scuffed-code/icu4c/source/i18n/colldata.cpp
2009-01-22 00:24:48 +00:00

1105 lines
26 KiB
C++

/*
******************************************************************************
* Copyright (C) 1996-2009, International Business Machines *
* Corporation and others. All Rights Reserved. *
******************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/unistr.h"
#include "unicode/putil.h"
#include "unicode/usearch.h"
#include "cmemory.h"
#include "unicode/coll.h"
#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/ucoleitr.h"
#include "unicode/regex.h" // TODO: make conditional on regexp being built.
#include "unicode/uniset.h"
#include "unicode/uset.h"
#include "unicode/ustring.h"
#include "hash.h"
#include "uhash.h"
#include "ucln_in.h"
#include "ucol_imp.h"
#include "umutex.h"
#include "unicode/colldata.h"
U_NAMESPACE_BEGIN
#define ARRAY_SIZE(array) (sizeof(array)/sizeof(array[0]))
#define NEW_ARRAY(type, count) (type *) uprv_malloc((count) * sizeof(type))
#define DELETE_ARRAY(array) uprv_free((void *) (array))
#define ARRAY_COPY(dst, src, count) uprv_memcpy((void *) (dst), (void *) (src), (count) * sizeof (src)[0])
static inline USet *uset_openEmpty()
{
return uset_open(1, 0);
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CEList)
#ifdef INSTRUMENT_CELIST
int32_t CEList::_active = 0;
int32_t CEList::_histogram[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
CEList::CEList(UCollator *coll, const UnicodeString &string, UErrorCode &status)
: ces(NULL), listMax(CELIST_BUFFER_SIZE), listSize(0)
{
UCollationElements *elems = ucol_openElements(coll, string.getBuffer(), string.length(), &status);
UCollationStrength strength = ucol_getStrength(coll);
UBool toShift = ucol_getAttribute(coll, UCOL_ALTERNATE_HANDLING, &status) == UCOL_SHIFTED;
uint32_t variableTop = ucol_getVariableTop(coll, &status);
uint32_t strengthMask = 0;
int32_t order;
if (U_FAILURE(status)) {
return;
}
// **** only set flag if string has Han(gul) ****
ucol_forceHanImplicit(elems, &status);
switch (strength)
{
default:
strengthMask |= UCOL_TERTIARYORDERMASK;
/* fall through */
case UCOL_SECONDARY:
strengthMask |= UCOL_SECONDARYORDERMASK;
/* fall through */
case UCOL_PRIMARY:
strengthMask |= UCOL_PRIMARYORDERMASK;
}
#ifdef INSTRUMENT_CELIST
_active += 1;
_histogram[0] += 1;
#endif
ces = ceBuffer;
while ((order = ucol_next(elems, &status)) != UCOL_NULLORDER) {
UBool cont = isContinuation(order);
order &= strengthMask;
if (toShift && variableTop > order && (order & UCOL_PRIMARYORDERMASK) != 0) {
if (strength >= UCOL_QUATERNARY) {
order &= UCOL_PRIMARYORDERMASK;
} else {
order = UCOL_IGNORABLE;
}
}
if (order == UCOL_IGNORABLE) {
continue;
}
if (cont) {
order |= UCOL_CONTINUATION_MARKER;
}
add(order, status);
}
ucol_closeElements(elems);
}
CEList::~CEList()
{
#ifdef INSTRUMENT_CELIST
_active -= 1;
#endif
if (ces != ceBuffer) {
DELETE_ARRAY(ces);
}
}
void CEList::add(uint32_t ce, UErrorCode &status)
{
if (U_FAILURE(status)) {
return;
}
if (listSize >= listMax) {
int32_t newMax = listMax + CELIST_BUFFER_SIZE;
#ifdef INSTRUMENT_CELIST
_histogram[listSize / CELIST_BUFFER_SIZE] += 1;
#endif
uint32_t *newCEs = NEW_ARRAY(uint32_t, newMax);
if (newCEs == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(newCEs, ces, listSize * sizeof(uint32_t));
if (ces != ceBuffer) {
DELETE_ARRAY(ces);
}
ces = newCEs;
listMax = newMax;
}
ces[listSize++] = ce;
}
uint32_t CEList::get(int32_t index) const
{
if (index >= 0 && index < listSize) {
return ces[index];
}
return UCOL_NULLORDER;
}
uint32_t &CEList::operator[](int32_t index) const
{
return ces[index];
}
UBool CEList::matchesAt(int32_t offset, const CEList *other) const
{
if (other == NULL || listSize - offset < other->size()) {
return FALSE;
}
