ac70eab7a3
X-SVN-Rev: 35965
1208 lines
49 KiB
C++
1208 lines
49 KiB
C++
/**
|
|
*******************************************************************************
|
|
* Copyright (C) 2006-2014, International Business Machines Corporation
|
|
* and others. All Rights Reserved.
|
|
*******************************************************************************
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_BREAK_ITERATION
|
|
|
|
#include "brkeng.h"
|
|
#include "dictbe.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/chariter.h"
|
|
#include "unicode/ubrk.h"
|
|
#include "uvectr32.h"
|
|
#include "uvector.h"
|
|
#include "uassert.h"
|
|
#include "unicode/normlzr.h"
|
|
#include "cmemory.h"
|
|
#include "dictionarydata.h"
|
|
|
|
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
/*
|
|
******************************************************************
|
|
*/
|
|
|
|
DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) {
|
|
fTypes = breakTypes;
|
|
}
|
|
|
|
DictionaryBreakEngine::~DictionaryBreakEngine() {
|
|
}
|
|
|
|
UBool
|
|
DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const {
|
|
return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)
|
|
&& fSet.contains(c));
|
|
}
|
|
|
|
int32_t
|
|
DictionaryBreakEngine::findBreaks( UText *text,
|
|
int32_t startPos,
|
|
int32_t endPos,
|
|
UBool reverse,
|
|
int32_t breakType,
|
|
UStack &foundBreaks ) const {
|
|
int32_t result = 0;
|
|
|
|
// Find the span of characters included in the set.
|
|
// The span to break begins at the current position in the text, and
|
|
// extends towards the start or end of the text, depending on 'reverse'.
|
|
|
|
int32_t start = (int32_t)utext_getNativeIndex(text);
|
|
int32_t current;
|
|
int32_t rangeStart;
|
|
int32_t rangeEnd;
|
|
UChar32 c = utext_current32(text);
|
|
if (reverse) {
|
|
UBool isDict = fSet.contains(c);
|
|
while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) {
|
|
c = utext_previous32(text);
|
|
isDict = fSet.contains(c);
|
|
}
|
|
if (current < startPos) {
|
|
rangeStart = startPos;
|
|
} else {
|
|
rangeStart = current;
|
|
if (!isDict) {
|
|
utext_next32(text);
|
|
rangeStart = utext_getNativeIndex(text);
|
|
}
|
|
}
|
|
// rangeEnd = start + 1;
|
|
utext_setNativeIndex(text, start);
|
|
utext_next32(text);
|
|
rangeEnd = utext_getNativeIndex(text);
|
|
}
|
|
else {
|
|
while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
|
|
utext_next32(text); // TODO: recast loop for postincrement
|
|
c = utext_current32(text);
|
|
}
|
|
rangeStart = start;
|
|
rangeEnd = current;
|
|
}
|
|
if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) {
|
|
result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
|
|
utext_setNativeIndex(text, current);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void
|
|
DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
|
|
fSet = set;
|
|
// Compact for caching
|
|
fSet.compact();
|
|
}
|
|
|
|
/*
|
|
******************************************************************
|
|
* PossibleWord
|
|
*/
|
|
|
|
// Helper class for improving readability of the Thai/Lao/Khmer word break
|
|
// algorithm. The implementation is completely inline.
|
|
|
|
// List size, limited by the maximum number of words in the dictionary
|
|
// that form a nested sequence.
|
|
static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
|
|
|
|
class PossibleWord {
|
|
private:
|
|
// list of word candidate lengths, in increasing length order
|
|
// TODO: bytes would be sufficient for word lengths.
|
|
int32_t count; // Count of candidates
|
|
int32_t prefix; // The longest match with a dictionary word
|
|
int32_t offset; // Offset in the text of these candidates
|
|
int32_t mark; // The preferred candidate's offset
|
|
int32_t current; // The candidate we're currently looking at
|
|
int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
|
|
int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
|
|
|
|
public:
|
|
PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {};
|
|
~PossibleWord() {};
|
|
|
|
// Fill the list of candidates if needed, select the longest, and return the number found
|
|
int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
|
|
|
|
// Select the currently marked candidate, point after it in the text, and invalidate self
|
|
int32_t acceptMarked( UText *text );
|
|
|
|
// Back up from the current candidate to the next shorter one; return TRUE if that exists
|
|
// and point the text after it
|
|
UBool backUp( UText *text );
|
|
|
|
// Return the longest prefix this candidate location shares with a dictionary word
|
|
// Return value is in code points.
|
|
int32_t longestPrefix() { return prefix; };
|
|
|
|
// Mark the current candidate as the one we like
|
|
void markCurrent() { mark = current; };
|
|
|
|
// Get length in code points of the marked word.
|
|
int32_t markedCPLength() { return cpLengths[mark]; };
|
|
};
|
|
|
|
|
|
int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
|
|
// TODO: If getIndex is too slow, use offset < 0 and add discardAll()
|
|
int32_t start = (int32_t)utext_getNativeIndex(text);
|
|
if (start != offset) {
|
|
offset = start;
|
|
count = dict->matches(text, rangeEnd-start, LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
|
|
// Dictionary leaves text after longest prefix, not longest word. Back up.
