scuffed-code/icu4c/source/i18n/smpdtfmt.cpp
2001-05-16 20:47:21 +00:00

1597 lines
59 KiB
C++

/*
*******************************************************************************
* Copyright (C) 1997-2001, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File SMPDTFMT.CPP
*
* Modification History:
*
* Date Name Description
* 02/19/97 aliu Converted from java.
* 03/31/97 aliu Modified extensively to work with 50 locales.
* 04/01/97 aliu Added support for centuries.
* 07/09/97 helena Made ParsePosition into a class.
* 07/21/98 stephen Added initializeDefaultCentury.
* Removed getZoneIndex (added in DateFormatSymbols)
* Removed subParseLong
* Removed chk
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 10/14/99 aliu Updated 2-digit year parsing so that only "00" thru
* "99" are recognized. {j28 4182066}
* 11/15/99 weiv Added support for week of year/day of week format
********************************************************************************
*/
#include "unicode/smpdtfmt.h"
#include "unicode/dtfmtsym.h"
#include "unicode/resbund.h"
#include "unicode/msgfmt.h"
#include "unicode/calendar.h"
#include "unicode/gregocal.h"
#include "unicode/timezone.h"
#include "unicode/decimfmt.h"
#include "unicode/dcfmtsym.h"
#include "unicode/unicode.h"
#include "mutex.h"
#include <float.h>
// *****************************************************************************
// class SimpleDateFormat
// *****************************************************************************
// For time zones that have no names, use strings GMT+minutes and
// GMT-minutes. For instance, in France the time zone is GMT+60.
// Also accepted are GMT+H:MM or GMT-H:MM.
const UChar SimpleDateFormat::fgGmt[] = {0x0047, 0x004D, 0x0054, 0x0000}; // "GMT"
const UChar SimpleDateFormat::fgGmtPlus[] = {0x0047, 0x004D, 0x0054, 0x002B, 0x0000}; // "GMT+"
const UChar SimpleDateFormat::fgGmtMinus[] = {0x0047, 0x004D, 0x0054, 0x002D, 0x0000}; // "GMT-"
// This is a pattern-of-last-resort used when we can't load a usable pattern out
// of a resource.
const UnicodeString SimpleDateFormat::fgDefaultPattern = UNICODE_STRING("yyMMdd hh:mm a", 14);
/**
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
const char *SimpleDateFormat::fgErasTag="Eras";
const char *SimpleDateFormat::fgMonthNamesTag="MonthNames";
const char *SimpleDateFormat::fgMonthAbbreviationsTag="MonthAbbreviations";
const char *SimpleDateFormat::fgDayNamesTag="DayNames";
const char *SimpleDateFormat::fgDayAbbreviationsTag="DayAbbreviations";
const char *SimpleDateFormat::fgAmPmMarkersTag="AmPmMarkers";
const char *SimpleDateFormat::fgDateTimePatternsTag="DateTimePatterns";
/**
* These are the tags we expect to see in time zone data resource bundle files
* associated with a locale.
*/
const char *SimpleDateFormat::fgZoneStringsTag="zoneStrings";
const char *SimpleDateFormat::fgLocalPatternCharsTag="localPatternChars";
char SimpleDateFormat::fgClassID = 0; // Value is irrelevant
/**
* This value of defaultCenturyStart indicates that the system default is to be
* used.
*/
const UDate SimpleDateFormat::fgSystemDefaultCentury = DBL_MIN;
const int32_t SimpleDateFormat::fgSystemDefaultCenturyYear = -1;
UDate SimpleDateFormat::fgSystemDefaultCenturyStart = SimpleDateFormat::fgSystemDefaultCentury;
int32_t SimpleDateFormat::fgSystemDefaultCenturyStartYear = SimpleDateFormat::fgSystemDefaultCenturyYear;
//----------------------------------------------------------------------
SimpleDateFormat::~SimpleDateFormat()
{
delete fSymbols;
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(UErrorCode& status)
: fSymbols(NULL),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
construct(kShort, (EStyle) (kShort + kDateOffset), Locale::getDefault(), status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
UErrorCode &status)
: fPattern(pattern),
fSymbols(new DateFormatSymbols(status)),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
initialize(Locale::getDefault(), status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const Locale& locale,
UErrorCode& status)
: fPattern(pattern),
fSymbols(new DateFormatSymbols(locale, status)),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
initialize(locale, status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
DateFormatSymbols* symbolsToAdopt,
UErrorCode& status)
: fPattern(pattern),
fSymbols(symbolsToAdopt),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
initialize(Locale::getDefault(), status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const UnicodeString& pattern,
const DateFormatSymbols& symbols,
UErrorCode& status)
: fPattern(pattern),
fSymbols(new DateFormatSymbols(symbols)),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
initialize(Locale::getDefault(), status);
}
//----------------------------------------------------------------------
// Not for public consumption; used by DateFormat
SimpleDateFormat::SimpleDateFormat(EStyle timeStyle,
EStyle dateStyle,
const Locale& locale,
UErrorCode& status)
: fSymbols(NULL),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
construct(timeStyle, dateStyle, locale, status);
}
//----------------------------------------------------------------------
/**
* Not for public consumption; used by DateFormat. This constructor
* never fails. If the resource data is not available, it uses the
* the last resort symbols.