for (int32_t i = offset, j = 0; j < other->size(); i += 1, j += 1) {
if (ces[i] != (*other)[j]) {
return FALSE;
}
}
return TRUE;
}
int32_t CEList::size() const
{
return listSize;
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(StringList)
#ifdef INSTRUMENT_STRING_LIST
int32_t StringList::_lists = 0;
int32_t StringList::_strings = 0;
int32_t StringList::_histogram[101] = {0};
#endif
StringList::StringList(UErrorCode &status)
: strings(NULL), listMax(STRING_LIST_BUFFER_SIZE), listSize(0)
{
if (U_FAILURE(status)) {
return;
}
strings = new UnicodeString [listMax];
if (strings == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
#ifdef INSTRUMENT_STRING_LIST
_lists += 1;
_histogram[0] += 1;
#endif
}
StringList::~StringList()
{
delete[] strings;
}
void StringList::add(const UnicodeString *string, UErrorCode &status)
{
if (U_FAILURE(status)) {
return;
}
#ifdef INSTRUMENT_STRING_LIST
_strings += 1;
#endif
if (listSize >= listMax) {
int32_t newMax = listMax + STRING_LIST_BUFFER_SIZE;
UnicodeString *newStrings = new UnicodeString[newMax];
uprv_memcpy(newStrings, strings, listSize * sizeof(UnicodeString));
#ifdef INSTRUMENT_STRING_LIST
int32_t _h = listSize / STRING_LIST_BUFFER_SIZE;
if (_h > 100) {
_h = 100;
}
_histogram[_h] += 1;
#endif
delete[] strings;
strings = newStrings;
listMax = newMax;
}
// The ctor initialized all the strings in
// the array to empty strings, so this
// is the same as copying the source string.
strings[listSize++].append(*string);
}
void StringList::add(const UChar *chars, int32_t count, UErrorCode &status)
{
const UnicodeString string(chars, count);
add(&string, status);
}
const UnicodeString *StringList::get(int32_t index) const
{
if (index >= 0 && index < listSize) {
return &strings[index];
}
return NULL;
}
int32_t StringList::size() const
{
return listSize;
}
U_CFUNC void deleteStringList(void *obj);
class CEToStringsMap : public UMemory
{
public:
CEToStringsMap(UErrorCode &status);
~CEToStringsMap();
void put(uint32_t ce, UnicodeString *string, UErrorCode &status);
StringList *getStringList(uint32_t ce) const;
private:
void putStringList(uint32_t ce, StringList *stringList, UErrorCode &status);
UHashtable *map;
};
CEToStringsMap::CEToStringsMap(UErrorCode &status)
: map(NULL)
{
if (U_FAILURE(status)) {
return;
}
map = uhash_open(uhash_hashLong, uhash_compareLong,
uhash_compareCaselessUnicodeString,
&status);
if (U_FAILURE(status)) {
return;
}
uhash_setValueDeleter(map, deleteStringList);
}
CEToStringsMap::~CEToStringsMap()
{
uhash_close(map);
}
void CEToStringsMap::put(uint32_t ce, UnicodeString *string, UErrorCode &status)
{
StringList *strings = getStringList(ce);
if (strings == NULL) {
strings = new StringList(status);
if (strings == NULL || U_FAILURE(status)) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
putStringList(ce, strings, status);
}
strings->add(string, status);
}
StringList *CEToStringsMap::getStringList(uint32_t ce) const
{
return (StringList *) uhash_iget(map, ce);
}
void CEToStringsMap::putStringList(uint32_t ce, StringList *stringList, UErrorCode &status)
{
uhash_iput(map, ce, (void *) stringList, &status);
}
U_CFUNC void deleteStringList(void *obj)
{
StringList *strings = (StringList *) obj;
delete strings;
}
U_CFUNC void deleteCEList(void *obj);
U_CFUNC void deleteUnicodeStringKey(void *obj);
class StringToCEsMap : public UMemory
{
public:
StringToCEsMap(UErrorCode &status);
~StringToCEsMap();
void put(const UnicodeString *string, const CEList *ces, UErrorCode &status);
const CEList *get(const UnicodeString *string);
void free(const CEList *list);
private:
UHashtable *map;
};
StringToCEsMap::StringToCEsMap(UErrorCode &status)
: map(NULL)
{
if (U_FAILURE(status)) {
return;
}
map = uhash_open(uhash_hashUnicodeString,