|
|
if (count <= 0) {
|
|
utext_setNativeIndex(text, start);
|
|
}
|
|
}
|
|
if (count > 0) {
|
|
utext_setNativeIndex(text, start+cuLengths[count-1]);
|
|
}
|
|
current = count-1;
|
|
mark = current;
|
|
return count;
|
|
}
|
|
|
|
int32_t
|
|
PossibleWord::acceptMarked( UText *text ) {
|
|
utext_setNativeIndex(text, offset + cuLengths[mark]);
|
|
return cuLengths[mark];
|
|
}
|
|
|
|
|
|
UBool
|
|
PossibleWord::backUp( UText *text ) {
|
|
if (current > 0) {
|
|
utext_setNativeIndex(text, offset + cuLengths[--current]);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
******************************************************************
|
|
* ThaiBreakEngine
|
|
*/
|
|
|
|
// How many words in a row are "good enough"?
|
|
static const int32_t THAI_LOOKAHEAD = 3;
|
|
|
|
// Will not combine a non-word with a preceding dictionary word longer than this
|
|
static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
|
|
|
|
// Will not combine a non-word that shares at least this much prefix with a
|
|
// dictionary word, with a preceding word
|
|
static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
|
|
|
|
// Ellision character
|
|
static const int32_t THAI_PAIYANNOI = 0x0E2F;
|
|
|
|
// Repeat character
|
|
static const int32_t THAI_MAIYAMOK = 0x0E46;
|
|
|
|
// Minimum word size
|
|
static const int32_t THAI_MIN_WORD = 2;
|
|
|
|
// Minimum number of characters for two words
|
|
static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
|
|
|
|
ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
|
: DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
|
|
fDictionary(adoptDictionary)
|
|
{
|
|
fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
|
|
if (U_SUCCESS(status)) {
|
|
setCharacters(fThaiWordSet);
|
|
}
|
|
fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
|
|
fMarkSet.add(0x0020);
|
|
fEndWordSet = fThaiWordSet;
|
|
fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
|
|
fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
|
fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
|
|
fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
|
fSuffixSet.add(THAI_PAIYANNOI);
|
|
fSuffixSet.add(THAI_MAIYAMOK);
|
|
|
|
// Compact for caching.
|
|
fMarkSet.compact();
|
|
fEndWordSet.compact();
|
|
fBeginWordSet.compact();
|
|
fSuffixSet.compact();
|
|
}
|
|
|
|
ThaiBreakEngine::~ThaiBreakEngine() {
|
|
delete fDictionary;
|
|
}
|
|
|
|
int32_t
|
|
ThaiBreakEngine::divideUpDictionaryRange( UText *text,
|
|
int32_t rangeStart,
|
|
int32_t rangeEnd,
|
|
UStack &foundBreaks ) const {
|
|
utext_setNativeIndex(text, rangeStart);
|
|
utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
|
|
if (utext_getNativeIndex(text) >= rangeEnd) {
|
|
return 0; // Not enough characters for two words
|
|
}
|
|
utext_setNativeIndex(text, rangeStart);
|
|
|
|
|
|
uint32_t wordsFound = 0;
|
|
int32_t cpWordLength = 0; // Word Length in Code Points.
|
|
int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
|
|
int32_t current;
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
PossibleWord words[THAI_LOOKAHEAD];
|
|
|
|
utext_setNativeIndex(text, rangeStart);
|
|
|
|
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
|
cpWordLength = 0;
|
|
cuWordLength = 0;
|
|
|
|
// Look for candidate words at the current position
|
|
int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
|
|
|
// If we found exactly one, use that
|
|
if (candidates == 1) {
|
|
cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
|
|
cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
|
|
wordsFound += 1;
|
|
}
|
|
// If there was more than one, see which one can take us forward the most words
|
|
else if (candidates > 1) {
|
|
// If we're already at the end of the range, we're done
|
|
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
|
goto foundBest;
|
|
}
|
|
do {
|
|
int32_t wordsMatched = 1;
|
|
if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
|
if (wordsMatched < 2) {
|
|
// Followed by another dictionary word; mark first word as a good candidate
|
|
words[wordsFound%THAI_LOOKAHEAD].markCurrent();
|
|
wordsMatched = 2;
|
|
}
|
|
|
|
// If we're already at the end of the range, we're done
|
|
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
|
goto foundBest;
|
|
}
|
|
|
|
// See if any of the possible second words is followed by a third word
|
|
do {
|
|
// If we find a third word, stop right away
|
|
if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
|
words[wordsFound % THAI_LOOKAHEAD].markCurrent();
|
|
goto foundBest;
|
|
}
|
|
}
|
|
while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
|
|
}
|
|
}
|
|
while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
|
|
foundBest:
|
|
// Set UText position to after the accepted word.
|
|
cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
|
|
cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// We come here after having either found a word or not. We look ahead to the
|
|
// next word. If it's not a dictionary word, we will combine it with the word we
|
|
// just found (if there is one), but only if the preceding word does not exceed
|
|
// the threshold.
|
|
// The text iterator should now be positioned at the end of the word we found.