*/
SimpleDateFormat::SimpleDateFormat(const Locale& locale,
UErrorCode& status)
: fPattern(fgDefaultPattern),
fSymbols(NULL),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
if (U_FAILURE(status)) return;
fSymbols = new DateFormatSymbols(locale, status);
if (U_FAILURE(status))
{
status = U_ZERO_ERROR;
delete fSymbols;
// This constructor doesn't fail; it uses last resort data
fSymbols = new DateFormatSymbols(status);
}
initialize(locale, status);
}
//----------------------------------------------------------------------
SimpleDateFormat::SimpleDateFormat(const SimpleDateFormat& other)
: DateFormat(other),
fSymbols(NULL),
fDefaultCenturyStart(fgSystemDefaultCentury),
fDefaultCenturyStartYear(fgSystemDefaultCenturyYear)
{
*this = other;
}
//----------------------------------------------------------------------
SimpleDateFormat& SimpleDateFormat::operator=(const SimpleDateFormat& other)
{
DateFormat::operator=(other);
delete fSymbols;
fSymbols = NULL;
if (other.fSymbols)
fSymbols = new DateFormatSymbols(*other.fSymbols);
fDefaultCenturyStart = other.fDefaultCenturyStart;
fDefaultCenturyStartYear = other.fDefaultCenturyStartYear;
fPattern = other.fPattern;
return *this;
}
//----------------------------------------------------------------------
Format*
SimpleDateFormat::clone() const
{
return new SimpleDateFormat(*this);
}
//----------------------------------------------------------------------
UBool
SimpleDateFormat::operator==(const Format& other) const
{
if (DateFormat::operator==(other) &&
other.getDynamicClassID() == getStaticClassID())
{
SimpleDateFormat* that = (SimpleDateFormat*)&other;
return (fPattern == that->fPattern &&
fSymbols != NULL && // Check for pathological object
that->fSymbols != NULL && // Check for pathological object
*fSymbols == *that->fSymbols &&
fDefaultCenturyStart == that->fDefaultCenturyStart);
}
return FALSE;
}
//----------------------------------------------------------------------
void SimpleDateFormat::construct(EStyle timeStyle,
EStyle dateStyle,
const Locale& locale,
UErrorCode& status)
{
// called by several constructors to load pattern data from the resources
if (U_FAILURE(status)) return;
// load up the DateTimePatters resource from the appropriate locale (throw
// an error if for some weird reason the resource is malformed)
ResourceBundle resources((char *)0, locale, status);
ResourceBundle dateTimePatterns = resources.get(fgDateTimePatternsTag, status);
if (U_FAILURE(status)) return;
if (dateTimePatterns.getSize() <= kDateTime)
{
status = U_INVALID_FORMAT_ERROR;
return;
}
// create a symbols object from the locale
fSymbols = new DateFormatSymbols(locale, status);
UnicodeString str;
// Move dateStyle from the range [0, 3] to [4, 7] if necessary
//if (dateStyle >= 0 && dateStyle < DATE_OFFSET) dateStyle = (EStyle)(dateStyle + DATE_OFFSET);
// if the pattern should include both date and time information, use the date/time
// pattern string as a guide to tell use how to glue together the appropriate date
// and time pattern strings. The actual gluing-together is handled by a convenience
// method on MessageFormat.
if ((timeStyle != kNone) &&
(dateStyle != kNone))
{
// Object[] dateTimeArgs = {
// dateTimePatterns[timeStyle], dateTimePatterns[dateStyle]
// };
// pattern = MessageFormat.format(dateTimePatterns[8], dateTimeArgs);
Formattable *timeDateArray = new Formattable[2];
//timeDateArray[0].setString(UnicodeString(dateTimePatterns[timeStyle]));
//timeDateArray[1].setString(UnicodeString(dateTimePatterns[dateStyle]));
timeDateArray[0].setString(dateTimePatterns.getStringEx(timeStyle, status));
timeDateArray[1].setString(dateTimePatterns.getStringEx(dateStyle, status));
//MessageFormat::format(UnicodeString(dateTimePatterns[kDateTime]), timeDateArray, 2, fPattern, status);
MessageFormat::format(dateTimePatterns.getStringEx(kDateTime, status), timeDateArray, 2, fPattern, status);
delete [] timeDateArray;
}
// if the pattern includes just time data or just date date, load the appropriate
// pattern string from the resources
//else if (timeStyle != kNone) fPattern = UnicodeString(dateTimePatterns[timeStyle]);
//else if (dateStyle != kNone) fPattern = UnicodeString(dateTimePatterns[dateStyle]);
else if (timeStyle != kNone) fPattern = dateTimePatterns.getStringEx(timeStyle, status);
else if (dateStyle != kNone) fPattern = dateTimePatterns.getStringEx(dateStyle, status);
// and if it includes _neither_, that's an error
else status = U_INVALID_FORMAT_ERROR;
// finally, finish initializing by creating a Calendar and a NumberFormat
initialize(locale, status);
}
//----------------------------------------------------------------------
void
SimpleDateFormat::initialize(const Locale& locale,
UErrorCode& status)
{
if (U_FAILURE(status)) return;
// {sfb} should this be here?
if (fSymbols->fZoneStringsColCount < 1)
{
status = U_INVALID_FORMAT_ERROR; // Check for bogus locale data
return;
}
// We don't need to check that the row count is >= 1, since all 2d arrays have at
// least one row
fCalendar = Calendar::createInstance(TimeZone::createDefault(), locale, status);
fNumberFormat = NumberFormat::createInstance(locale, status);
if (fNumberFormat != NULL && U_SUCCESS(status))
{
// no matter what the locale's default number format looked like, we want
// to modify it so that it doesn't use thousands separators, doesn't always
// show the decimal point, and recognizes integers only when parsing
fNumberFormat->setGroupingUsed(FALSE);
if (fNumberFormat->getDynamicClassID() == DecimalFormat::getStaticClassID())
((DecimalFormat*)fNumberFormat)->setDecimalSeparatorAlwaysShown(FALSE);
fNumberFormat->setParseIntegerOnly(TRUE);
fNumberFormat->setMinimumFractionDigits(0); // To prevent "Jan 1.00, 1997.00"
initializeDefaultCentury();
}
else if (U_SUCCESS(status))
{
status = U_MISSING_RESOURCE_ERROR;
}
}
/* Initialize the fields we use to disambiguate ambiguous years. Separate
* so we can call it from readObject().
*/
void SimpleDateFormat::initializeDefaultCentury()
{
fDefaultCenturyStart = internalGetDefaultCenturyStart();
fDefaultCenturyStartYear = internalGetDefaultCenturyStartYear();
UErrorCode status = U_ZERO_ERROR;
fCalendar->setTime(fDefaultCenturyStart, status);
// {sfb} throw away error
}
/* Define one-century window into which to disambiguate dates using
* two-digit years. Make public in JDK 1.2.