uhash_compareUnicodeString,
uhash_compareLong,
&status);
if (U_FAILURE(status)) {
return;
}
uhash_setValueDeleter(map, deleteCEList);
uhash_setKeyDeleter(map, deleteUnicodeStringKey);
}
StringToCEsMap::~StringToCEsMap()
{
uhash_close(map);
}
void StringToCEsMap::put(const UnicodeString *string, const CEList *ces, UErrorCode &status)
{
uhash_put(map, (void *) string, (void *) ces, &status);
}
const CEList *StringToCEsMap::get(const UnicodeString *string)
{
return (const CEList *) uhash_get(map, string);
}
U_CFUNC void deleteCEList(void *obj)
{
CEList *list = (CEList *) obj;
delete list;
}
U_CFUNC void deleteUnicodeStringKey(void *obj)
{
UnicodeString *key = (UnicodeString *) obj;
delete key;
}
class CollDataCacheEntry : public UMemory
{
public:
CollDataCacheEntry(CollData *theData);
~CollDataCacheEntry();
CollData *data;
int32_t refCount;
};
CollDataCacheEntry::CollDataCacheEntry(CollData *theData)
: data(theData), refCount(1)
{
// nothing else to do
}
CollDataCacheEntry::~CollDataCacheEntry()
{
// check refCount?
delete data;
}
class CollDataCache : public UMemory
{
public:
CollDataCache(UErrorCode &status);
~CollDataCache();
CollData *get(UCollator *collator, UErrorCode &status);
void unref(CollData *collData);
void flush();
private:
static char *getKey(UCollator *collator, char *keyBuffer, int32_t *charBufferLength);
static void deleteKey(char *key);
UMTX lock;
UHashtable *cache;
};
U_CFUNC void deleteChars(void *obj)
{
char *chars = (char *) obj;
// All the key strings are owned by the
// CollData objects and don't need to
// be freed here.
//DELETE_ARRAY(chars);
}
U_CFUNC void deleteCollDataCacheEntry(void *obj)
{
CollDataCacheEntry *entry = (CollDataCacheEntry *) obj;
delete entry;
}
CollDataCache::CollDataCache(UErrorCode &status)
: lock(0), cache(NULL)
{
if (U_FAILURE(status)) {
return;
}
umtx_init(&lock);
cache = uhash_open(uhash_hashChars, uhash_compareChars, uhash_compareLong, &status);
if (U_FAILURE(status)) {
return;
}
uhash_setValueDeleter(cache, deleteCollDataCacheEntry);
uhash_setKeyDeleter(cache, deleteChars);
}
CollDataCache::~CollDataCache()
{
umtx_lock(&lock);
uhash_close(cache);
cache = NULL;
umtx_unlock(&lock);
umtx_destroy(&lock);
}
CollData *CollDataCache::get(UCollator *collator, UErrorCode &status)
{
char keyBuffer[KEY_BUFFER_SIZE];
int32_t keyLength = KEY_BUFFER_SIZE;
char *key = getKey(collator, keyBuffer, &keyLength);
CollData *result = NULL, *newData = NULL;
CollDataCacheEntry *entry = NULL, *newEntry = NULL;
umtx_lock(&lock);
entry = (CollDataCacheEntry *) uhash_get(cache, key);
if (entry == NULL) {
umtx_unlock(&lock);
newData = new CollData(collator, key, keyLength, status);
newEntry = new CollDataCacheEntry(newData);
if (U_FAILURE(status) || newData == NULL || newEntry == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
umtx_lock(&lock);
entry = (CollDataCacheEntry *) uhash_get(cache, key);
if (entry == NULL) {
uhash_put(cache, newData->key, newEntry, &status);
umtx_unlock(&lock);
if (U_FAILURE(status)) {
delete newEntry;
delete newData;
return NULL;
}
return newData;
}
}
result = entry->data;
entry->refCount += 1;
umtx_unlock(&lock);
if (key != keyBuffer) {
deleteKey(key);
}
if (newEntry != NULL) {
delete newEntry;
delete newData;
}
return result;
}
void CollDataCache::unref(CollData *collData)
{
CollDataCacheEntry *entry = NULL;
umtx_lock(&lock);
entry = (CollDataCacheEntry *) uhash_get(cache, collData->key);
if (entry != NULL) {
entry->refCount -= 1;
}
umtx_unlock(&lock);
}
char *CollDataCache::getKey(UCollator *collator, char *keyBuffer, int32_t *keyBufferLength)
{
UErrorCode status = U_ZERO_ERROR;
int32_t len = ucol_getShortDefinitionString(collator, NULL, keyBuffer, *keyBufferLength, &status);
if (len >= *keyBufferLength) {
