;
case URX_CARET:
if (atStart) {
fRXPat->fStartType = START_START;
}
break;
case URX_CARET_M:
case URX_CARET_M_UNIX:
if (atStart) {
fRXPat->fStartType = START_LINE;
}
break;
case URX_ONECHAR:
if (currentLen == 0) {
// This character could appear at the start of a match.
// Add it to the set of possible starting characters.
fRXPat->fInitialChars->add(URX_VAL(op));
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_SETREF:
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
fRXPat->fInitialChars->addAll(*s);
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_LOOP_SR_I:
// [Set]*, like a SETREF, above, in what it can match,
// but may not match at all, so currentLen is not incremented.
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
fRXPat->fInitialChars->addAll(*s);
numInitialStrings += 2;
}
atStart = FALSE;
break;
case URX_LOOP_DOT_I:
if (currentLen == 0) {
// .* at the start of a pattern.
// Any character can begin the match.
fRXPat->fInitialChars->clear();
fRXPat->fInitialChars->complement();
numInitialStrings += 2;
}
atStart = FALSE;
break;
case URX_STATIC_SETREF:
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
U_ASSERT(sn>0 && sn<URX_LAST_SET);
const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[sn];
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_STAT_SETREF_N:
if (currentLen == 0) {
int32_t sn = URX_VAL(op);
UnicodeSet sc;
sc.addAll(RegexStaticSets::gStaticSets->fPropSets[sn]).complement();
fRXPat->fInitialChars->addAll(sc);
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_BACKSLASH_D:
// Digit Char
if (currentLen == 0) {
UnicodeSet s;
s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
if (URX_VAL(op) != 0) {
s.complement();
}
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_BACKSLASH_H:
// Horiz white space
if (currentLen == 0) {
UnicodeSet s;
s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus);
s.add((UChar32)9); // Tab
if (URX_VAL(op) != 0) {
s.complement();
}
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_BACKSLASH_R: // Any line ending sequence
case URX_BACKSLASH_V: // Any line ending code point, with optional negation
if (currentLen == 0) {
UnicodeSet s;
s.add((UChar32)0x0a, (UChar32)0x0d); // add range
s.add((UChar32)0x85);
s.add((UChar32)0x2028, (UChar32)0x2029);
if (URX_VAL(op) != 0) {
// Complement option applies to URX_BACKSLASH_V only.
s.complement();
}
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_ONECHAR_I:
// Case Insensitive Single Character.
if (currentLen == 0) {
UChar32 c = URX_VAL(op);
if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
UnicodeSet starters(c, c);
starters.closeOver(USET_CASE_INSENSITIVE);
// findCaseInsensitiveStarters(c, &starters);
// For ONECHAR_I, no need to worry about text chars that expand on folding into strings.
// The expanded folding can't match the pattern.
fRXPat->fInitialChars->addAll(starters);
} else {
// Char has no case variants. Just add it as-is to the
// set of possible starting chars.
fRXPat->fInitialChars->add(c);
}
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
case URX_DOTANY_ALL: // . matches one or two.
case URX_DOTANY:
case URX_DOTANY_UNIX:
if (currentLen == 0) {
// These constructs are all bad news when they appear at the start
// of a match. Any character can begin the match.
fRXPat->fInitialChars->clear();
fRXPat->fInitialChars->complement();
numInitialStrings += 2;
}
currentLen = safeIncrement(currentLen, 1);
atStart = FALSE;
break;
case URX_JMPX:
loc++; // Except for extra operand on URX_JMPX, same as URX_JMP.
U_FALLTHROUGH;
case URX_JMP:
{
int32_t jmpDest = URX_VAL(op);
if (jmpDest < loc) {
// Loop of some kind. Can safely ignore, the worst that will happen
// is that we understate the true minimum length
currentLen = forwardedLength.elementAti(loc+1);
} else {
// Forward jump. Propagate the current min length to the target loc of the jump.
U_ASSERT(jmpDest <= end+1);
if (forwardedLength.elementAti(jmpDest) > currentLen) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
}
}
atStart = FALSE;
break;
case URX_JMP_SAV:
case URX_JMP_SAV_X:
// Combo of state save to the next loc, + jmp backwards.
// Net effect on min. length computation is nothing.
atStart = FALSE;
break;
case URX_BACKTRACK:
// Fails are kind of like a branch, except that the min length was
// propagated already, by the state save.
currentLen = forwardedLength.elementAti(loc+1);
atStart = FALSE;
break;
case URX_STATE_SAVE:
{
// State Save, for forward jumps, propagate the current minimum.
// of the state save.
int32_t jmpDest = URX_VAL(op);
if (jmpDest > loc) {
if (currentLen < forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
}
}
atStart = FALSE;
break;
case URX_STRING:
{
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
int32_t stringLen = URX_VAL(stringLenOp);
U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
U_ASSERT(stringLenOp >= 2);
if (currentLen == 0) {
// Add the starting character of this string to the set of possible starting
// characters for this pattern.
int32_t stringStartIdx = URX_VAL(op);
UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
fRXPat->fInitialChars->add(c);
// Remember this string. After the entire pattern has been checked,
// if nothing else is identified that can start a match, we'll use it.
numInitialStrings++;
fRXPat->fInitialStringIdx = stringStartIdx;
fRXPat->fInitialStringLen = stringLen;
}
currentLen = safeIncrement(currentLen, stringLen);
atStart = FALSE;
}
break;
case URX_STRING_I:
{
// Case-insensitive string. Unlike exact-match strings, we won't
// attempt a string search for possible match positions. But we
// do update the set of possible starting characters.
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
int32_t stringLen = URX_VAL(stringLenOp);
U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
U_ASSERT(stringLenOp >= 2);
if (currentLen == 0) {
// Add the starting character of this string to the set of possible starting
// characters for this pattern.
int32_t stringStartIdx = URX_VAL(op);
UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
UnicodeSet s;
findCaseInsensitiveStarters(c, &s);
fRXPat->fInitialChars->addAll(s);
numInitialStrings += 2; // Matching on an initial string not possible.
}
currentLen = safeIncrement(currentLen, stringLen);
atStart = FALSE;
}
break;
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
{
// Loop Init Ops. These don't change the min length, but they are 4 word ops
// so location must be updated accordingly.
// Loop Init Ops.
// If the min loop count == 0
// move loc forwards to the end of the loop, skipping over the body.