*/
void SimpleDateFormat::parseAmbiguousDatesAsAfter(UDate startDate, UErrorCode& status)
{
if(U_FAILURE(status))
return;
fCalendar->setTime(startDate, status);
if(U_SUCCESS(status)) {
fDefaultCenturyStart = startDate;
fDefaultCenturyStartYear = fCalendar->get(Calendar::YEAR, status);
}
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::format(UDate date, UnicodeString& toAppendTo, FieldPosition& pos) const
{
if (fCalendar == 0) {
return toAppendTo;
}
UErrorCode status = U_ZERO_ERROR;
pos.setBeginIndex(0);
pos.setEndIndex(0);
// load up our Calendar with the date/time we're formatting (the subroutines of this
// function pick it up from there, since they need it anyway to split the value
// into fields)
fCalendar->setTime(date, status);
UBool inQuote = FALSE;
UChar prevCh = 0;
int32_t count = 0;
UnicodeString str;
// loop through the pattern string character by character
for (int32_t i = 0; i < fPattern.length() && U_SUCCESS(status); ++i) {
UChar ch = fPattern[i];
// Use subFormat() to format a repeated pattern character
// when a different pattern or non-pattern character is seen
if (ch != prevCh && count > 0) {
toAppendTo += subFormat(str, prevCh, count, toAppendTo.length(), pos, status);
count = 0;
}
if (ch == 0x0027 /*'\''*/) {
// Consecutive single quotes are a single quote literal,
// either outside of quotes or between quotes
if ((i+1) < fPattern.length() && fPattern[i+1] == 0x0027 /*'\''*/) {
toAppendTo += (UChar)0x0027 /*'\''*/;
++i;
} else {
inQuote = ! inQuote;
}
}
else if ( ! inQuote && ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/)
|| (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))) {
// ch is a date-time pattern character to be interpreted
// by subFormat(); count the number of times it is repeated
prevCh = ch;
++count;
}
else {
// Append quoted characters and unquoted non-pattern characters
toAppendTo += ch;
}
}
// Format the last item in the pattern, if any
if (count > 0) {
toAppendTo += subFormat(str, prevCh, count, toAppendTo.length(), pos, status);
}
// and if something failed (e.g., an invalid format character), reset our FieldPosition
// to (0, 0) to show that
// {sfb} look at this later- are these being set correctly?
if (U_FAILURE(status)) {
pos.setBeginIndex(0);
pos.setEndIndex(0);
}
return toAppendTo;
}
UnicodeString&
SimpleDateFormat::format(const Formattable& obj,
UnicodeString& toAppendTo,
FieldPosition& pos,
UErrorCode& status) const
{
// this is just here to get around the hiding problem
// (the previous format() override would hide the version of
// format() on DateFormat that this function correspond to, so we
// have to redefine it here)
return DateFormat::format(obj, toAppendTo, pos, status);
}
//----------------------------------------------------------------------
// Map index into pattern character string to Calendar field number.
const Calendar::EDateFields
SimpleDateFormat::fgPatternIndexToCalendarField[] =
{
Calendar::ERA, Calendar::YEAR, Calendar::MONTH, Calendar::DATE,
Calendar::HOUR_OF_DAY, Calendar::HOUR_OF_DAY, Calendar::MINUTE,
Calendar::SECOND, Calendar::MILLISECOND, Calendar::DAY_OF_WEEK,
Calendar::DAY_OF_YEAR, Calendar::DAY_OF_WEEK_IN_MONTH,
Calendar::WEEK_OF_YEAR, Calendar::WEEK_OF_MONTH,
Calendar::AM_PM, Calendar::HOUR, Calendar::HOUR, Calendar::ZONE_OFFSET,
Calendar::YEAR_WOY, Calendar::DOW_LOCAL
};
// Map index into pattern character string to DateFormat field number
const DateFormat::EField
SimpleDateFormat::fgPatternIndexToDateFormatField[] = {
DateFormat::kEraField, DateFormat::kYearField, DateFormat::kMonthField,
DateFormat::kDateField, DateFormat::kHourOfDay1Field,
DateFormat::kHourOfDay0Field, DateFormat::kMinuteField,
DateFormat::kSecondField, DateFormat::kMillisecondField,
DateFormat::kDayOfWeekField, DateFormat::kDayOfYearField,
DateFormat::kDayOfWeekInMonthField, DateFormat::kWeekOfYearField,
DateFormat::kWeekOfMonthField, DateFormat::kAmPmField,
DateFormat::kHour1Field, DateFormat::kHour0Field,
DateFormat::kTimezoneField, DateFormat::kYearWOYField,
DateFormat::kDOWLocalField
};
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::subFormat(UnicodeString& result,
UChar ch,
int32_t count,
int32_t beginOffset,
FieldPosition& pos,
UErrorCode& status) const
{
// this function gets called by format() to produce the appropriate substitution
// text for an individual pattern symbol (e.g., "HH" or "yyyy")
EField patternCharIndex = (EField) -1;
int32_t maxIntCount = 10;
UnicodeString str; // Scratch
result.remove();
// if the pattern character is unrecognized, signal an error and dump out
if ((patternCharIndex = (EField)DateFormatSymbols::fgPatternChars.indexOf(ch)) == (EField)-1)
{
status = U_INVALID_FORMAT_ERROR;
return result;
}
Calendar::EDateFields field = fgPatternIndexToCalendarField[patternCharIndex];
int32_t value = fCalendar->get(field, status);
if (U_FAILURE(status)) return result;
switch (patternCharIndex) {
// for any "G" symbol, write out the appropriate era string
case kEraField:
result = fSymbols->fEras[value];
break;
// for "yyyy", write out the whole year; for "yy", write out the last 2 digits
case kYearField:
case kYearWOYField:
if (count >= 4)
zeroPaddingNumber(result, value, 4, maxIntCount);
else
zeroPaddingNumber(result, value, 2, 2);
break;
// for "MMMM", write out the whole month name, for "MMM", write out the month
// abbreviation, for "M" or "MM", write out the month as a number with the
// appropriate number of digits
case kMonthField:
if (count >= 4)
result = fSymbols->fMonths[value];
else if (count == 3)
result = fSymbols->fShortMonths[value];
else
zeroPaddingNumber(result, value + 1, count, maxIntCount);
break;
// for "k" and "kk", write out the hour, adjusting midnight to appear as "24"
case kHourOfDay1Field:
if (value == 0)
zeroPaddingNumber(result, fCalendar->getMaximum(Calendar::HOUR_OF_DAY) + 1, count, maxIntCount);
else
zeroPaddingNumber(result, value, count, maxIntCount);
break;
// for "SS" and "S", we want to truncate digits so that you still see the MOST
// significant digits rather than the LEAST (as is the case with the year)
case kMillisecondField:
if (count > 3)
count = 3;
else if (count == 2)
value = value / 10;
else if (count == 1)
value = value / 100;
zeroPaddingNumber(result, value, count, maxIntCount);
break;
// for "EEEE", write out the day-of-the-week name; otherwise, use the abbreviation
case kDayOfWeekField:
if (count >= 4)
result = fSymbols->fWeekdays[value];
else
result = fSymbols->fShortWeekdays[value];
break;
// for and "a" symbol, write out the whole AM/PM string
case kAmPmField:
result = fSymbols->fAmPms[value];
break;
// for "h" and "hh", write out the hour, adjusting noon and midnight to show up
// as "12"
case kHour1Field:
if (value == 0)
zeroPaddingNumber(result, fCalendar->getLeastMaximum(Calendar::HOUR) + 1, count, maxIntCount);
else
zeroPaddingNumber(result, value, count, maxIntCount);
break;
// for the "z" symbols, we have to check our time zone data first. If we have a
// localized name for the time zone, then "zzzz" is the whole name and anything
// shorter is the abbreviation (we also have to check for daylight savings time
// since the name will be different). If we don't have a localized time zone name,
// then the time zone shows up as "GMT+hh:mm" or "GMT-hh:mm" (where "hh:mm" is the
// offset from GMT) regardless of how many z's were in the pattern symbol
case kTimezoneField: {
int32_t zoneIndex = fSymbols->getZoneIndex(fCalendar->getTimeZone().getID(str));
if (zoneIndex == -1) {
UnicodeString zoneString;
value = fCalendar->get(Calendar::ZONE_OFFSET, status) +
fCalendar->get(Calendar::DST_OFFSET, status);
if (value < 0) {
zoneString += fgGmtMinus;
value = -value; // suppress the '-' sign for text display.