|
|
|
|
UChar32 uc = 0;
|
|
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
|
|
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
|
// no preceding word, or the non-word shares less than the minimum threshold
|
|
// of characters with a dictionary word, then scan to resynchronize
|
|
if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
|
&& (cuWordLength == 0
|
|
|| words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
|
|
// Look for a plausible word boundary
|
|
int32_t remaining = rangeEnd - (current+cuWordLength);
|
|
UChar32 pc;
|
|
int32_t chars = 0;
|
|
for (;;) {
|
|
int32_t pcIndex = utext_getNativeIndex(text);
|
|
pc = utext_next32(text);
|
|
int32_t pcSize = utext_getNativeIndex(text) - pcIndex;
|
|
chars += pcSize;
|
|
remaining -= pcSize;
|
|
if (remaining <= 0) {
|
|
break;
|
|
}
|
|
uc = utext_current32(text);
|
|
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
|
// Maybe. See if it's in the dictionary.
|
|
// NOTE: In the original Apple code, checked that the next
|
|
// two characters after uc were not 0x0E4C THANTHAKHAT before
|
|
// checking the dictionary. That is just a performance filter,
|
|
// but it's not clear it's faster than checking the trie.
|
|
int32_t candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
|
utext_setNativeIndex(text, current + cuWordLength + chars);
|
|
if (candidates > 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bump the word count if there wasn't already one
|
|
if (cuWordLength <= 0) {
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// Update the length with the passed-over characters
|
|
cuWordLength += chars;
|
|
}
|
|
else {
|
|
// Back up to where we were for next iteration
|
|
utext_setNativeIndex(text, current+cuWordLength);
|
|
}
|
|
}
|
|
|
|
// Never stop before a combining mark.
|
|
int32_t currPos;
|
|
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
|
utext_next32(text);
|
|
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
|
}
|
|
|
|
// Look ahead for possible suffixes if a dictionary word does not follow.
|
|
// We do this in code rather than using a rule so that the heuristic
|
|
// resynch continues to function. For example, one of the suffix characters
|
|
// could be a typo in the middle of a word.
|
|
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
|
|
if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
|
&& fSuffixSet.contains(uc = utext_current32(text))) {
|
|
if (uc == THAI_PAIYANNOI) {
|
|
if (!fSuffixSet.contains(utext_previous32(text))) {
|
|
// Skip over previous end and PAIYANNOI
|
|
utext_next32(text);
|
|
int32_t paiyannoiIndex = utext_getNativeIndex(text);
|
|
utext_next32(text);
|
|
cuWordLength += utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word
|
|
uc = utext_current32(text); // Fetch next character
|
|
}
|
|
else {
|
|
// Restore prior position
|
|
utext_next32(text);
|
|
}
|
|
}
|
|
if (uc == THAI_MAIYAMOK) {
|
|
if (utext_previous32(text) != THAI_MAIYAMOK) {
|
|
// Skip over previous end and MAIYAMOK
|
|
utext_next32(text);
|
|
int32_t maiyamokIndex = utext_getNativeIndex(text);
|
|
utext_next32(text);
|
|
cuWordLength += utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word
|
|
}
|
|
else {
|
|
// Restore prior position
|
|
utext_next32(text);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
utext_setNativeIndex(text, current+cuWordLength);
|
|
}
|
|
}
|
|
|
|
// Did we find a word on this iteration? If so, push it on the break stack
|
|
if (cuWordLength > 0) {
|
|
foundBreaks.push((current+cuWordLength), status);
|
|
}
|
|
}
|
|
|
|
// Don't return a break for the end of the dictionary range if there is one there.
|
|
if (foundBreaks.peeki() >= rangeEnd) {
|
|
(void) foundBreaks.popi();
|
|
wordsFound -= 1;
|
|
}
|
|
|
|
return wordsFound;
|
|
}
|
|
|
|
/*
|
|
******************************************************************
|
|
* LaoBreakEngine
|
|
*/
|
|
|
|
// How many words in a row are "good enough"?
|
|
static const int32_t LAO_LOOKAHEAD = 3;
|
|
|
|
// Will not combine a non-word with a preceding dictionary word longer than this
|
|
static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
|
|
|
|
// Will not combine a non-word that shares at least this much prefix with a
|
|
// dictionary word, with a preceding word
|
|
static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
|
|
|
|
// Minimum word size
|
|
static const int32_t LAO_MIN_WORD = 2;
|
|
|
|
// Minimum number of characters for two words
|
|
static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
|
|
|
|
LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
|
: DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
|
|
fDictionary(adoptDictionary)
|
|
{
|
|
fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status);
|
|
if (U_SUCCESS(status)) {
|
|
setCharacters(fLaoWordSet);
|
|
}
|
|
fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
|
|
fMarkSet.add(0x0020);
|
|
fEndWordSet = fLaoWordSet;
|
|
fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels
|
|
fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters)
|
|
fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent)
|
|
fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels
|
|
|
|
// Compact for caching.