// If the min count is > 0,
// continue normal processing of the body of the loop.
int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
loopEndLoc = URX_VAL(loopEndLoc);
int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
if (minLoopCount == 0) {
// Min Loop Count of 0, treat like a forward branch and
// move the current minimum length up to the target
// (end of loop) location.
U_ASSERT(loopEndLoc <= end+1);
if (forwardedLength.elementAti(loopEndLoc) > currentLen) {
forwardedLength.setElementAt(currentLen, loopEndLoc);
}
}
loc+=3; // Skips over operands of CTR_INIT
}
atStart = FALSE;
break;
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
// Loop ops.
// The jump is conditional, backwards only.
atStart = FALSE;
break;
case URX_LOOP_C:
// More loop ops. These state-save to themselves.
// don't change the minimum match
atStart = FALSE;
break;
case URX_LA_START:
case URX_LB_START:
{
// Look-around. Scan forward until the matching look-ahead end,
// without processing the look-around block. This is overly pessimistic.
// Keep track of the nesting depth of look-around blocks. Boilerplate code for
// lookahead contains two LA_END instructions, so count goes up by two
// for each LA_START.
int32_t depth = (opType == URX_LA_START? 2: 1);
for (;;) {
loc++;
op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
if (URX_TYPE(op) == URX_LA_START) {
depth+=2;
}
if (URX_TYPE(op) == URX_LB_START) {
depth++;
}
if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
depth--;
if (depth == 0) {
break;
}
}
if (URX_TYPE(op) == URX_STATE_SAVE) {
// Need this because neg lookahead blocks will FAIL to outside
// of the block.
int32_t jmpDest = URX_VAL(op);
if (jmpDest > loc) {
if (currentLen < forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
}
}
U_ASSERT(loc <= end);
}
}
break;
case URX_LA_END:
case URX_LB_CONT:
case URX_LB_END:
case URX_LBN_CONT:
case URX_LBN_END:
UPRV_UNREACHABLE; // Shouldn't get here. These ops should be
// consumed by the scan in URX_LA_START and LB_START
default:
UPRV_UNREACHABLE;
}
}
// We have finished walking through the ops. Check whether some forward jump
// propagated a shorter length to location end+1.
if (forwardedLength.elementAti(end+1) < currentLen) {
currentLen = forwardedLength.elementAti(end+1);
}
fRXPat->fInitialChars8->init(fRXPat->fInitialChars);
// Sort out what we should check for when looking for candidate match start positions.
// In order of preference,
// 1. Start of input text buffer.
// 2. A literal string.
// 3. Start of line in multi-line mode.
// 4. A single literal character.
// 5. A character from a set of characters.
//
if (fRXPat->fStartType == START_START) {
// Match only at the start of an input text string.
// start type is already set. We're done.
} else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) {
// Match beginning only with a literal string.
UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx);
U_ASSERT(fRXPat->fInitialChars->contains(c));
fRXPat->fStartType = START_STRING;
fRXPat->fInitialChar = c;
} else if (fRXPat->fStartType == START_LINE) {
// Match at start of line in Multi-Line mode.
// Nothing to do here; everything is already set.
} else if (fRXPat->fMinMatchLen == 0) {
// Zero length match possible. We could start anywhere.
fRXPat->fStartType = START_NO_INFO;
} else if (fRXPat->fInitialChars->size() == 1) {
// All matches begin with the same char.
fRXPat->fStartType = START_CHAR;
fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0);
U_ASSERT(fRXPat->fInitialChar != (UChar32)-1);
} else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE &&
fRXPat->fMinMatchLen > 0) {
// Matches start with a set of character smaller than the set of all chars.
fRXPat->fStartType = START_SET;
} else {
// Matches can start with anything
fRXPat->fStartType = START_NO_INFO;
}
return;
}
//------------------------------------------------------------------------------
//
// minMatchLength Calculate the length of the shortest string that could
// match the specified pattern.
// Length is in 16 bit code units, not code points.
//
// The calculated length may not be exact. The returned
// value may be shorter than the actual minimum; it must
// never be longer.
//
// start and end are the range of p-code operations to be
// examined. The endpoints are included in the range.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
if (U_FAILURE(*fStatus)) {
return 0;
}
U_ASSERT(start <= end);
U_ASSERT(end < fRXPat->fCompiledPat->size());
int32_t loc;
int32_t op;
int32_t opType;
int32_t currentLen = 0;
// forwardedLength is a vector holding minimum-match-length values that
// are propagated forward in the pattern by JMP or STATE_SAVE operations.
// It must be one longer than the pattern being checked because some ops
// will jmp to a end-of-block+1 location from within a block, and we must
// count those when checking the block.
UVector32 forwardedLength(end+2, *fStatus);
forwardedLength.setSize(end+2);
for (loc=start; loc<=end+1; loc++) {
forwardedLength.setElementAt(INT32_MAX, loc);
}
for (loc = start; loc<=end; loc++) {
op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
opType = URX_TYPE(op);
// The loop is advancing linearly through the pattern.
// If the op we are now at was the destination of a branch in the pattern,
// and that path has a shorter minimum length than the current accumulated value,
// replace the current accumulated value.
// U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some
// no-match-possible cases.
if (forwardedLength.elementAti(loc) < currentLen) {
currentLen = forwardedLength.elementAti(loc);
U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
}
switch (opType) {
// Ops that don't change the total length matched
case URX_RESERVED_OP:
case URX_END:
case URX_STRING_LEN:
case URX_NOP:
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_BACKSLASH_B:
case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_Z:
case URX_CARET:
case URX_DOLLAR:
case URX_DOLLAR_M:
case URX_DOLLAR_D:
case URX_DOLLAR_MD:
case URX_RELOC_OPRND:
case URX_STO_INP_LOC:
case URX_CARET_M:
case URX_CARET_M_UNIX:
case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
case URX_BACKREF_I:
case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
case URX_LD_SP:
case URX_JMP_SAV:
case URX_JMP_SAV_X:
break;
// Ops that match a minimum of one character (one or two 16 bit code units.)
//
case URX_ONECHAR:
case URX_STATIC_SETREF:
case URX_STAT_SETREF_N:
case URX_SETREF:
case URX_BACKSLASH_D:
case URX_BACKSLASH_H:
case URX_BACKSLASH_R:
case URX_BACKSLASH_V:
case URX_ONECHAR_I:
case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
case URX_DOTANY_ALL: // . matches one or two.
case URX_DOTANY:
case URX_DOTANY_UNIX:
currentLen = safeIncrement(currentLen, 1);
break;
case URX_JMPX:
loc++; // URX_JMPX has an extra operand, ignored here,
// otherwise processed identically to URX_JMP.