}
else
zoneString += fgGmtPlus;
zoneString += zeroPaddingNumber(str, (int32_t)(value/U_MILLIS_PER_HOUR), 2, 2);
zoneString += (UChar)0x003A /*':'*/;
zoneString += zeroPaddingNumber(str, (int32_t)((value%U_MILLIS_PER_HOUR)/U_MILLIS_PER_MINUTE), 2, 2);
result = zoneString;
}
else if (fCalendar->get(Calendar::DST_OFFSET, status) != 0) {
if (count >= 4)
result = fSymbols->fZoneStrings[zoneIndex][3];
else
result = fSymbols->fZoneStrings[zoneIndex][4];
}
else {
if (count >= 4)
result = fSymbols->fZoneStrings[zoneIndex][1];
else
result = fSymbols->fZoneStrings[zoneIndex][2];
}
}
break;
// all of the other pattern symbols can be formatted as simple numbers with
// appropriate zero padding
default:
// case kDateField:
// case kHourOfDay0Field:
// case kMinuteField:
// case kSecondField:
// case kDayOfYearField:
// case kDayOfWeekInMonthField:
// case kWeekOfYearField:
// case kWeekOfMonthField:
// case kHour0Field:
// case kDOWLocalField:
zeroPaddingNumber(result, value, count, maxIntCount);
break;
}
// if the field we're formatting is the one the FieldPosition says it's interested
// in, fill in the FieldPosition with this field's positions
if (pos.getField() == fgPatternIndexToDateFormatField[patternCharIndex]) {
if (pos.getBeginIndex() == 0 && pos.getEndIndex() == 0) {
pos.setBeginIndex(beginOffset);
pos.setEndIndex(beginOffset + result.length());
}
}
return result;
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::zeroPaddingNumber(UnicodeString& result, int32_t value, int32_t minDigits, int32_t maxDigits) const
{
FieldPosition pos(0);
result.remove();
fNumberFormat->setMinimumIntegerDigits(minDigits);
fNumberFormat->setMaximumIntegerDigits(maxDigits);
return fNumberFormat->format(value, result, pos); // 3rd arg is there to speed up processing
}
//----------------------------------------------------------------------
// {sfb} removed
/*
// this function will dump output to the console on a debug build when there's a parse error
#ifdef _DEBUG
void chk(ParsePosition& val, UChar ch, ParsePosition& start, int32_t count)
{
if (val.getIndex() < 0)
{
cout << "[Parse failure on '" << (char)ch << "' x " << dec << count << " @ " << start.getIndex() << ']';
}
}
#else
inline void chk(ParsePosition& val, UChar ch, ParsePosition& start, int32_t count)
{
}
#endif
inline Date
parseFailureResult(ParsePosition& pos, ParsePosition& oldStart, ParsePosition& failurePos)
{
// Note: The C++ version currently supports the notion of returning zero
// with a non-zero parse position, but only if this format is lenient.
// The returned position in this case is the first un-parseable character.
// This is useful, but is not present in the Java version, and causes a
// DateFormat test to fail.
// For now, I am removing this function. It can be restored later.
// if (!isLenient()) pos = oldStart;
// else { pos = failurePos.getIndex(); if (pos.getIndex() < 0) pos = -pos.getIndex(); };
pos = oldStart;
return 0;
}
*/
UDate
SimpleDateFormat::parse(const UnicodeString& text, ParsePosition& pos) const
{
int32_t start = pos.getIndex();
int32_t oldStart = start;
UBool ambiguousYear[] = { FALSE };
fCalendar->clear();
UBool inQuote = FALSE;
UChar prevCh = 0;
int32_t count = 0;
int32_t interQuoteCount = 1; // Number of chars between quotes
// loop through the pattern string character by character, using it to control how
// we match characters in the input
for (int32_t i = 0; i < fPattern.length();++i) {
UChar ch = fPattern[i];
// if we're inside a quoted string, match characters exactly until we hit
// another single quote (two single quotes in a row match one single quote
// in the input)
if (inQuote)
{
if (ch == 0x0027 /*'\''*/)
{
// ends with 2nd single quote
inQuote = FALSE;
// two consecutive quotes outside a quote means we have
// a quote literal we need to match.
if (count == 0)
{
if(start > text.length() || ch != text[start])
{
pos.setIndex(oldStart);
pos.setErrorIndex(start);
// {sfb} what is the correct Date for failure?
return 0;
}
++start;
}
count = 0;
interQuoteCount = 0;
}
else
{
// pattern uses text following from 1st single quote.
if (start >= text.length() || ch != text[start]) {
// Check for cases like: 'at' in pattern vs "xt"
// in time text, where 'a' doesn't match with 'x'.