*keyBufferLength = (len + 2) & ~1; // round to even length, leaving room for terminating null
keyBuffer = NEW_ARRAY(char, *keyBufferLength);
status = U_ZERO_ERROR;
len = ucol_getShortDefinitionString(collator, NULL, keyBuffer, *keyBufferLength, &status);
}
keyBuffer[len] = '\0';
return keyBuffer;
}
void CollDataCache::flush()
{
const UHashElement *element;
int32_t pos = -1;
umtx_lock(&lock);
while ((element = uhash_nextElement(cache, &pos)) != NULL) {
CollDataCacheEntry *entry = (CollDataCacheEntry *) element->value.pointer;
if (entry->refCount <= 0) {
uhash_removeElement(cache, element);
}
}
umtx_unlock(&lock);
}
void CollDataCache::deleteKey(char *key)
{
DELETE_ARRAY(key);
}
U_CDECL_BEGIN
static UBool coll_data_cleanup(void) {
CollData::freeCollDataCache();
return TRUE;
}
U_CDECL_END
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CollData)
CollData::CollData()
{
// nothing
}
#define CLONE_COLLATOR
//#define CACHE_CELISTS
CollData::CollData(UCollator *collator, char *cacheKey, int32_t cacheKeyLength, UErrorCode &status)
: coll(NULL), charsToCEList(NULL), ceToCharsStartingWith(NULL), key(NULL)
{
// [:c:] == [[:cn:][:cc:][:co:][:cf:][:cs:]]
// i.e. other, control, private use, format, surrogate
U_STRING_DECL(test_pattern, "[[:assigned:]-[:c:]]", 20);
U_STRING_INIT(test_pattern, "[[:assigned:]-[:c:]]", 20);
USet *charsToTest = uset_openPattern(test_pattern, 20, &status);
// Han ext. A, Han, Jamo, Hangul, Han Ext. B
// i.e. all the characers we handle implicitly
U_STRING_DECL(remove_pattern, "[[\\u3400-\\u9FFF][\\u1100-\\u11F9][\\uAC00-\\uD7AF][\\U00020000-\\U0002A6DF]]", 70);
U_STRING_INIT(remove_pattern, "[[\\u3400-\\u9FFF][\\u1100-\\u11F9][\\uAC00-\\uD7AF][\\U00020000-\\U0002A6DF]]", 70);
USet *charsToRemove = uset_openPattern(remove_pattern, 70, &status);
if (U_FAILURE(status)) {
return;
}
USet *expansions = uset_openEmpty();
USet *contractions = uset_openEmpty();
int32_t itemCount;
#ifdef CACHE_CELISTS
charsToCEList = new StringToCEsMap(status);
if (U_FAILURE(status)) {
goto bail;
}
#else
charsToCEList = NULL;
#endif
ceToCharsStartingWith = new CEToStringsMap(status);
if (U_FAILURE(status)) {
goto bail;
}
if (cacheKeyLength > KEY_BUFFER_SIZE) {
key = NEW_ARRAY(char, cacheKeyLength);
if (key == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
goto bail;
}
} else {
key = keyBuffer;
}
ARRAY_COPY(key, cacheKey, cacheKeyLength);
#ifdef CLONE_COLLATOR
coll = ucol_safeClone(collator, NULL, NULL, &status);
if (U_FAILURE(status)) {
goto bail;
}
#else
coll = collator;
#endif
ucol_getContractionsAndExpansions(coll, contractions, expansions, FALSE, &status);
uset_addAll(charsToTest, contractions);
uset_addAll(charsToTest, expansions);
uset_removeAll(charsToTest, charsToRemove);
itemCount = uset_getItemCount(charsToTest);
for(int32_t item = 0; item < itemCount; item += 1) {
UChar32 start = 0, end = 0;
UChar buffer[16];
int32_t len = uset_getItem(charsToTest, item, &start, &end,
buffer, 16, &status);
if (len == 0) {
for (UChar32 ch = start; ch <= end; ch += 1) {
UnicodeString *st = new UnicodeString(ch);
if (st == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
break;
}
CEList *ceList = new CEList(coll, *st, status);
ceToCharsStartingWith->put(ceList->get(0), st, status);
#ifdef CACHE_CELISTS
charsToCEList->put(st, ceList, status);
#else
delete ceList;
delete st;
#endif
}
} else if (len > 0) {
UnicodeString *st = new UnicodeString(buffer, len);
if (st == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
break;
}
CEList *ceList = new CEList(coll, *st, status);
ceToCharsStartingWith->put(ceList->get(0), st, status);
#ifdef CACHE_CELISTS
charsToCEList->put(st, ceList, status);
#else
delete ceList;
delete st;
#endif
} else {
// shouldn't happen...