|
|
fMarkSet.compact();
|
|
fEndWordSet.compact();
|
|
fBeginWordSet.compact();
|
|
}
|
|
|
|
LaoBreakEngine::~LaoBreakEngine() {
|
|
delete fDictionary;
|
|
}
|
|
|
|
int32_t
|
|
LaoBreakEngine::divideUpDictionaryRange( UText *text,
|
|
int32_t rangeStart,
|
|
int32_t rangeEnd,
|
|
UStack &foundBreaks ) const {
|
|
if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
|
|
return 0; // Not enough characters for two words
|
|
}
|
|
|
|
uint32_t wordsFound = 0;
|
|
int32_t cpWordLength = 0;
|
|
int32_t cuWordLength = 0;
|
|
int32_t current;
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
PossibleWord words[LAO_LOOKAHEAD];
|
|
|
|
utext_setNativeIndex(text, rangeStart);
|
|
|
|
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
|
cuWordLength = 0;
|
|
cpWordLength = 0;
|
|
|
|
// Look for candidate words at the current position
|
|
int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
|
|
|
// If we found exactly one, use that
|
|
if (candidates == 1) {
|
|
cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
|
|
cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
|
|
wordsFound += 1;
|
|
}
|
|
// If there was more than one, see which one can take us forward the most words
|
|
else if (candidates > 1) {
|
|
// If we're already at the end of the range, we're done
|
|
if (utext_getNativeIndex(text) >= rangeEnd) {
|
|
goto foundBest;
|
|
}
|
|
do {
|
|
int32_t wordsMatched = 1;
|
|
if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
|
if (wordsMatched < 2) {
|
|
// Followed by another dictionary word; mark first word as a good candidate
|
|
words[wordsFound%LAO_LOOKAHEAD].markCurrent();
|
|
wordsMatched = 2;
|
|
}
|
|
|
|
// If we're already at the end of the range, we're done
|
|
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
|
goto foundBest;
|
|
}
|
|
|
|
// See if any of the possible second words is followed by a third word
|
|
do {
|
|
// If we find a third word, stop right away
|
|
if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
|
words[wordsFound % LAO_LOOKAHEAD].markCurrent();
|
|
goto foundBest;
|
|
}
|
|
}
|
|
while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
|
|
}
|
|
}
|
|
while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
|
|
foundBest:
|
|
cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
|
|
cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// We come here after having either found a word or not. We look ahead to the
|
|
// next word. If it's not a dictionary word, we will combine it withe the word we
|
|
// just found (if there is one), but only if the preceding word does not exceed
|
|
// the threshold.
|
|
// The text iterator should now be positioned at the end of the word we found.
|
|
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
|
|
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
|
// no preceding word, or the non-word shares less than the minimum threshold
|
|
// of characters with a dictionary word, then scan to resynchronize
|
|
if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
|
&& (cuWordLength == 0
|
|
|| words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
|
|
// Look for a plausible word boundary
|
|
int32_t remaining = rangeEnd - (current + cuWordLength);
|
|
UChar32 pc;
|
|
UChar32 uc;
|
|
int32_t chars = 0;
|
|
for (;;) {
|
|
int32_t pcIndex = utext_getNativeIndex(text);
|
|
pc = utext_next32(text);
|
|
int32_t pcSize = utext_getNativeIndex(text) - pcIndex;
|
|
chars += pcSize;
|
|
remaining -= pcSize;
|
|
if (remaining <= 0) {
|
|
break;
|
|
}
|
|
uc = utext_current32(text);
|
|
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
|
// Maybe. See if it's in the dictionary.
|
|
// TODO: this looks iffy; compare with old code.
|
|
int32_t candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
|
utext_setNativeIndex(text, current + cuWordLength + chars);
|
|
if (candidates > 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bump the word count if there wasn't already one
|
|
if (cuWordLength <= 0) {
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// Update the length with the passed-over characters
|
|
cuWordLength += chars;
|
|
}
|
|
else {
|
|
// Back up to where we were for next iteration
|
|
utext_setNativeIndex(text, current + cuWordLength);
|
|
}
|
|
}
|
|
|
|
// Never stop before a combining mark.
|
|
int32_t currPos;
|
|
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
|
utext_next32(text);
|
|
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
|
}
|
|
|
|
// Look ahead for possible suffixes if a dictionary word does not follow.
|
|
// We do this in code rather than using a rule so that the heuristic
|
|
// resynch continues to function. For example, one of the suffix characters
|
|
// could be a typo in the middle of a word.
|
|
// NOT CURRENTLY APPLICABLE TO LAO
|
|
|
|
// Did we find a word on this iteration? If so, push it on the break stack
|
|
if (cuWordLength > 0) {
|
|
foundBreaks.push((current+cuWordLength), status);
|
|
}
|
|
}
|
|
|
|
// Don't return a break for the end of the dictionary range if there is one there.
|
|
if (foundBreaks.peeki() >= rangeEnd) {
|
|
(void) foundBreaks.popi();
|
|
wordsFound -= 1;
|
|
}
|
|
|
|
return wordsFound;
|
|
}
|
|
|
|
/*
|
|
******************************************************************
|
|
* KhmerBreakEngine
|
|
*/
|
|
|
|
// How many words in a row are "good enough"?