// If fail to match, return null.
pos.setIndex(oldStart); // left unchanged
pos.setErrorIndex(start);
// {sfb} what is correct Date for failure?
return 0;
}
++count;
++start;
}
}
// if we're not inside a quoted string...
else {
// ...a quote mark puts us into a quoted string (and we parse any pending
// pattern symbols)
if (ch == 0x0027 /*'\''*/) {
inQuote = TRUE;
if (count > 0)
{
int32_t startOffset = start;
start = subParse(text, start, prevCh, count, FALSE, ambiguousYear);
if ( start < 0 ) {
pos.setErrorIndex(startOffset);
pos.setIndex(oldStart);
// {sfb} correct Date
return 0;
}
count = 0;
}
if (interQuoteCount == 0)
{
// This indicates two consecutive quotes inside a quote,
// for example, 'o''clock'. We need to parse this as
// representing a single quote within the quote.
int32_t startOffset = start;
if (start >= text.length() || ch != text[start])
{
pos.setErrorIndex(startOffset);
pos.setIndex(oldStart);
// {sfb} correct Date
return 0;
}
++start;
count = 1; // Make it look like we never left
}
}
// if we're on a letter, collect copies of the same letter to determine
// the whole parse symbol. when we hit a different character, parse the
// input based on the resulting symbol
else if ((ch >= 0x0061 /*'a'*/ && ch <= 0x007A /*'z'*/)
|| (ch >= 0x0041 /*'A'*/ && ch <= 0x005A /*'Z'*/))
{
// ch is a date-time pattern
if (ch != prevCh && count > 0) // e.g., yyyyMMdd
{
int32_t startOffset = start;
// This is the only case where we pass in 'true' for
// obeyCount. That's because the next field directly
// abuts this one, so we have to use the count to know when
// to stop parsing. [LIU]
start = subParse(text, start, prevCh, count, TRUE, ambiguousYear);
if (start < 0) {
pos.setErrorIndex(startOffset);
pos.setIndex(oldStart);
// {sfb} correct Date
return 0;
}
prevCh = ch;
count = 1;
}
else {
if (ch != prevCh)
prevCh = ch;
count++;
}
}
// if we're on a non-letter, parse based on any pending pattern symbols
else if (count > 0)
{
// handle cases like: MM-dd-yy, HH:mm:ss, or yyyy MM dd,
// where ch = '-', ':', or ' ', repectively.
int32_t startOffset = start;
start = subParse( text, start, prevCh, count, FALSE, ambiguousYear);
if ( start < 0 ) {
pos.setErrorIndex(startOffset);
pos.setIndex(oldStart);
// {sfb} correct Date?
return 0;
}
if (start >= text.length() || ch != text[start]) {
// handle cases like: 'MMMM dd' in pattern vs. "janx20"
// in time text, where ' ' doesn't match with 'x'.
pos.setErrorIndex(start);
pos.setIndex(oldStart);
// {sfb} correct Date?
return 0;
}
start++;
count = 0;
prevCh = 0;
}
// otherwise, match characters exactly
else
{
if (start >= text.length() || ch != text[start]) {
// handle cases like: 'MMMM dd' in pattern vs.
// "jan,,,20" in time text, where " " doesn't
// match with ",,,".
pos.setErrorIndex(start);
pos.setIndex(oldStart);
// {sfb} correct Date?
return 0;
}
start++;
}
++interQuoteCount;
}
}
// if we still have a pending pattern symbol after we're done looping through
// characters in the pattern string, parse the input based on the final pending
// pattern symbol
if (count > 0)
{
int32_t startOffset = start;
start = subParse(text, start, prevCh, count, FALSE, ambiguousYear);
if ( start < 0 ) {
pos.setIndex(oldStart);
pos.setErrorIndex(startOffset);
// {sfb} correct Date?>
return 0;
}
}
// At this point the fields of Calendar have been set. Calendar
// will fill in default values for missing fields when the time
// is computed.
pos.setIndex(start);
// This part is a problem: When we call parsedDate.after, we compute the time.
// Take the date April 3 2004 at 2:30 am. When this is first set up, the year
// will be wrong if we're parsing a 2-digit year pattern. It will be 1904.
// April 3 1904 is a Sunday (unlike 2004) so it is the DST onset day. 2:30 am
// is therefore an "impossible" time, since the time goes from 1:59 to 3:00 am
// on that day. It is therefore parsed out to fields as 3:30 am. Then we
// add 100 years, and get April 3 2004 at 3:30 am. Note that April 3 2004 is
// a Saturday, so it can have a 2:30 am -- and it should. [LIU]
/*
UDate parsedDate = calendar.getTime();
if( ambiguousYear[0] && !parsedDate.after(fDefaultCenturyStart) ) {
calendar.add(Calendar.YEAR, 100);
parsedDate = calendar.getTime();
}
*/
// Because of the above condition, save off the fields in case we need to readjust.
// The procedure we use here is not particularly efficient, but there is no other
// way to do this given the API restrictions present in Calendar. We minimize
// inefficiency by only performing this computation when it might apply, that is,
// when the two-digit year is equal to the start year, and thus might fall at the
// front or the back of the default century. This only works because we adjust
// the year correctly to start with in other cases -- see subParse().
UErrorCode status = U_ZERO_ERROR;
UDate parsedDate;
if (ambiguousYear[0]) // If this is true then the two-digit year == the default start year
{
// We need a copy of the fields, and we need to avoid triggering a call to
// complete(), which will recalculate the fields. Since we can't access
// the fields[] array in Calendar, we clone the entire object. This will
// stop working if Calendar.clone() is ever rewritten to call complete().
Calendar *savedCalendar = fCalendar->clone();
parsedDate = fCalendar->getTime(status);
// {sfb} check internalGetDefaultCenturyStart
if (parsedDate < internalGetDefaultCenturyStart())
{
// We can't use add here because that does a complete() first.
savedCalendar->set(Calendar::YEAR, internalGetDefaultCenturyStartYear() + 100);
parsedDate = savedCalendar->getTime(status);
}
delete savedCalendar;
}
else parsedDate = fCalendar->getTime(status);
// If any Calendar calls failed, we pretend that we
// couldn't parse the string, when in reality this isn't quite accurate--
// we did parse it; the Calendar calls just failed.
if (U_FAILURE(status)) {
pos.setErrorIndex(start);
pos.setIndex(oldStart);
return 0;
}
return parsedDate;
}
UDate
SimpleDateFormat::parse(const UnicodeString& text, UErrorCode& status) const
{
// redefined here because the other parse() function hides this function's
// ounterpart on DateFormat
return DateFormat::parse(text, status);
}
//----------------------------------------------------------------------
int32_t SimpleDateFormat::matchString(const UnicodeString& text,
int32_t start,
Calendar::EDateFields field,
const UnicodeString* data,
int32_t dataCount) const
{
int32_t i = 0;
int32_t count = dataCount;
if (field == Calendar::DAY_OF_WEEK) i = 1;
// There may be multiple strings in the data[] array which begin with
// the same prefix (e.g., Cerven and Cervenec (June and July) in Czech).