}
if (U_FAILURE(status)) {
break;
}
}
bail:
uset_close(contractions);
uset_close(expansions);
uset_close(charsToRemove);
uset_close(charsToTest);
if (U_FAILURE(status)) {
return;
}
UChar hanRanges[] = {UCOL_FIRST_HAN, UCOL_LAST_HAN, UCOL_FIRST_HAN_COMPAT, UCOL_LAST_HAN_COMPAT, UCOL_FIRST_HAN_A, UCOL_LAST_HAN_A,
UCOL_FIRST_HAN_B_LEAD, UCOL_FIRST_HAN_B_TRAIL, UCOL_LAST_HAN_B_LEAD, UCOL_LAST_HAN_B_TRAIL};
UChar jamoRanges[] = {UCOL_FIRST_L_JAMO, UCOL_FIRST_V_JAMO, UCOL_FIRST_T_JAMO, UCOL_LAST_T_JAMO};
UnicodeString hanString(hanRanges, ARRAY_SIZE(hanRanges));
UnicodeString jamoString(jamoRanges, ARRAY_SIZE(jamoRanges));
CEList hanList(coll, hanString, status);
CEList jamoList(coll, jamoString, status);
int32_t j = 0;
if (U_FAILURE(status)) {
return;
}
for (int32_t c = 0; c < jamoList.size(); c += 1) {
uint32_t jce = jamoList[c];
if (! isContinuation(jce)) {
jamoLimits[j++] = jce;
}
}
jamoLimits[3] += (1 << UCOL_PRIMARYORDERSHIFT);
minHan = 0xFFFFFFFF;
maxHan = 0;
for(int32_t h = 0; h < hanList.size(); h += 2) {
uint32_t han = (uint32_t) hanList[h];
if (han < minHan) {
minHan = han;
}
if (han > maxHan) {
maxHan = han;
}
}
maxHan += (1 << UCOL_PRIMARYORDERSHIFT);
}
CollData::~CollData()
{
#ifdef CLONE_COLLATOR
ucol_close(coll);
#endif
if (key != keyBuffer) {
DELETE_ARRAY(key);
}
delete ceToCharsStartingWith;
#ifdef CACHE_CELISTS
delete charsToCEList;
#endif
}
UCollator *CollData::getCollator() const
{
return coll;
}
const StringList *CollData::getStringList(int32_t ce) const
{
return ceToCharsStartingWith->getStringList(ce);
}
const CEList *CollData::getCEList(const UnicodeString *string) const
{
#ifdef CACHE_CELISTS
return charsToCEList->get(string);
#else
UErrorCode status = U_ZERO_ERROR;
const CEList *list = new CEList(coll, *string, status);
if (U_FAILURE(status)) {
delete list;
list = NULL;
}
return list;
#endif
}
void CollData::freeCEList(const CEList *list)
{
#ifndef CACHE_CELISTS
delete list;
#endif
}
int32_t CollData::minLengthInChars(const CEList *ceList, int32_t offset, int32_t *history) const
{
// find out shortest string for the longest sequence of ces.
// this can probably be folded with the minLengthCache...
if (history[offset] >= 0) {
return history[offset];
}
uint32_t ce = ceList->get(offset);
int32_t maxOffset = ceList->size();
int32_t shortestLength = INT32_MAX;
const StringList *strings = ceToCharsStartingWith->getStringList(ce);
if (strings != NULL) {
int32_t stringCount = strings->size();
for (int32_t s = 0; s < stringCount; s += 1) {
const UnicodeString *string = strings->get(s);
#ifdef CACHE_CELISTS
const CEList *ceList2 = charsToCEList->get(string);
#else
UErrorCode status = U_ZERO_ERROR;
const CEList *ceList2 = new CEList(coll, *string, status);
if (U_FAILURE(status)) {
delete ceList2;
ceList2 = NULL;
}
#endif
if (ceList->matchesAt(offset, ceList2)) {
int32_t clength = ceList2->size();
int32_t slength = string->length();
int32_t roffset = offset + clength;
int32_t rlength = 0;
if (roffset < maxOffset) {
rlength = minLengthInChars(ceList, roffset, history);
if (rlength <= 0) {
// ignore any dead ends
continue;
}
}
if (shortestLength > slength + rlength) {
shortestLength = slength + rlength;
}
}
#ifndef CACHE_CELISTS
delete ceList2;
#endif
}
}
if (shortestLength == INT32_MAX) {
// No matching strings at this offset. See if
// the CE is in a range we can handle manually.