U_FALLTHROUGH;
case URX_JMP:
{
int32_t jmpDest = URX_VAL(op);
if (jmpDest < loc) {
// Loop of some kind. Can safely ignore, the worst that will happen
// is that we understate the true minimum length
currentLen = forwardedLength.elementAti(loc+1);
} else {
// Forward jump. Propagate the current min length to the target loc of the jump.
U_ASSERT(jmpDest <= end+1);
if (forwardedLength.elementAti(jmpDest) > currentLen) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
}
}
break;
case URX_BACKTRACK:
{
// Back-tracks are kind of like a branch, except that the min length was
// propagated already, by the state save.
currentLen = forwardedLength.elementAti(loc+1);
}
break;
case URX_STATE_SAVE:
{
// State Save, for forward jumps, propagate the current minimum.
// of the state save.
int32_t jmpDest = URX_VAL(op);
if (jmpDest > loc) {
if (currentLen < forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
}
}
break;
case URX_STRING:
{
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
}
break;
case URX_STRING_I:
{
loc++;
// TODO: with full case folding, matching input text may be shorter than
// the string we have here. More smarts could put some bounds on it.
// Assume a min length of one for now. A min length of zero causes
// optimization failures for a pattern like "string"+
// currentLen += URX_VAL(stringLenOp);
currentLen = safeIncrement(currentLen, 1);
}
break;
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
{
// Loop Init Ops.
// If the min loop count == 0
// move loc forwards to the end of the loop, skipping over the body.
// If the min count is > 0,
// continue normal processing of the body of the loop.
int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
loopEndLoc = URX_VAL(loopEndLoc);
int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
if (minLoopCount == 0) {
loc = loopEndLoc;
} else {
loc+=3; // Skips over operands of CTR_INIT
}
}
break;
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
// Loop ops.
// The jump is conditional, backwards only.
break;
case URX_LOOP_SR_I:
case URX_LOOP_DOT_I:
case URX_LOOP_C:
// More loop ops. These state-save to themselves.
// don't change the minimum match - could match nothing at all.
break;
case URX_LA_START:
case URX_LB_START:
{
// Look-around. Scan forward until the matching look-ahead end,
// without processing the look-around block. This is overly pessimistic for look-ahead,
// it assumes that the look-ahead match might be zero-length.
// TODO: Positive lookahead could recursively do the block, then continue
// with the longer of the block or the value coming in. Ticket 6060
int32_t depth = (opType == URX_LA_START? 2: 1);
for (;;) {
loc++;
op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
if (URX_TYPE(op) == URX_LA_START) {
// The boilerplate for look-ahead includes two LA_END insturctions,
// Depth will be decremented by each one when it is seen.
depth += 2;
}
if (URX_TYPE(op) == URX_LB_START) {
depth++;
}
if (URX_TYPE(op) == URX_LA_END) {
depth--;
if (depth == 0) {
break;
}
}
if (URX_TYPE(op)==URX_LBN_END) {
depth--;
if (depth == 0) {
break;
}
}
if (URX_TYPE(op) == URX_STATE_SAVE) {
// Need this because neg lookahead blocks will FAIL to outside
// of the block.
int32_t jmpDest = URX_VAL(op);
if (jmpDest > loc) {
if (currentLen < forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
}
}
U_ASSERT(loc <= end);
}
}
break;
case URX_LA_END:
case URX_LB_CONT:
case URX_LB_END:
case URX_LBN_CONT:
case URX_LBN_END:
// Only come here if the matching URX_LA_START or URX_LB_START was not in the
// range being sized, which happens when measuring size of look-behind blocks.
break;
default:
UPRV_UNREACHABLE;
}
}
// We have finished walking through the ops. Check whether some forward jump
// propagated a shorter length to location end+1.
if (forwardedLength.elementAti(end+1) < currentLen) {
currentLen = forwardedLength.elementAti(end+1);
U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
}
return currentLen;
}
//------------------------------------------------------------------------------
//
// maxMatchLength Calculate the length of the longest string that could
// match the specified pattern.
// Length is in 16 bit code units, not code points.
//
// The calculated length may not be exact. The returned
// value may be longer than the actual maximum; it must
// never be shorter.
//
//------------------------------------------------------------------------------
int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
if (U_FAILURE(*fStatus)) {
return 0;
}
U_ASSERT(start <= end);
U_ASSERT(end < fRXPat->fCompiledPat->size());
int32_t loc;
int32_t op;
int32_t opType;
int32_t currentLen = 0;
UVector32 forwardedLength(end+1, *fStatus);
forwardedLength.setSize(end+1);
for (loc=start; loc<=end; loc++) {
forwardedLength.setElementAt(0, loc);
}
for (loc = start; loc<=end; loc++) {
op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
opType = URX_TYPE(op);
// The loop is advancing linearly through the pattern.
// If the op we are now at was the destination of a branch in the pattern,
// and that path has a longer maximum length than the current accumulated value,
// replace the current accumulated value.
if (forwardedLength.elementAti(loc) > currentLen) {
currentLen = forwardedLength.elementAti(loc);
}
switch (opType) {
// Ops that don't change the total length matched
case URX_RESERVED_OP:
case URX_END:
case URX_STRING_LEN:
case URX_NOP:
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_BACKSLASH_B:
case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_Z:
case URX_CARET:
case URX_DOLLAR:
case URX_DOLLAR_M:
case URX_DOLLAR_D:
case URX_DOLLAR_MD:
case URX_RELOC_OPRND:
case URX_STO_INP_LOC:
case URX_CARET_M:
case URX_CARET_M_UNIX:
case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
case URX_LD_SP:
case URX_LB_END:
case URX_LB_CONT:
case URX_LBN_CONT:
case URX_LBN_END:
break;
// Ops that increase that cause an unbounded increase in the length
// of a matched string, or that increase it a hard to characterize way.
// Call the max length unbounded, and stop further checking.
case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
case URX_BACKREF_I:
case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
currentLen = INT32_MAX;
break;
// Ops that match a max of one character (possibly two 16 bit code units.)