// We keep track of the longest match, and return that. Note that this
// unfortunately requires us to test all array elements.
int32_t bestMatchLength = 0, bestMatch = -1;
// {sfb} kludge to support case-insensitive comparison
UnicodeString lcaseText(text);
lcaseText.toLower();
for (; i < count; ++i)
{
int32_t length = data[i].length();
// Always compare if we have no match yet; otherwise only compare
// against potentially better matches (longer strings).
UnicodeString lcase(data[i]);
lcase.toLower();
if (length > bestMatchLength && (lcaseText.compareBetween(start, start + length, lcase, 0, length)) == 0)
{
bestMatch = i;
bestMatchLength = length;
}
}
if (bestMatch >= 0)
{
fCalendar->set(field, bestMatch);
return start + bestMatchLength;
}
return -start;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::set2DigitYearStart(UDate d, UErrorCode& status)
{
parseAmbiguousDatesAsAfter(d, status);
}
/**
* Parse the given text, at the given position, as a numeric value, using
* this objects fNumberFormat. Return the corresponding long value in the
* fill-in parameter 'value'. If the parse fails, this method leaves pos
* unchanged and returns FALSE; otherwise it advances pos and
* returns TRUE.
*/
// {sfb} removed
/*
UBool
SimpleDateFormat::subParseLong(const UnicodeString& text, ParsePosition& pos, int32_t& value) const
{
Formattable parseResult;
ParsePosition posSave = pos;
fNumberFormat->parse(text, parseResult, pos);
if (pos != posSave && parseResult.getType() == Formattable::kLong)
{
value = parseResult.getLong();
return TRUE;
}
pos = posSave;
return FALSE;
}
*/
/**
* Private member function that converts the parsed date strings into
* timeFields. Returns -start (for ParsePosition) if failed.
* @param text the time text to be parsed.
* @param start where to start parsing.
* @param ch the pattern character for the date field text to be parsed.
* @param count the count of a pattern character.
* @return the new start position if matching succeeded; a negative number
* indicating matching failure, otherwise.
*/
int32_t SimpleDateFormat::subParse(const UnicodeString& text, int32_t& start, UChar ch, int32_t count,
UBool obeyCount, UBool ambiguousYear[]) const
{
Formattable number;
int32_t value = 0;
int32_t i;
ParsePosition pos(0);
int32_t patternCharIndex = -1;
if ((patternCharIndex = DateFormatSymbols::fgPatternChars.indexOf(ch)) == -1)
return -start;
pos.setIndex(start);
Calendar::EDateFields field = fgPatternIndexToCalendarField[patternCharIndex];
// If there are any spaces here, skip over them. If we hit the end
// of the string, then fail.
for (;;) {
if (pos.getIndex() >= text.length())
return -start;
UChar c = text[pos.getIndex()];
if (c != 0x0020 /*' '*/ && c != 0x0009 /*'\t'*/)
break;
pos.setIndex(pos.getIndex() + 1);
}
// We handle a few special cases here where we need to parse
// a number value. We handle further, more generic cases below. We need
// to handle some of them here because some fields require extra processing on
// the parsed value.
if (patternCharIndex == kHourOfDay1Field /*HOUR_OF_DAY1_FIELD*/ ||
patternCharIndex == kHour1Field /*HOUR1_FIELD*/ ||
(patternCharIndex == kMonthField /*MONTH_FIELD*/ && count <= 2) ||
patternCharIndex == kYearField /*YEAR*/ ||
patternCharIndex == kYearWOYField)
{
int32_t parseStart = pos.getIndex(); // WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
// It would be good to unify this with the obeyCount logic below,
// but that's going to be difficult.
if (obeyCount)
{
if ((start+count) > text.length())
return -start;
UnicodeString temp;
text.extractBetween(0, start + count, temp);
fNumberFormat->parse(temp, number, pos);
}
else
fNumberFormat->parse(text, number, pos);
if (pos.getIndex() == parseStart)
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
return -start;
value = number.getLong();
}
switch (patternCharIndex) {
case kEraField:
return matchString(text, start, Calendar::ERA, fSymbols->fEras, fSymbols->fErasCount);
case kYearField:
// If there are 3 or more YEAR pattern characters, this indicates
// that the year value is to be treated literally, without any
// two-digit year adjustments (e.g., from "01" to 2001). Otherwise
// we made adjustments to place the 2-digit year in the proper
// century, for parsed strings from "00" to "99". Any other string
// is treated literally: "2250", "-1", "1", "002".
if (count <= 2 && (pos.getIndex() - start) == 2
&& Unicode::isDigit(text.charAt(start))
&& Unicode::isDigit(text.charAt(start+1)))
{
// Assume for example that the defaultCenturyStart is 6/18/1903.
// This means that two-digit years will be forced into the range
// 6/18/1903 to 6/17/2003. As a result, years 00, 01, and 02
// correspond to 2000, 2001, and 2002. Years 04, 05, etc. correspond
// to 1904, 1905, etc. If the year is 03, then it is 2003 if the
// other fields specify a date before 6/18, or 1903 if they specify a
// date afterwards. As a result, 03 is an ambiguous year. All other
// two-digit years are unambiguous.
int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100;
ambiguousYear[0] = (value == ambiguousTwoDigitYear);
value += (fDefaultCenturyStartYear/100)*100 +
(value < ambiguousTwoDigitYear ? 100 : 0);
}
fCalendar->set(Calendar::YEAR, value);
return pos.getIndex();
case kYearWOYField:
// Comment is the same as for kYearFiels - look above
if (count <= 2 && (pos.getIndex() - start) == 2
&& Unicode::isDigit(text.charAt(start))
&& Unicode::isDigit(text.charAt(start+1)))
{
int32_t ambiguousTwoDigitYear = fDefaultCenturyStartYear % 100;
ambiguousYear[0] = (value == ambiguousTwoDigitYear);
value += (fDefaultCenturyStartYear/100)*100 +
(value < ambiguousTwoDigitYear ? 100 : 0);
}
fCalendar->set(Calendar::YEAR_WOY, value);
return pos.getIndex();
case kMonthField:
if (count <= 2) // i.e., M or MM.
{
// Don't want to parse the month if it is a string
// while pattern uses numeric style: M or MM.