|
|
static const int32_t KHMER_LOOKAHEAD = 3;
|
|
|
|
// Will not combine a non-word with a preceding dictionary word longer than this
|
|
static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
|
|
|
|
// Will not combine a non-word that shares at least this much prefix with a
|
|
// dictionary word, with a preceding word
|
|
static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
|
|
|
|
// Minimum word size
|
|
static const int32_t KHMER_MIN_WORD = 2;
|
|
|
|
// Minimum number of characters for two words
|
|
static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
|
|
|
|
KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
|
|
: DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)),
|
|
fDictionary(adoptDictionary)
|
|
{
|
|
fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
|
|
if (U_SUCCESS(status)) {
|
|
setCharacters(fKhmerWordSet);
|
|
}
|
|
fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
|
|
fMarkSet.add(0x0020);
|
|
fEndWordSet = fKhmerWordSet;
|
|
fBeginWordSet.add(0x1780, 0x17B3);
|
|
//fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
|
|
//fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
|
|
//fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
|
|
fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
|
|
//fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
|
|
// fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
|
|
// fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
|
// fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
|
|
// fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
|
|
// fSuffixSet.add(THAI_PAIYANNOI);
|
|
// fSuffixSet.add(THAI_MAIYAMOK);
|
|
|
|
// Compact for caching.
|
|
fMarkSet.compact();
|
|
fEndWordSet.compact();
|
|
fBeginWordSet.compact();
|
|
// fSuffixSet.compact();
|
|
}
|
|
|
|
KhmerBreakEngine::~KhmerBreakEngine() {
|
|
delete fDictionary;
|
|
}
|
|
|
|
int32_t
|
|
KhmerBreakEngine::divideUpDictionaryRange( UText *text,
|
|
int32_t rangeStart,
|
|
int32_t rangeEnd,
|
|
UStack &foundBreaks ) const {
|
|
if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
|
|
return 0; // Not enough characters for two words
|
|
}
|
|
|
|
uint32_t wordsFound = 0;
|
|
int32_t cpWordLength = 0;
|
|
int32_t cuWordLength = 0;
|
|
int32_t current;
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
PossibleWord words[KHMER_LOOKAHEAD];
|
|
|
|
utext_setNativeIndex(text, rangeStart);
|
|
|
|
while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
|
|
cuWordLength = 0;
|
|
cpWordLength = 0;
|
|
|
|
// Look for candidate words at the current position
|
|
int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
|
|
|
// If we found exactly one, use that
|
|
if (candidates == 1) {
|
|
cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
|
|
cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// If there was more than one, see which one can take us forward the most words
|
|
else if (candidates > 1) {
|
|
// If we're already at the end of the range, we're done
|
|
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
|
goto foundBest;
|
|
}
|
|
do {
|
|
int32_t wordsMatched = 1;
|
|
if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
|
|
if (wordsMatched < 2) {
|
|
// Followed by another dictionary word; mark first word as a good candidate
|
|
words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
|
|
wordsMatched = 2;
|
|
}
|
|
|
|
// If we're already at the end of the range, we're done
|
|
if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
|
|
goto foundBest;
|
|
}
|
|
|
|
// See if any of the possible second words is followed by a third word
|
|
do {
|
|
// If we find a third word, stop right away
|
|
if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
|
|
words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
|
|
goto foundBest;
|
|
}
|
|
}
|
|
while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
|
|
}
|
|
}
|
|
while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
|
|
foundBest:
|
|
cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
|
|
cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// We come here after having either found a word or not. We look ahead to the
|
|
// next word. If it's not a dictionary word, we will combine it with the word we
|
|
// just found (if there is one), but only if the preceding word does not exceed
|
|
// the threshold.
|
|
// The text iterator should now be positioned at the end of the word we found.
|
|
if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
|
|
// if it is a dictionary word, do nothing. If it isn't, then if there is
|
|
// no preceding word, or the non-word shares less than the minimum threshold
|
|
// of characters with a dictionary word, then scan to resynchronize
|
|
if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
|
&& (cuWordLength == 0
|
|
|| words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
|
|
// Look for a plausible word boundary
|
|
int32_t remaining = rangeEnd - (current+cuWordLength);
|
|
UChar32 pc;
|
|
UChar32 uc;
|
|
int32_t chars = 0;
|
|
for (;;) {
|
|
int32_t pcIndex = utext_getNativeIndex(text);
|
|
pc = utext_next32(text);
|
|
int32_t pcSize = utext_getNativeIndex(text) - pcIndex;
|
|
chars += pcSize;
|
|
remaining -= pcSize;
|
|
if (remaining <= 0) {
|
|
break;
|
|
}
|
|
uc = utext_current32(text);
|
|
if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
|
|
// Maybe. See if it's in the dictionary.
|
|
int32_t candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
|
|
utext_setNativeIndex(text, current+cuWordLength+chars);
|
|
if (candidates > 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Bump the word count if there wasn't already one
|
|
if (cuWordLength <= 0) {
|
|
wordsFound += 1;
|
|
}
|
|
|
|
// Update the length with the passed-over characters
|
|
cuWordLength += chars;
|
|
}
|
|
else {
|
|
// Back up to where we were for next iteration
|
|
utext_setNativeIndex(text, current+cuWordLength);
|
|
}
|
|
}
|
|
|
|
// Never stop before a combining mark.
|
|
int32_t currPos;
|
|
while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
|
|
utext_next32(text);
|
|
cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
|
|
}
|
|
|
|
// Look ahead for possible suffixes if a dictionary word does not follow.