//
case URX_STATIC_SETREF:
case URX_STAT_SETREF_N:
case URX_SETREF:
case URX_BACKSLASH_D:
case URX_BACKSLASH_H:
case URX_BACKSLASH_R:
case URX_BACKSLASH_V:
case URX_ONECHAR_I:
case URX_DOTANY_ALL:
case URX_DOTANY:
case URX_DOTANY_UNIX:
currentLen = safeIncrement(currentLen, 2);
break;
// Single literal character. Increase current max length by one or two,
// depending on whether the char is in the supplementary range.
case URX_ONECHAR:
currentLen = safeIncrement(currentLen, 1);
if (URX_VAL(op) > 0x10000) {
currentLen = safeIncrement(currentLen, 1);
}
break;
// Jumps.
//
case URX_JMP:
case URX_JMPX:
case URX_JMP_SAV:
case URX_JMP_SAV_X:
{
int32_t jmpDest = URX_VAL(op);
if (jmpDest < loc) {
// Loop of some kind. Max match length is unbounded.
currentLen = INT32_MAX;
} else {
// Forward jump. Propagate the current min length to the target loc of the jump.
if (forwardedLength.elementAti(jmpDest) < currentLen) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
currentLen = 0;
}
}
break;
case URX_BACKTRACK:
// back-tracks are kind of like a branch, except that the max length was
// propagated already, by the state save.
currentLen = forwardedLength.elementAti(loc+1);
break;
case URX_STATE_SAVE:
{
// State Save, for forward jumps, propagate the current minimum.
// of the state save.
// For backwards jumps, they create a loop, maximum
// match length is unbounded.
int32_t jmpDest = URX_VAL(op);
if (jmpDest > loc) {
if (currentLen > forwardedLength.elementAti(jmpDest)) {
forwardedLength.setElementAt(currentLen, jmpDest);
}
} else {
currentLen = INT32_MAX;
}
}
break;
case URX_STRING:
{
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
break;
}
case URX_STRING_I:
// TODO: This code assumes that any user string that matches will be no longer
// than our compiled string, with case insensitive matching.
// Our compiled string has been case-folded already.
//
// Any matching user string will have no more code points than our
// compiled (folded) string. Folding may add code points, but
// not remove them.
//
// There is a potential problem if a supplemental code point
// case-folds to a BMP code point. In this case our compiled string
// could be shorter (in code units) than a matching user string.
//
// At this time (Unicode 6.1) there are no such characters, and this case
// is not being handled. A test, intltest regex/Bug9283, will fail if
// any problematic characters are added to Unicode.
//
// If this happens, we can make a set of the BMP chars that the
// troublesome supplementals fold to, scan our string, and bump the
// currentLen one extra for each that is found.
//
{
loc++;
int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp));
}
break;
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
// For Loops, recursively call this function on the pattern for the loop body,
// then multiply the result by the maximum loop count.
{
int32_t loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1));
if (loopEndLoc == loc+4) {
// Loop has an empty body. No affect on max match length.
// Continue processing with code after the loop end.
loc = loopEndLoc;
break;
}
int32_t maxLoopCount = static_cast<int32_t>(fRXPat->fCompiledPat->elementAti(loc+3));
if (maxLoopCount == -1) {
// Unbounded Loop. No upper bound on match length.
currentLen = INT32_MAX;
break;
}
U_ASSERT(loopEndLoc >= loc+4);
int64_t blockLen = maxMatchLength(loc+4, loopEndLoc-1); // Recursive call.
int64_t updatedLen = (int64_t)currentLen + blockLen * maxLoopCount;
if (updatedLen >= INT32_MAX) {
currentLen = INT32_MAX;
break;
}
currentLen = (int32_t)updatedLen;
loc = loopEndLoc;
break;
}
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
// These opcodes will be skipped over by code for URX_CTR_INIT.
// We shouldn't encounter them here.
UPRV_UNREACHABLE;
case URX_LOOP_SR_I:
case URX_LOOP_DOT_I:
case URX_LOOP_C:
// For anything to do with loops, make the match length unbounded.
currentLen = INT32_MAX;
break;
case URX_LA_START:
case URX_LA_END:
// Look-ahead. Just ignore, treat the look-ahead block as if
// it were normal pattern. Gives a too-long match length,
// but good enough for now.
break;
// End of look-ahead ops should always be consumed by the processing at
// the URX_LA_START op.
// UPRV_UNREACHABLE;
case URX_LB_START:
{
// Look-behind. Scan forward until the matching look-around end,
// without processing the look-behind block.
int32_t dataLoc = URX_VAL(op);
for (loc = loc + 1; loc < end; ++loc) {
op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
int32_t opType = URX_TYPE(op);
if ((opType == URX_LA_END || opType == URX_LBN_END) && (URX_VAL(op) == dataLoc)) {
break;
}
}
U_ASSERT(loc < end);
}
break;
default:
UPRV_UNREACHABLE;
}
if (currentLen == INT32_MAX) {
// The maximum length is unbounded.
// Stop further processing of the pattern.
break;
}
}
return currentLen;
}
//------------------------------------------------------------------------------
//
// stripNOPs Remove any NOP operations from the compiled pattern code.
// Extra NOPs are inserted for some constructs during the initial
// code generation to provide locations that may be patched later.
// Many end up unneeded, and are removed by this function.
//
// In order to minimize the number of passes through the pattern,
// back-reference fixup is also performed here (adjusting
// back-reference operands to point to the correct frame offsets).
//
//------------------------------------------------------------------------------
void RegexCompile::stripNOPs() {
if (U_FAILURE(*fStatus)) {
return;
}
int32_t end = fRXPat->fCompiledPat->size();
UVector32 deltas(end, *fStatus);
// Make a first pass over the code, computing the amount that things
// will be offset at each location in the original code.
int32_t loc;
int32_t d = 0;
for (loc=0; loc<end; loc++) {
deltas.addElement(d, *fStatus);
int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
if (URX_TYPE(op) == URX_NOP) {
d++;
}
}
UnicodeString caseStringBuffer;
// Make a second pass over the code, removing the NOPs by moving following
// code up, and patching operands that refer to code locations that
// are being moved. The array of offsets from the first step is used
// to compute the new operand values.
int32_t src;
int32_t dst = 0;
for (src=0; src<end; src++) {
int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src);
int32_t opType = URX_TYPE(op);
switch (opType) {
case URX_NOP:
break;
case URX_STATE_SAVE:
case URX_JMP:
case URX_CTR_LOOP:
case URX_CTR_LOOP_NG:
case URX_RELOC_OPRND:
case URX_JMPX:
case URX_JMP_SAV:
case URX_JMP_SAV_X:
// These are instructions with operands that refer to code locations.