// [We computed 'value' above.]
fCalendar->set(Calendar::MONTH, value - 1);
return pos.getIndex();
}
else
{
// count >= 3 // i.e., MMM or MMMM
// Want to be able to parse both short and long forms.
// Try count == 4 first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, Calendar::MONTH,
fSymbols->fMonths, fSymbols->fMonthsCount)) > 0)
return newStart;
else // count == 4 failed, now try count == 3
return matchString(text, start, Calendar::MONTH,
fSymbols->fShortMonths, fSymbols->fShortMonthsCount);
}
case kHourOfDay1Field:
// [We computed 'value' above.]
if (value == fCalendar->getMaximum(Calendar::HOUR_OF_DAY) + 1)
value = 0;
fCalendar->set(Calendar::HOUR_OF_DAY, value);
return pos.getIndex();
case kDayOfWeekField:
{
// Want to be able to parse both short and long forms.
// Try count == 4 (DDDD) first:
int32_t newStart = 0;
if ((newStart = matchString(text, start, Calendar::DAY_OF_WEEK,
fSymbols->fWeekdays, fSymbols->fWeekdaysCount)) > 0)
return newStart;
else // DDDD failed, now try DDD
return matchString(text, start, Calendar::DAY_OF_WEEK,
fSymbols->fShortWeekdays, fSymbols->fShortWeekdaysCount);
}
case kAmPmField:
return matchString(text, start, Calendar::AM_PM, fSymbols->fAmPms, fSymbols->fAmPmsCount);
case kHour1Field:
// [We computed 'value' above.]
if (value == fCalendar->getLeastMaximum(Calendar::HOUR)+1)
value = 0;
fCalendar->set(Calendar::HOUR, value);
return pos.getIndex();
case kTimezoneField:
{
// First try to parse generic forms such as GMT-07:00. Do this first
// in case localized DateFormatZoneData contains the string "GMT"
// for a zone; in that case, we don't want to match the first three
// characters of GMT+/-HH:MM etc.
UnicodeString lcaseText(text);
UnicodeString lcaseGMT(fgGmt);
int32_t sign = 0;
int32_t offset;
int32_t gmtLen = lcaseGMT.length();
// For time zones that have no known names, look for strings
// of the form:
// GMT[+-]hours:minutes or
// GMT[+-]hhmm or
// GMT.
// {sfb} kludge for case-insensitive compare
lcaseText.toLower();
lcaseGMT.toLower();
if ((text.length() - start) > gmtLen &&
(lcaseText.compare(start, gmtLen, lcaseGMT, 0, gmtLen)) == 0)
{
fCalendar->set(Calendar::DST_OFFSET, 0);
pos.setIndex(start + gmtLen);
if( text[pos.getIndex()] == 0x002B /*'+'*/ )
sign = 1;
else if( text[pos.getIndex()] == 0x002D /*'-'*/ )
sign = -1;
else {
fCalendar->set(Calendar::ZONE_OFFSET, 0 );
return pos.getIndex();
}
// Look for hours:minutes or hhmm.
pos.setIndex(pos.getIndex() + 1);
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
int32_t parseStart = pos.getIndex();
Formattable tzNumber;
fNumberFormat->parse(text, tzNumber, pos);
if( pos.getIndex() == parseStart) {
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
return -start;
}
if( text[pos.getIndex()] == 0x003A /*':'*/ ) {
// This is the hours:minutes case
offset = tzNumber.getLong() * 60;
pos.setIndex(pos.getIndex() + 1);
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
parseStart = pos.getIndex();
fNumberFormat->parse(text, tzNumber, pos);
if( pos.getIndex() == parseStart) {
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
return -start;
}
offset += tzNumber.getLong();
}
else {
// This is the hhmm case.
offset = tzNumber.getLong();
if( offset < 24 )
offset *= 60;
else
offset = offset % 100 + offset / 100 * 60;
}
// Fall through for final processing below of 'offset' and 'sign'.
}
else {
// At this point, check for named time zones by looking through
// the locale data from the DateFormatZoneData strings.
// Want to be able to parse both short and long forms.
for (i = 0; i < fSymbols->fZoneStringsRowCount; i++)
{
// Checking long and short zones [1 & 2],
// and long and short daylight [3 & 4].
int32_t j = 1;
// {sfb} kludge for case-insensitive compare
UnicodeString s1(text);
s1.toLower();
UnicodeString s2;
for (; j <= 4; ++j)
{
s2 = fSymbols->fZoneStrings[i][j];
s2.toLower();
if ((s1.compare(start, s2.length(), s2, 0, s2.length())) == 0)
break;
}
if (j <= 4)
{
TimeZone *tz = TimeZone::createTimeZone(fSymbols->fZoneStrings[i][0]);
fCalendar->set(Calendar::ZONE_OFFSET, tz->getRawOffset());
// Must call set() with something -- TODO -- Fix this to
// use the correct DST SAVINGS for the zone.
delete tz;
fCalendar->set(Calendar::DST_OFFSET, j >= 3 ? U_MILLIS_PER_HOUR : 0);
return (start + fSymbols->fZoneStrings[i][j].length());
}
}
// As a last resort, look for numeric timezones of the form
// [+-]hhmm as specified by RFC 822. This code is actually
// a little more permissive than RFC 822. It will try to do
// its best with numbers that aren't strictly 4 digits long.
UErrorCode status = U_ZERO_ERROR;
DecimalFormat *fmt = new DecimalFormat("+####;-####", status);
if(U_FAILURE(status))
return -start;
fmt->setParseIntegerOnly(TRUE);
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
int32_t parseStart = pos.getIndex();
Formattable tzNumber;
fmt->parse( text, tzNumber, pos );
if( pos.getIndex() == parseStart) {
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
return -start; // Wasn't actually a number.
}
offset = tzNumber.getLong();
sign = 1;
if( offset < 0 ) {
sign = -1;
offset = -offset;
}
if( offset < 24 )
offset = offset * 60;
else
offset = offset % 100 + offset / 100 * 60;
// Fall through for final processing below of 'offset' and 'sign'.