|
|
// We do this in code rather than using a rule so that the heuristic
|
|
// resynch continues to function. For example, one of the suffix characters
|
|
// could be a typo in the middle of a word.
|
|
// if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
|
|
// if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
|
|
// && fSuffixSet.contains(uc = utext_current32(text))) {
|
|
// if (uc == KHMER_PAIYANNOI) {
|
|
// if (!fSuffixSet.contains(utext_previous32(text))) {
|
|
// // Skip over previous end and PAIYANNOI
|
|
// utext_next32(text);
|
|
// utext_next32(text);
|
|
// wordLength += 1; // Add PAIYANNOI to word
|
|
// uc = utext_current32(text); // Fetch next character
|
|
// }
|
|
// else {
|
|
// // Restore prior position
|
|
// utext_next32(text);
|
|
// }
|
|
// }
|
|
// if (uc == KHMER_MAIYAMOK) {
|
|
// if (utext_previous32(text) != KHMER_MAIYAMOK) {
|
|
// // Skip over previous end and MAIYAMOK
|
|
// utext_next32(text);
|
|
// utext_next32(text);
|
|
// wordLength += 1; // Add MAIYAMOK to word
|
|
// }
|
|
// else {
|
|
// // Restore prior position
|
|
// utext_next32(text);
|
|
// }
|
|
// }
|
|
// }
|
|
// else {
|
|
// utext_setNativeIndex(text, current+wordLength);
|
|
// }
|
|
// }
|
|
|
|
// Did we find a word on this iteration? If so, push it on the break stack
|
|
if (cuWordLength > 0) {
|
|
foundBreaks.push((current+cuWordLength), status);
|
|
}
|
|
}
|
|
|
|
// Don't return a break for the end of the dictionary range if there is one there.
|
|
if (foundBreaks.peeki() >= rangeEnd) {
|
|
(void) foundBreaks.popi();
|
|
wordsFound -= 1;
|
|
}
|
|
|
|
return wordsFound;
|
|
}
|
|
|
|
#if !UCONFIG_NO_NORMALIZATION
|
|
/*
|
|
******************************************************************
|
|
* CjkBreakEngine
|
|
*/
|
|
static const uint32_t kuint32max = 0xFFFFFFFF;
|
|
CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
|
|
: DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) {
|
|
// Korean dictionary only includes Hangul syllables
|
|
fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
|
|
fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
|
|
fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
|
|
fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
|
|
nfkcNorm2 = Normalizer2::getNFKCInstance(status);
|
|
|
|
if (U_SUCCESS(status)) {
|
|
// handle Korean and Japanese/Chinese using different dictionaries
|
|
if (type == kKorean) {
|
|
setCharacters(fHangulWordSet);
|
|
} else { //Chinese and Japanese
|
|
UnicodeSet cjSet;
|
|
cjSet.addAll(fHanWordSet);
|
|
cjSet.addAll(fKatakanaWordSet);
|
|
cjSet.addAll(fHiraganaWordSet);
|
|
cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK
|
|
cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK
|
|
setCharacters(cjSet);
|
|
}
|
|
}
|
|
}
|
|
|
|
CjkBreakEngine::~CjkBreakEngine(){
|
|
delete fDictionary;
|
|
}
|
|
|
|
// The katakanaCost values below are based on the length frequencies of all
|
|
// katakana phrases in the dictionary
|
|
static const int32_t kMaxKatakanaLength = 8;
|
|
static const int32_t kMaxKatakanaGroupLength = 20;
|
|
static const uint32_t maxSnlp = 255;
|
|
|
|
static inline uint32_t getKatakanaCost(int32_t wordLength){
|
|
//TODO: fill array with actual values from dictionary!
|
|
static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
|
|
= {8192, 984, 408, 240, 204, 252, 300, 372, 480};
|
|
return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
|
|
}
|
|
|
|
static inline bool isKatakana(uint16_t value) {
|
|
return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) ||
|
|
(value >= 0xFF66u && value <= 0xFF9fu);
|
|
}
|
|
|
|
|
|
// Function for accessing internal utext flags.
|
|
// Replicates an internal UText function.
|
|
|
|
static inline int32_t utext_i32_flag(int32_t bitIndex) {
|
|
return (int32_t)1 << bitIndex;
|
|
}
|
|
|
|
|
|
/*
|
|
* @param text A UText representing the text
|
|
* @param rangeStart The start of the range of dictionary characters
|
|
* @param rangeEnd The end of the range of dictionary characters
|
|
* @param foundBreaks Output of C array of int32_t break positions, or 0
|
|
* @return The number of breaks found
|
|
*/
|
|
int32_t
|
|
CjkBreakEngine::divideUpDictionaryRange( UText *inText,
|
|
int32_t rangeStart,
|
|
int32_t rangeEnd,
|
|
UStack &foundBreaks ) const {
|
|
if (rangeStart >= rangeEnd) {
|
|
return 0;
|
|
}
|
|
|
|
// UnicodeString version of input UText, NFKC normalized in necessary.
|
|
UnicodeString *inString;
|
|
|
|
// inputMap[inStringIndex] = corresponding native index from UText inText.