{
int32_t operandAddress = URX_VAL(op);
U_ASSERT(operandAddress>=0 && operandAddress<deltas.size());
int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress);
op = buildOp(opType, fixedOperandAddress);
fRXPat->fCompiledPat->setElementAt(op, dst);
dst++;
break;
}
case URX_BACKREF:
case URX_BACKREF_I:
{
int32_t where = URX_VAL(op);
if (where > fRXPat->fGroupMap->size()) {
error(U_REGEX_INVALID_BACK_REF);
break;
}
where = fRXPat->fGroupMap->elementAti(where-1);
op = buildOp(opType, where);
fRXPat->fCompiledPat->setElementAt(op, dst);
dst++;
fRXPat->fNeedsAltInput = TRUE;
break;
}
case URX_RESERVED_OP:
case URX_RESERVED_OP_N:
case URX_BACKTRACK:
case URX_END:
case URX_ONECHAR:
case URX_STRING:
case URX_STRING_LEN:
case URX_START_CAPTURE:
case URX_END_CAPTURE:
case URX_STATIC_SETREF:
case URX_STAT_SETREF_N:
case URX_SETREF:
case URX_DOTANY:
case URX_FAIL:
case URX_BACKSLASH_B:
case URX_BACKSLASH_BU:
case URX_BACKSLASH_G:
case URX_BACKSLASH_X:
case URX_BACKSLASH_Z:
case URX_DOTANY_ALL:
case URX_BACKSLASH_D:
case URX_CARET:
case URX_DOLLAR:
case URX_CTR_INIT:
case URX_CTR_INIT_NG:
case URX_DOTANY_UNIX:
case URX_STO_SP:
case URX_LD_SP:
case URX_STO_INP_LOC:
case URX_LA_START:
case URX_LA_END:
case URX_ONECHAR_I:
case URX_STRING_I:
case URX_DOLLAR_M:
case URX_CARET_M:
case URX_CARET_M_UNIX:
case URX_LB_START:
case URX_LB_CONT:
case URX_LB_END:
case URX_LBN_CONT:
case URX_LBN_END:
case URX_LOOP_SR_I:
case URX_LOOP_DOT_I:
case URX_LOOP_C:
case URX_DOLLAR_D:
case URX_DOLLAR_MD:
case URX_BACKSLASH_H:
case URX_BACKSLASH_R:
case URX_BACKSLASH_V:
// These instructions are unaltered by the relocation.
fRXPat->fCompiledPat->setElementAt(op, dst);
dst++;
break;
default:
// Some op is unaccounted for.
UPRV_UNREACHABLE;
}
}
fRXPat->fCompiledPat->setSize(dst);
}
//------------------------------------------------------------------------------
//
// Error Report a rule parse error.
// Only report it if no previous error has been recorded.
//
//------------------------------------------------------------------------------
void RegexCompile::error(UErrorCode e) {
if (U_SUCCESS(*fStatus) || e == U_MEMORY_ALLOCATION_ERROR) {
*fStatus = e;
// Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
// API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
// int64_t. If the values of the latter are out of range for the former,
// set them to the appropriate "field not supported" values.
if (fLineNum > 0x7FFFFFFF) {
fParseErr->line = 0;
fParseErr->offset = -1;
} else if (fCharNum > 0x7FFFFFFF) {
fParseErr->line = (int32_t)fLineNum;
fParseErr->offset = -1;
} else {
fParseErr->line = (int32_t)fLineNum;
fParseErr->offset = (int32_t)fCharNum;
}
UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context
// Fill in the context.
// Note: extractBetween() pins supplied indicies to the string bounds.
uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext));
uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext));
utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status);
utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status);
}
}
//
// Assorted Unicode character constants.
// Numeric because there is no portable way to enter them as literals.
// (Think EBCDIC).
//
static const UChar chCR = 0x0d; // New lines, for terminating comments.
static const UChar chLF = 0x0a; // Line Feed
static const UChar chPound = 0x23; // '#', introduces a comment.
static const UChar chDigit0 = 0x30; // '0'
static const UChar chDigit7 = 0x37; // '9'
static const UChar chColon = 0x3A; // ':'
static const UChar chE = 0x45; // 'E'
static const UChar chQ = 0x51; // 'Q'
//static const UChar chN = 0x4E; // 'N'
static const UChar chP = 0x50; // 'P'
static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
//static const UChar chLBracket = 0x5b; // '['
static const UChar chRBracket = 0x5d; // ']'
static const UChar chUp = 0x5e; // '^'
static const UChar chLowerP = 0x70;
static const UChar chLBrace = 0x7b; // '{'
static const UChar chRBrace = 0x7d; // '}'
static const UChar chNEL = 0x85; // NEL newline variant
static const UChar chLS = 0x2028; // Unicode Line Separator
//------------------------------------------------------------------------------
//
// nextCharLL Low Level Next Char from the regex pattern.
// Get a char from the string, keep track of input position
// for error reporting.
//
//------------------------------------------------------------------------------
UChar32 RegexCompile::nextCharLL() {
UChar32 ch;
if (fPeekChar != -1) {
ch = fPeekChar;
fPeekChar = -1;
return ch;
}
// assume we're already in the right place
ch = UTEXT_NEXT32(fRXPat->fPattern);
if (ch == U_SENTINEL) {
return ch;
}
if (ch == chCR ||
ch == chNEL ||
ch == chLS ||
(ch == chLF && fLastChar != chCR)) {
// Character is starting a new line. Bump up the line number, and
// reset the column to 0.
fLineNum++;
fCharNum=0;
}
else {
// Character is not starting a new line. Except in the case of a
// LF following a CR, increment the column position.
if (ch != chLF) {
fCharNum++;
}
}
fLastChar = ch;
return ch;
}
//------------------------------------------------------------------------------
//
// peekCharLL Low Level Character Scanning, sneak a peek at the next
// character without actually getting it.
//
//------------------------------------------------------------------------------
UChar32 RegexCompile::peekCharLL() {
if (fPeekChar == -1) {
fPeekChar = nextCharLL();
}
return fPeekChar;
}
//------------------------------------------------------------------------------
//
// nextChar for pattern scanning. At this level, we handle stripping
// out comments and processing some backslash character escapes.
// The rest of the pattern grammar is handled at the next level up.