}
// Do the final processing for both of the above cases. We only
// arrive here if the form GMT+/-... or an RFC 822 form was seen.
if (sign != 0)
{
offset *= U_MILLIS_PER_MINUTE * sign;
if (fCalendar->getTimeZone().useDaylightTime())
{
fCalendar->set(Calendar::DST_OFFSET, U_MILLIS_PER_HOUR);
offset -= U_MILLIS_PER_HOUR;
}
fCalendar->set(Calendar::ZONE_OFFSET, offset);
return pos.getIndex();
}
// All efforts to parse a zone failed.
return -start;
}
default:
// case 3: // 'd' - DATE
// case 5: // 'H' - HOUR_OF_DAY:0-based. eg, 23:59 + 1 hour =>> 00:59
// case 6: // 'm' - MINUTE
// case 7: // 's' - SECOND
// case 8: // 'S' - MILLISECOND
// case 10: // 'D' - DAY_OF_YEAR
// case 11: // 'F' - DAY_OF_WEEK_IN_MONTH
// case 12: // 'w' - WEEK_OF_YEAR
// case 13: // 'W' - WEEK_OF_MONTH
// case 16: // 'K' - HOUR: 0-based. eg, 11PM + 1 hour =>> 0 AM
// 'e' - DOW_LOCAL
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
int32_t parseStart = pos.getIndex();
// Handle "generic" fields
if (obeyCount)
{
if ((start+count) > text.length())
return -start;
UnicodeString s;
// {sfb} old code had extract, make sure it works
text.extractBetween(0, start + count, s);
fNumberFormat->parse(s, number, pos);
}
else
fNumberFormat->parse(text, number, pos);
if (pos.getIndex() != parseStart) {
// WORK AROUND BUG IN NUMBER FORMAT IN 1.2B3
fCalendar->set(field, number.getLong());
return pos.getIndex();
}
return -start;
}
}
//----------------------------------------------------------------------
void SimpleDateFormat::translatePattern(const UnicodeString& originalPattern,
UnicodeString& translatedPattern,
const UnicodeString& from,
const UnicodeString& to,
UErrorCode& status)
{
// run through the pattern and convert any pattern symbols from the version
// in "from" to the corresponding character ion "to". This code takes
// quoted strings into account (it doesn't try to translate them), and it signals
// an error if a particular "pattern character" doesn't appear in "from".
// Depending on the values of "from" and "to" this can convert from generic
// to localized patterns or localized to generic.
if (U_FAILURE(status))
return;
translatedPattern.remove();
UBool inQuote = FALSE;
for (UTextOffset i = 0; i < originalPattern.length(); ++i) {
UChar c = originalPattern[i];
if (inQuote) {
if (c == 0x0027 /*'\''*/)
inQuote = FALSE;
}
else {
if (c == 0x0027 /*'\''*/)
inQuote = TRUE;
else if ((c >= 0x0061 /*'a'*/ && c <= 0x007A) /*'z'*/
|| (c >= 0x0041 /*'A'*/ && c <= 0x005A /*'Z'*/)) {
UTextOffset ci = from.indexOf(c);
if (ci == -1) {
status = U_INVALID_FORMAT_ERROR;
return;
}
c = to[ci];
}
}
translatedPattern += c;
}
if (inQuote) {
status = U_INVALID_FORMAT_ERROR;
return;
}
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::toPattern(UnicodeString& result) const
{
result = fPattern;
return result;
}
//----------------------------------------------------------------------
UnicodeString&
SimpleDateFormat::toLocalizedPattern(UnicodeString& result,
UErrorCode& status) const
{
translatePattern(fPattern, result, DateFormatSymbols::fgPatternChars, fSymbols->fLocalPatternChars, status);
return result;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::applyPattern(const UnicodeString& pattern)
{
fPattern = pattern;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::applyLocalizedPattern(const UnicodeString& pattern,
UErrorCode &status)
{
translatePattern(pattern, fPattern, fSymbols->fLocalPatternChars, DateFormatSymbols::fgPatternChars, status);
}
//----------------------------------------------------------------------
const DateFormatSymbols*
SimpleDateFormat::getDateFormatSymbols() const
{
return fSymbols;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::adoptDateFormatSymbols(DateFormatSymbols* newFormatSymbols)
{
delete fSymbols;
fSymbols = newFormatSymbols;
}
//----------------------------------------------------------------------
void
SimpleDateFormat::setDateFormatSymbols(const DateFormatSymbols& newFormatSymbols)
{
delete fSymbols;
fSymbols = new DateFormatSymbols(newFormatSymbols);
}
//----------------------------------------------------------------------
// {sfb} removed
/*int32_t
SimpleDateFormat::getZoneIndex(const UnicodeString& ID) const
{
// this function searches a time zone list for a time zone with the specified
// ID. It'll either return an apprpriate row number or -1 if the ID wasn't
// found.
int32_t index, col;
for (col=0; col<=4 && col<fSymbols->fZoneStringsColCount; col+=2)
{
for (index = 0; index < fSymbols->fZoneStringsRowCount; index++)
{
if (fSymbols->fZoneStrings[index][col] == ID) return index;
}
}
return - 1;
}*/
//----------------------------------------------------------------------
UDate
SimpleDateFormat::internalGetDefaultCenturyStart() const
{
// lazy-evaluate systemDefaultCenturyStart
if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury)
initializeSystemDefaultCentury();
// use defaultCenturyStart unless it's the flag value;
// then use systemDefaultCenturyStart
return (fDefaultCenturyStart == fgSystemDefaultCentury) ?
fgSystemDefaultCenturyStart : fDefaultCenturyStart;
}
int32_t
SimpleDateFormat::internalGetDefaultCenturyStartYear() const
{
// lazy-evaluate systemDefaultCenturyStartYear
if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury)
initializeSystemDefaultCentury();
// use defaultCenturyStart unless it's the flag value;
// then use systemDefaultCenturyStartYear
//return (fDefaultCenturyStart == fgSystemDefaultCentury) ?
return (fDefaultCenturyStartYear == fgSystemDefaultCenturyYear) ?
fgSystemDefaultCenturyStartYear : fDefaultCenturyStartYear;
}
void
SimpleDateFormat::initializeSystemDefaultCentury()
{
// initialize systemDefaultCentury and systemDefaultCenturyYear based
// on the current time. They'll be set to 80 years before
// the current time.
// No point in locking as it should be idempotent.
if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury)
{
UErrorCode status = U_ZERO_ERROR;
Calendar *calendar = Calendar::createInstance(status);
if (calendar != NULL && U_SUCCESS(status))
{
calendar->setTime(Calendar::getNow(), status);
calendar->add(Calendar::YEAR, -80, status);
fgSystemDefaultCenturyStart = calendar->getTime(status);
fgSystemDefaultCenturyStartYear = calendar->get(Calendar::YEAR, status);
delete calendar;
}
// We have no recourse upon failure unless we want to propagate the failure
// out.
}
}
//eof