|
|
// If NULL then mapping is 1:1
|
|
UVector32 *inputMap = NULL;
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
|
|
|
|
// if UText has the input string as one contiguous UTF-16 chunk
|
|
if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
|
|
inText->chunkNativeStart <= rangeStart &&
|
|
inText->chunkNativeLimit >= rangeEnd &&
|
|
inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
|
|
|
|
// Input UTtxt is in one contiguous UTF-16 chunk.
|
|
// Use Read-only aliasing UnicodeString constructor on it.
|
|
inString = new UnicodeString(FALSE,
|
|
inText->chunkContents + rangeStart - inText->chunkNativeStart,
|
|
rangeEnd - rangeStart);
|
|
} else {
|
|
// Copy the text from the original inText (UText) to inString (UnicodeString).
|
|
// Create a map from UnicodeString indices -> UText offsets.
|
|
utext_setNativeIndex(inText, rangeStart);
|
|
int32_t limit = rangeEnd;
|
|
U_ASSERT(limit <= utext_nativeLength(inText));
|
|
if (limit > utext_nativeLength(inText)) {
|
|
limit = utext_nativeLength(inText);
|
|
}
|
|
inString = new UnicodeString;
|
|
inputMap = new UVector32(status);
|
|
while (utext_getNativeIndex(inText) < limit) {
|
|
int32_t nativePosition = utext_getNativeIndex(inText);
|
|
UChar32 c = utext_next32(inText);
|
|
U_ASSERT(c != U_SENTINEL);
|
|
inString->append(c);
|
|
while (inputMap->size() < inString->length()) {
|
|
inputMap->addElement(nativePosition, status);
|
|
}
|
|
}
|
|
inputMap->addElement(limit, status);
|
|
}
|
|
|
|
|
|
if (!nfkcNorm2->isNormalized(*inString, status)) {
|
|
UnicodeString *normalizedInput = new UnicodeString();
|
|
// normalizedMap[normalizedInput position] == original UText position.
|
|
UVector32 *normalizedMap = new UVector32(status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
UnicodeString fragment;
|
|
UnicodeString normalizedFragment;
|
|
for (int32_t srcI = 0; srcI < inString->length();) { // Once per normalization chunk
|
|
fragment.remove();
|
|
int32_t fragmentStartI = srcI;
|
|
UChar32 c = inString->char32At(srcI);
|
|
for (;;) {
|
|
fragment.append(c);
|
|
srcI = inString->moveIndex32(srcI, 1);
|
|
if (srcI == inString->length()) {
|
|
break;
|
|
}
|
|
c = inString->char32At(srcI);
|
|
if (nfkcNorm2->hasBoundaryBefore(c)) {
|
|
break;
|
|
}
|
|
}
|
|
nfkcNorm2->normalize(fragment, normalizedFragment, status);
|
|
normalizedInput->append(normalizedFragment);
|
|
|
|
// Map every position in the normalized chunk to the start of the chunk
|
|
// in the original input.
|
|
int32_t fragmentOriginalStart = inputMap? inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
|
|
while (normalizedMap->size() < normalizedInput->length()) {
|
|
normalizedMap->addElement(fragmentOriginalStart, status);
|
|
if (U_FAILURE(status)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
U_ASSERT(normalizedMap->size() == normalizedInput->length());
|
|
int32_t nativeEnd = inputMap? inputMap->elementAti(inString->length()) : inString->length()+rangeStart;
|
|
normalizedMap->addElement(nativeEnd, status);
|
|
|
|
delete inputMap;
|
|
inputMap = normalizedMap;
|
|
delete inString;
|
|
inString = normalizedInput;
|
|
}
|
|
|
|
int32_t numCodePts = inString->countChar32();
|
|
if (numCodePts != inString->length()) {
|
|
// There are supplementary characters in the input.
|
|
// The dictionary will produce boundary positions in terms of code point indexes,
|
|
// not in terms of code unit string indexes.
|
|
// Use the inputMap mechanism to take care of this in addition to indexing differences
|
|
// from normalization and/or UTF-8 input.
|
|
UBool hadExistingMap = (inputMap != NULL);
|
|
if (!hadExistingMap) {
|
|
inputMap = new UVector32(status);
|
|
}
|
|
int32_t cpIdx = 0;
|
|
for (int32_t cuIdx = 0; ; cuIdx = inString->moveIndex32(cuIdx, 1)) {
|
|
U_ASSERT(cuIdx >= cpIdx);
|
|
if (hadExistingMap) {
|
|
inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
|
|
} else {
|
|
inputMap->addElement(cuIdx+rangeStart, status);
|
|
}
|
|
cpIdx++;
|
|
if (cuIdx == inString->length()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// bestSnlp[i] is the snlp of the best segmentation of the first i
|
|
// code points in the range to be matched.
|
|
UVector32 bestSnlp(numCodePts + 1, status);
|
|
bestSnlp.addElement(0, status);
|
|
for(int32_t i = 1; i <= numCodePts; i++) {
|
|
bestSnlp.addElement(kuint32max, status);
|
|
}
|
|
|
|
|
|
// prev[i] is the index of the last CJK code point in the previous word in
|
|
// the best segmentation of the first i characters.