if (ce >= minHan && ce < maxHan) {
// all han have implicit orders which
// generate two CEs.
int32_t roffset = offset + 2;
int32_t rlength = 0;
//history[roffset++] = -1;
//history[roffset++] = 1;
if (roffset < maxOffset) {
rlength = minLengthInChars(ceList, roffset, history);
}
if (rlength < 0) {
return -1;
}
shortestLength = 1 + rlength;
goto have_shortest;
} else if (ce >= jamoLimits[0] && ce < jamoLimits[3]) {
int32_t roffset = offset;
int32_t rlength = 0;
// **** this loop may not handle archaic Hangul correctly ****
for (int32_t j = 0; roffset < maxOffset && j < 4; j += 1, roffset += 1) {
uint32_t jce = ceList->get(roffset);
// Some Jamo have 24-bit primary order; skip the
// 2nd CE. This should always be OK because if
// we're still in the loop all we've seen are
// a series of Jamo in LVT order.
if (isContinuation(jce)) {
continue;
}
if (j >= 3 || jce < jamoLimits[j] || jce >= jamoLimits[j + 1]) {
break;
}
}
if (roffset == offset) {
// we started with a non-L Jamo...
// just say it comes from a single character
roffset += 1;
// See if the single Jamo has a 24-bit order.
if (roffset < maxOffset && isContinuation(ceList->get(roffset))) {
roffset += 1;
}
}
if (roffset < maxOffset) {
rlength = minLengthInChars(ceList, roffset, history);
}
if (rlength < 0) {
return -1;
}
shortestLength = 1 + rlength;
goto have_shortest;
}
// Can't handle it manually either. Just move on.
return -1;
}
have_shortest:
history[offset] = shortestLength;
return shortestLength;
}
int32_t CollData::minLengthInChars(const CEList *ceList, int32_t offset) const
{
int32_t clength = ceList->size();
int32_t *history = NEW_ARRAY(int32_t, clength);
for (int32_t i = 0; i < clength; i += 1) {
history[i] = -1;
}
int32_t minLength = minLengthInChars(ceList, offset, history);
DELETE_ARRAY(history);
return minLength;
}
CollData *CollData::open(UCollator *collator, UErrorCode &status)
{
if (U_FAILURE(status)) {
return NULL;
}
CollDataCache *cache = getCollDataCache();
return cache->get(collator, status);
}
void CollData::close(CollData *collData)
{
CollDataCache *cache = getCollDataCache();
cache->unref(collData);
}
CollDataCache *CollData::collDataCache = NULL;
CollDataCache *CollData::getCollDataCache()
{
UErrorCode status = U_ZERO_ERROR;
CollDataCache *cache = NULL;
UMTX_CHECK(NULL, collDataCache, cache);
if (cache == NULL) {
cache = new CollDataCache(status);
if (U_FAILURE(status)) {
delete cache;
return NULL;
}
umtx_lock(NULL);
if (collDataCache == NULL) {
collDataCache = cache;
ucln_i18n_registerCleanup(UCLN_I18N_COLL_DATA, coll_data_cleanup);
}
umtx_unlock(NULL);
if (collDataCache != cache) {
delete cache;
}
}
return collDataCache;
}
void CollData::freeCollDataCache()
{
CollDataCache *cache = NULL;
UMTX_CHECK(NULL, collDataCache, cache);
if (cache != NULL) {
umtx_lock(NULL);
if (collDataCache != NULL) {
collDataCache = NULL;
} else {
cache = NULL;
}
umtx_unlock(NULL);
delete cache;
}
}
void CollData::flushCollDataCache()
{
CollDataCache *cache = NULL;
UMTX_CHECK(NULL, collDataCache, cache);
// **** this will fail if the another ****
// **** thread deletes the cache here ****
if (cache != NULL) {
cache->flush();
}
}
U_NAMESPACE_END
#endif // #if !UCONFIG_NO_COLLATION