//
//------------------------------------------------------------------------------
void RegexCompile::nextChar(RegexPatternChar &c) {
tailRecursion:
fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
c.fChar = nextCharLL();
c.fQuoted = FALSE;
if (fQuoteMode) {
c.fQuoted = TRUE;
if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) ||
c.fChar == (UChar32)-1) {
fQuoteMode = FALSE; // Exit quote mode,
nextCharLL(); // discard the E
// nextChar(c); // recurse to get the real next char
goto tailRecursion; // Note: fuzz testing produced testcases that
// resulted in stack overflow here.
}
}
else if (fInBackslashQuote) {
// The current character immediately follows a '\'
// Don't check for any further escapes, just return it as-is.
// Don't set c.fQuoted, because that would prevent the state machine from
// dispatching on the character.
fInBackslashQuote = FALSE;
}
else
{
// We are not in a \Q quoted region \E of the source.
//
if (fModeFlags & UREGEX_COMMENTS) {
//
// We are in free-spacing and comments mode.
// Scan through any white space and comments, until we
// reach a significant character or the end of inut.
for (;;) {
if (c.fChar == (UChar32)-1) {
break; // End of Input
}
if (c.fChar == chPound && fEOLComments == TRUE) {
// Start of a comment. Consume the rest of it, until EOF or a new line
for (;;) {
c.fChar = nextCharLL();
if (c.fChar == (UChar32)-1 || // EOF
c.fChar == chCR ||
c.fChar == chLF ||
c.fChar == chNEL ||
c.fChar == chLS) {
break;
}
}
}
// TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061.
if (PatternProps::isWhiteSpace(c.fChar) == FALSE) {
break;
}
c.fChar = nextCharLL();
}
}
//
// check for backslash escaped characters.
//
if (c.fChar == chBackSlash) {
int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) {
//
// A '\' sequence that is handled by ICU's standard unescapeAt function.
// Includes \uxxxx, \n, \r, many others.
// Return the single equivalent character.
//
nextCharLL(); // get & discard the peeked char.
c.fQuoted = TRUE;
if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) {
int32_t endIndex = (int32_t)pos;
c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents);
if (endIndex == pos) {
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
fCharNum += endIndex - pos;
UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex);
} else {
int32_t offset = 0;
struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern);
UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos);
c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
if (offset == 0) {
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
} else if (context.lastOffset == offset) {
UTEXT_PREVIOUS32(fRXPat->fPattern);
} else if (context.lastOffset != offset-1) {
utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1);
}
fCharNum += offset;
}
}
else if (peekCharLL() == chDigit0) {
// Octal Escape, using Java Regexp Conventions
// which are \0 followed by 1-3 octal digits.
// Different from ICU Unescape handling of Octal, which does not
// require the leading 0.
// Java also has the convention of only consuming 2 octal digits if
// the three digit number would be > 0xff
//
c.fChar = 0;
nextCharLL(); // Consume the initial 0.
int index;
for (index=0; index<3; index++) {
int32_t ch = peekCharLL();
if (ch<chDigit0 || ch>chDigit7) {
if (index==0) {
// \0 is not followed by any octal digits.
error(U_REGEX_BAD_ESCAPE_SEQUENCE);
}
break;
}
c.fChar <<= 3;
c.fChar += ch&7;
if (c.fChar <= 255) {
nextCharLL();
} else {
// The last digit made the number too big. Forget we saw it.
c.fChar >>= 3;
}
}
c.fQuoted = TRUE;
}
else if (peekCharLL() == chQ) {
// "\Q" enter quote mode, which will continue until "\E"
fQuoteMode = TRUE;
nextCharLL(); // discard the 'Q'.
// nextChar(c); // recurse to get the real next char.
goto tailRecursion; // Note: fuzz testing produced test cases that
// resulted in stack overflow here.
}
else
{
// We are in a '\' escape that will be handled by the state table scanner.
// Just return the backslash, but remember that the following char is to
// be taken literally.
fInBackslashQuote = TRUE;
}
}
}
// re-enable # to end-of-line comments, in case they were disabled.
// They are disabled by the parser upon seeing '(?', but this lasts for
// the fetching of the next character only.
fEOLComments = TRUE;
// putc(c.fChar, stdout);
}
//------------------------------------------------------------------------------
//
// scanNamedChar
// Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
//
// The scan position will be at the 'N'. On return
// the scan position should be just after the '}'
//
// Return the UChar32
//
//------------------------------------------------------------------------------
UChar32 RegexCompile::scanNamedChar() {
if (U_FAILURE(*fStatus)) {
return 0;
}
nextChar(fC);
if (fC.fChar != chLBrace) {
error(U_REGEX_PROPERTY_SYNTAX);
return 0;
}
UnicodeString charName;
for (;;) {
nextChar(fC);
if (fC.fChar == chRBrace) {
break;
}
if (fC.fChar == -1) {
error(U_REGEX_PROPERTY_SYNTAX);
return 0;
}
charName.append(fC.fChar);
}
char name[100];
if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) ||
(uint32_t)charName.length()>=sizeof(name)) {
// All Unicode character names have only invariant characters.
// The API to get a character, given a name, accepts only char *, forcing us to convert,
// which requires this error check
error(U_REGEX_PROPERTY_SYNTAX);
return 0;
}
charName.extract(0, charName.length(), name, sizeof(name), US_INV);
UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus);
if (U_FAILURE(*fStatus)) {
error(U_REGEX_PROPERTY_SYNTAX);
}
nextChar(fC); // Continue overall regex pattern processing with char after the '}'
return theChar;
}
//------------------------------------------------------------------------------
//
// scanProp Construct a UnicodeSet from the text at the current scan
// position, which will be of the form \p{whaterver}
//
// The scan position will be at the 'p' or 'P'. On return
// the scan position should be just after the '}'
//
// Return a UnicodeSet, constructed from the \P pattern,
// or NULL if the pattern is invalid.
//
//------------------------------------------------------------------------------
UnicodeSet *RegexCompile::scanProp() {
UnicodeSet *uset = NULL;
if (U_FAILURE(*fStatus)) {
return NULL;
}
(void)chLowerP; // Suppress compiler unused variable warning.