|
|
UVector32 prev(numCodePts + 1, status);
|
|
for(int32_t i = 0; i <= numCodePts; i++){
|
|
prev.addElement(-1, status);
|
|
}
|
|
|
|
const int32_t maxWordSize = 20;
|
|
UVector32 values(numCodePts, status);
|
|
values.setSize(numCodePts);
|
|
UVector32 lengths(numCodePts, status);
|
|
lengths.setSize(numCodePts);
|
|
|
|
UText fu = UTEXT_INITIALIZER;
|
|
utext_openUnicodeString(&fu, inString, &status);
|
|
|
|
// Dynamic programming to find the best segmentation.
|
|
|
|
// In outer loop, i is the code point index,
|
|
// ix is the corresponding string (code unit) index.
|
|
// They differ when the string contains supplementary characters.
|
|
int32_t ix = 0;
|
|
for (int32_t i = 0; i < numCodePts; ++i, ix = inString->moveIndex32(ix, 1)) {
|
|
if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
|
|
continue;
|
|
}
|
|
|
|
int32_t count;
|
|
utext_setNativeIndex(&fu, ix);
|
|
count = fDictionary->matches(&fu, maxWordSize, numCodePts,
|
|
NULL, lengths.getBuffer(), values.getBuffer(), NULL);
|
|
// Note: lengths is filled with code point lengths
|
|
// The NULL parameter is the ignored code unit lengths.
|
|
|
|
// if there are no single character matches found in the dictionary
|
|
// starting with this charcter, treat character as a 1-character word
|
|
// with the highest value possible, i.e. the least likely to occur.
|
|
// Exclude Korean characters from this treatment, as they should be left
|
|
// together by default.
|
|
if ((count == 0 || lengths.elementAti(0) != 1) &&
|
|
!fHangulWordSet.contains(inString->char32At(ix))) {
|
|
values.setElementAt(maxSnlp, count); // 255
|
|
lengths.setElementAt(1, count++);
|
|
}
|
|
|
|
for (int32_t j = 0; j < count; j++) {
|
|
uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
|
|
int32_t ln_j_i = lengths.elementAti(j) + i;
|
|
if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
|
|
bestSnlp.setElementAt(newSnlp, ln_j_i);
|
|
prev.setElementAt(i, ln_j_i);
|
|
}
|
|
}
|
|
|
|
// In Japanese,
|
|
// Katakana word in single character is pretty rare. So we apply
|
|
// the following heuristic to Katakana: any continuous run of Katakana
|
|
// characters is considered a candidate word with a default cost
|
|
// specified in the katakanaCost table according to its length.
|
|
|
|
bool is_prev_katakana = false;
|
|
bool is_katakana = isKatakana(inString->char32At(ix));
|
|
int32_t katakanaRunLength = 1;
|
|
if (!is_prev_katakana && is_katakana) {
|
|
int32_t j = inString->moveIndex32(ix, 1);
|
|
// Find the end of the continuous run of Katakana characters
|
|
while (j < inString->length() && katakanaRunLength < kMaxKatakanaGroupLength &&
|
|
isKatakana(inString->char32At(j))) {
|
|
j = inString->moveIndex32(j, 1);
|
|
katakanaRunLength++;
|
|
}
|
|
if (katakanaRunLength < kMaxKatakanaGroupLength) {
|
|
uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
|
|
if (newSnlp < (uint32_t)bestSnlp.elementAti(j)) {
|
|
bestSnlp.setElementAt(newSnlp, j);
|
|
prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
|
|
}
|
|
}
|
|
}
|
|
is_prev_katakana = is_katakana;
|
|
}
|
|
utext_close(&fu);
|
|
|
|
// Start pushing the optimal offset index into t_boundary (t for tentative).
|
|
// prev[numCodePts] is guaranteed to be meaningful.
|
|
// We'll first push in the reverse order, i.e.,
|
|
// t_boundary[0] = numCodePts, and afterwards do a swap.
|
|
UVector32 t_boundary(numCodePts+1, status);
|
|
|
|
int32_t numBreaks = 0;
|
|
// No segmentation found, set boundary to end of range
|
|
if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
|
|
t_boundary.addElement(numCodePts, status);
|
|
numBreaks++;
|
|
} else {
|
|
for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
|
|
t_boundary.addElement(i, status);
|
|
numBreaks++;
|
|
}
|
|
U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
|
|
}
|
|
|
|
// Add a break for the start of the dictionary range if there is not one
|
|
// there already.
|
|
if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
|
|
t_boundary.addElement(0, status);
|
|
numBreaks++;
|
|
}
|
|
|
|
// Now that we're done, convert positions in t_boundary[] (indices in
|
|
// the normalized input string) back to indices in the original input UText
|
|
// while reversing t_boundary and pushing values to foundBreaks.
|
|
for (int32_t i = numBreaks-1; i >= 0; i--) {
|
|
int32_t cpPos = t_boundary.elementAti(i);
|
|
int32_t utextPos = inputMap ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
|
|
// Boundaries are added to foundBreaks output in ascending order.
|
|
U_ASSERT(foundBreaks.size() == 0 ||foundBreaks.peeki() < utextPos);
|
|
foundBreaks.push(utextPos, status);
|
|
}
|
|
|
|
delete inString;
|
|
delete inputMap;
|
|
return numBreaks;
|
|
}
|
|
#endif
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
|
|
|