U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP);
UBool negated = (fC.fChar == chP);
UnicodeString propertyName;
nextChar(fC);
if (fC.fChar != chLBrace) {
error(U_REGEX_PROPERTY_SYNTAX);
return NULL;
}
for (;;) {
nextChar(fC);
if (fC.fChar == chRBrace) {
break;
}
if (fC.fChar == -1) {
// Hit the end of the input string without finding the closing '}'
error(U_REGEX_PROPERTY_SYNTAX);
return NULL;
}
propertyName.append(fC.fChar);
}
uset = createSetForProperty(propertyName, negated);
nextChar(fC); // Move input scan to position following the closing '}'
return uset;
}
//------------------------------------------------------------------------------
//
// scanPosixProp Construct a UnicodeSet from the text at the current scan
// position, which is expected be of the form [:property expression:]
//
// The scan position will be at the opening ':'. On return
// the scan position must be on the closing ']'
//
// Return a UnicodeSet constructed from the pattern,
// or NULL if this is not a valid POSIX-style set expression.
// If not a property expression, restore the initial scan position
// (to the opening ':')
//
// Note: the opening '[:' is not sufficient to guarantee that
// this is a [:property:] expression.
// [:'+=,] is a perfectly good ordinary set expression that
// happens to include ':' as one of its characters.
//
//------------------------------------------------------------------------------
UnicodeSet *RegexCompile::scanPosixProp() {
UnicodeSet *uset = NULL;
if (U_FAILURE(*fStatus)) {
return NULL;
}
U_ASSERT(fC.fChar == chColon);
// Save the scanner state.
// TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062
int64_t savedScanIndex = fScanIndex;
int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
UBool savedQuoteMode = fQuoteMode;
UBool savedInBackslashQuote = fInBackslashQuote;
UBool savedEOLComments = fEOLComments;
int64_t savedLineNum = fLineNum;
int64_t savedCharNum = fCharNum;
UChar32 savedLastChar = fLastChar;
UChar32 savedPeekChar = fPeekChar;
RegexPatternChar savedfC = fC;
// Scan for a closing ]. A little tricky because there are some perverse
// edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression,
// ending on the second closing ].
UnicodeString propName;
UBool negated = FALSE;
// Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:]
nextChar(fC);
if (fC.fChar == chUp) {
negated = TRUE;
nextChar(fC);
}
// Scan for the closing ":]", collecting the property name along the way.
UBool sawPropSetTerminator = FALSE;
for (;;) {
propName.append(fC.fChar);
nextChar(fC);
if (fC.fQuoted || fC.fChar == -1) {
// Escaped characters or end of input - either says this isn't a [:Property:]
break;
}
if (fC.fChar == chColon) {
nextChar(fC);
if (fC.fChar == chRBracket) {
sawPropSetTerminator = TRUE;
}
break;
}
}
if (sawPropSetTerminator) {
uset = createSetForProperty(propName, negated);
}
else
{
// No closing ":]".
// Restore the original scan position.
// The main scanner will retry the input as a normal set expression,
// not a [:Property:] expression.
fScanIndex = savedScanIndex;
fQuoteMode = savedQuoteMode;
fInBackslashQuote = savedInBackslashQuote;
fEOLComments = savedEOLComments;
fLineNum = savedLineNum;
fCharNum = savedCharNum;
fLastChar = savedLastChar;
fPeekChar = savedPeekChar;
fC = savedfC;
UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex);
}
return uset;
}
static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) {
set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
addCategory(set, U_GC_CF_MASK, ec);
}
//
// Create a Unicode Set from a Unicode Property expression.
// This is common code underlying both \p{...} ane [:...:] expressions.
// Includes trying the Java "properties" that aren't supported as
// normal ICU UnicodeSet properties
//
UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) {
if (U_FAILURE(*fStatus)) {
return nullptr;
}
LocalPointer<UnicodeSet> set;
UErrorCode status = U_ZERO_ERROR;
do { // non-loop, exists to allow breaks from the block.
//
// First try the property as we received it
//
UnicodeString setExpr;
uint32_t usetFlags = 0;
setExpr.append(u"[\\p{", -1);
setExpr.append(propName);
setExpr.append(u"}]", -1);
if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
usetFlags |= USET_CASE_INSENSITIVE;
}
set.adoptInsteadAndCheckErrorCode(new UnicodeSet(setExpr, usetFlags, NULL, status), status);
if (U_SUCCESS(status) || status == U_MEMORY_ALLOCATION_ERROR) {
break;
}
//
// The incoming property wasn't directly recognized by ICU.
// Check [:word:] and [:all:]. These are not recognized as a properties by ICU UnicodeSet.
// Java accepts 'word' with mixed case.
// Java accepts 'all' only in all lower case.
status = U_ZERO_ERROR;
if (propName.caseCompare(u"word", -1, 0) == 0) {
set.adoptInsteadAndCheckErrorCode(
RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].cloneAsThawed(), status);
break;
}
if (propName.compare(u"all", -1) == 0) {
set.adoptInsteadAndCheckErrorCode(new UnicodeSet(0, 0x10ffff), status);
break;
}
// Do Java InBlock expressions
//
UnicodeString mPropName = propName;
if (mPropName.startsWith(u"In", 2) && mPropName.length() >= 3) {
status = U_ZERO_ERROR;
set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
if (U_FAILURE(status)) {
break;
}
UnicodeString blockName(mPropName, 2); // Property with the leading "In" removed.
set->applyPropertyAlias(UnicodeString(u"Block"), blockName, status);
break;
}
// Check for the Java form "IsBooleanPropertyValue", which we will recast
// as "BooleanPropertyValue". The property value can be either a
// a General Category or a Script Name.
if (propName.startsWith(u"Is", 2) && propName.length()>=3) {
mPropName.remove(0, 2); // Strip the "Is"
if (mPropName.indexOf(u'=') >= 0) {
// Reject any "Is..." property expression containing an '=', that is,
// any non-binary property expression.
status = U_REGEX_PROPERTY_SYNTAX;
break;
}
if (mPropName.caseCompare(u"assigned", -1, 0) == 0) {
mPropName.setTo(u"unassigned", -1);
negated = !negated;
} else if (mPropName.caseCompare(u"TitleCase", -1, 0) == 0) {
mPropName.setTo(u"Titlecase_Letter", -1);
}
mPropName.insert(0, u"[\\p{", -1);
mPropName.append(u"}]", -1);
set.adoptInsteadAndCheckErrorCode(new UnicodeSet(mPropName, *fStatus), status);
if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
set->closeOver(USET_CASE_INSENSITIVE);
}
break;
}
if (propName.startsWith(u"java", -1)) {
status = U_ZERO_ERROR;
set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status);
if (U_FAILURE(status)) {
break;
}
//
// Try the various Java specific properties.
// These all begin with "java"
//
if (propName.compare(u"javaDefined", -1) == 0) {
addCategory(set.getAlias(), U_GC_CN_MASK, status);
set->complement();
}
else if (propName.compare(u"javaDigit", -1) == 0) {
addCategory(set.getAlias(), U_GC_ND_MASK, status);
}
else if (propName.compare(u"javaIdentifierIgnorable", -1) == 0) {
addIdentifierIgnorable(set.getAlias(), status);
}
else if (propName.compare(u"javaISOControl", -1) == 0) {
set->add(0, 0x1F).add(0x7F, 0x9F);
}
else if (propName.compare(u"javaJavaIdentifierPart", -1) == 0) {
addCategory(set.getAlias(), U_GC_L_MASK, status);
addCategory(set.getAlias(), U_GC_SC_MASK, status);
addCategory(set.getAlias(), U_GC_PC_MASK, status);
addCategory(set.getAlias(), U_GC_ND_MASK, status);
addCategory(set.getAlias(), U_GC_NL_MASK, status);
addCategory(set.getAlias(), U_GC_MC_MASK, status);
addCategory(set.getAlias(), U_GC_MN_MASK, status);
addIdentifierIgnorable(set.getAlias(), status);
}
else if (propName.compare(u"javaJavaIdentifierStart", -1) == 0) {
addCategory(set.getAlias(), U_GC_L_MASK, status);
addCategory(set.getAlias(), U_GC_NL_MASK, status);
addCategory(set.getAlias(), U_GC_SC_MASK, status);
addCategory(set.getAlias(), U_GC_PC_MASK, status);
}
else if (propName.compare(u"javaLetter", -1) == 0) {
addCategory(set.getAlias(), U_GC_L_MASK, status);
}
else if (propName.compare(u"javaLetterOrDigit", -1) == 0) {
addCategory(set.getAlias(), U_GC_L_MASK, status);
addCategory(set.getAlias(), U_GC_ND_MASK, status);
}
else if (propName.compare(u"javaLowerCase", -1) == 0) {
addCategory(set.getAlias(), U_GC_LL_MASK, status);
}
else if (propName.compare(u"javaMirrored", -1) == 0) {
set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, status);
}
else if (propName.compare(u"javaSpaceChar", -1) == 0) {
addCategory(set.getAlias(), U_GC_Z_MASK, status);
}
else if (propName.compare(u"javaSupplementaryCodePoint", -1) == 0) {
set->add(0x10000, UnicodeSet::MAX_VALUE);
}
else if (propName.compare(u"javaTitleCase", -1) == 0) {
addCategory(set.getAlias(), U_GC_LT_MASK, status);
}
else if (propName.compare(u"javaUnicodeIdentifierStart", -1) == 0) {
addCategory(set.getAlias(), U_GC_L_MASK, status);
addCategory(set.getAlias(), U_GC_NL_MASK, status);
}
else if (propName.compare(u"javaUnicodeIdentifierPart", -1) == 0) {
addCategory(set.getAlias(), U_GC_L_MASK, status);
addCategory(set.getAlias(), U_GC_PC_MASK, status);
addCategory(set.getAlias(), U_GC_ND_MASK, status);
addCategory(set.getAlias(), U_GC_NL_MASK, status);
addCategory(set.getAlias(), U_GC_MC_MASK, status);
addCategory(set.getAlias(), U_GC_MN_MASK, status);
addIdentifierIgnorable(set.getAlias(), status);
}
else if (propName.compare(u"javaUpperCase", -1) == 0) {
addCategory(set.getAlias(), U_GC_LU_MASK, status);
}
else if (propName.compare(u"javaValidCodePoint", -1) == 0) {
set->add(0, UnicodeSet::MAX_VALUE);
}
else if (propName.compare(u"javaWhitespace", -1) == 0) {
addCategory(set.getAlias(), U_GC_Z_MASK, status);
set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
set->add(9, 0x0d).add(0x1c, 0x1f);
} else {
status = U_REGEX_PROPERTY_SYNTAX;
}
if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) {
set->closeOver(USET_CASE_INSENSITIVE);
}
break;
}
// Unrecognized property. ICU didn't like it as it was, and none of the Java compatibility
// extensions matched it.
status = U_REGEX_PROPERTY_SYNTAX;
} while (false); // End of do loop block. Code above breaks out of the block on success or hard failure.
if (U_SUCCESS(status)) {
U_ASSERT(set.isValid());
if (negated) {
set->complement();
}
return set.orphan();
} else {
if (status == U_ILLEGAL_ARGUMENT_ERROR) {
status = U_REGEX_PROPERTY_SYNTAX;
}
error(status);
return nullptr;
}
}
//
// SetEval Part of the evaluation of [set expressions].
// Perform any pending (stacked) operations with precedence
// equal or greater to that of the next operator encountered
// in the expression.
//
void RegexCompile::setEval(int32_t nextOp) {
UnicodeSet *rightOperand = NULL;
UnicodeSet *leftOperand = NULL;
for (;;) {
U_ASSERT(fSetOpStack.empty()==FALSE);
int32_t pendingSetOperation = fSetOpStack.peeki();
if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) {
break;
}
fSetOpStack.popi();
U_ASSERT(fSetStack.empty() == FALSE);
rightOperand = (UnicodeSet *)fSetStack.peek();
switch (pendingSetOperation) {
case setNegation:
rightOperand->complement();
break;
case setCaseClose:
// TODO: need a simple close function. Ticket 6065
rightOperand->closeOver(USET_CASE_INSENSITIVE);
rightOperand->removeAllStrings();
break;
case setDifference1:
case setDifference2:
fSetStack.pop();
leftOperand = (UnicodeSet *)fSetStack.peek();
leftOperand->removeAll(*rightOperand);
delete rightOperand;
break;
case setIntersection1:
case setIntersection2:
fSetStack.pop();
leftOperand = (UnicodeSet *)fSetStack.peek();
leftOperand->retainAll(*rightOperand);
delete rightOperand;
break;
case setUnion:
fSetStack.pop();
leftOperand = (UnicodeSet *)fSetStack.peek();
leftOperand->addAll(*rightOperand);
delete rightOperand;
break;
default:
UPRV_UNREACHABLE;
}
}
}
void RegexCompile::setPushOp(int32_t op) {
setEval(op);
fSetOpStack.push(op, *fStatus);
fSetStack.push(new UnicodeSet(), *fStatus);
}
U_NAMESPACE_END
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS