142fb8bab6
X-SVN-Rev: 13685
1101 lines
39 KiB
C
1101 lines
39 KiB
C
/*
|
|
*******************************************************************************
|
|
*
|
|
* Copyright (C) 2000-2003, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
*
|
|
*******************************************************************************
|
|
* file name: genmbcs.c
|
|
* encoding: US-ASCII
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 2000jul06
|
|
* created by: Markus W. Scherer
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "unicode/utypes.h"
|
|
#include "cstring.h"
|
|
#include "cmemory.h"
|
|
#include "unewdata.h"
|
|
#include "ucnv_cnv.h"
|
|
#include "ucnvmbcs.h"
|
|
#include "ucm.h"
|
|
#include "makeconv.h"
|
|
#include "genmbcs.h"
|
|
|
|
typedef struct MBCSData {
|
|
NewConverter newConverter;
|
|
|
|
UCMFile *ucm;
|
|
|
|
/* toUnicode (state table in ucm->states) */
|
|
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
|
|
int32_t countToUFallbacks;
|
|
uint16_t *unicodeCodeUnits;
|
|
|
|
/* fromUnicode */
|
|
uint16_t stage1[MBCS_STAGE_1_SIZE];
|
|
uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
|
|
uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
|
|
uint8_t *fromUBytes;
|
|
uint32_t stage2Top, stage3Top;
|
|
} MBCSData;
|
|
|
|
/* prototypes */
|
|
static void
|
|
MBCSClose(NewConverter *cnvData);
|
|
|
|
static UBool
|
|
MBCSStartMappings(MBCSData *mbcsData);
|
|
|
|
static UBool
|
|
MBCSAddToUnicode(MBCSData *mbcsData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c,
|
|
int8_t flag);
|
|
|
|
static UBool
|
|
MBCSIsValid(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length);
|
|
|
|
static UBool
|
|
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c,
|
|
int8_t flag);
|
|
|
|
static UBool
|
|
MBCSAddFromUnicode(MBCSData *mbcsData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c,
|
|
int8_t flag);
|
|
|
|
static void
|
|
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
|
|
|
|
static UBool
|
|
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
|
|
|
|
static uint32_t
|
|
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
|
|
UNewDataMemory *pData, int32_t tableType);
|
|
|
|
/* helper ------------------------------------------------------------------- */
|
|
|
|
static U_INLINE char
|
|
hexDigit(uint8_t digit) {
|
|
return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
|
|
}
|
|
|
|
static U_INLINE char *
|
|
printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
|
|
char *s=buffer;
|
|
while(length>0) {
|
|
*s++=hexDigit((uint8_t)(*bytes>>4));
|
|
*s++=hexDigit((uint8_t)(*bytes&0xf));
|
|
++bytes;
|
|
--length;
|
|
}
|
|
|
|
*s=0;
|
|
return buffer;
|
|
}
|
|
|
|
/* implementation ----------------------------------------------------------- */
|
|
|
|
static void
|
|
MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
|
|
int32_t i, maxCharLength;
|
|
|
|
uprv_memset(mbcsData, 0, sizeof(MBCSData));
|
|
|
|
maxCharLength=ucm->states.maxCharLength;
|
|
|
|
mbcsData->ucm=ucm; /* aliased, not owned */
|
|
|
|
mbcsData->newConverter.close=MBCSClose;
|
|
mbcsData->newConverter.isValid=MBCSIsValid;
|
|
mbcsData->newConverter.addTable=MBCSAddTable;
|
|
mbcsData->newConverter.write=MBCSWrite;
|
|
|
|
mbcsData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; /* after stage 1 and one all-unassigned stage 2 block */
|
|
mbcsData->stage3Top=16*maxCharLength; /* after one all-unassigned stage 3 block */
|
|
|
|
/* point all entries in stage 1 to the "all-unassigned" first block in stage 2 */
|
|
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
|
|
mbcsData->stage1[i]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
|
|
}
|
|
}
|
|
|
|
NewConverter *
|
|
MBCSOpen(UCMFile *ucm) {
|
|
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
|
|
if(mbcsData!=NULL) {
|
|
MBCSInit(mbcsData, ucm);
|
|
}
|
|
return &mbcsData->newConverter;
|
|
}
|
|
|
|
static void
|
|
MBCSClose(NewConverter *cnvData) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
if(mbcsData!=NULL) {
|
|
uprv_free(mbcsData->unicodeCodeUnits);
|
|
uprv_free(mbcsData->fromUBytes);
|
|
uprv_free(mbcsData);
|
|
}
|
|
}
|
|
|
|
static UBool
|
|
MBCSStartMappings(MBCSData *mbcsData) {
|
|
int32_t i, sum;
|
|
|
|
/* allocate the code unit array and prefill it with "unassigned" values */
|
|
sum=mbcsData->ucm->states.countToUCodeUnits;
|
|
if(VERBOSE) {
|
|
printf("the total number of offsets is 0x%lx=%ld\n", sum, sum);
|
|
}
|
|
|
|
if(sum>0) {
|
|
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
|
|
if(mbcsData->unicodeCodeUnits==NULL) {
|
|
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
|
|
(long)sum);
|
|
return FALSE;
|
|
}
|
|
for(i=0; i<sum; ++i) {
|
|
mbcsData->unicodeCodeUnits[i]=0xfffe;
|
|
}
|
|
}
|
|
|
|
/* allocate the codepage mappings and preset the first 16 characters to 0 */
|
|
if(mbcsData->ucm->states.maxCharLength==1) {
|
|
/* allocate 64k 16-bit results for single-byte codepages */
|
|
sum=0x20000;
|
|
} else {
|
|
/* allocate 1M * maxCharLength bytes for at most 1M mappings */
|
|
sum=0x100000*mbcsData->ucm->states.maxCharLength;
|
|
}
|
|
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
|
|
if(mbcsData->fromUBytes==NULL) {
|
|
fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", sum);
|
|
return FALSE;
|
|
}
|
|
/* initialize the all-unassigned first stage 3 block */
|
|
uprv_memset(mbcsData->fromUBytes, 0, 64);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* return TRUE for success */
|
|
static UBool
|
|
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
|
|
int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
|
|
if(i>=0) {
|
|
/* if there is already a fallback for this offset, then overwrite it */
|
|
mbcsData->toUFallbacks[i].codePoint=c;
|
|
return TRUE;
|
|
} else {
|
|
/* if there is no fallback for this offset, then add one */
|
|
i=mbcsData->countToUFallbacks;
|
|
if(i>=MBCS_MAX_FALLBACK_COUNT) {
|
|
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", c);
|
|
return FALSE;
|
|
} else {
|
|
mbcsData->toUFallbacks[i].offset=offset;
|
|
mbcsData->toUFallbacks[i].codePoint=c;
|
|
mbcsData->countToUFallbacks=i+1;
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
|
|
static int32_t
|
|
removeFallback(MBCSData *mbcsData, uint32_t offset) {
|
|
int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
|
|
if(i>=0) {
|
|
_MBCSToUFallback *toUFallbacks;
|
|
int32_t limit, old;
|
|
|
|
toUFallbacks=mbcsData->toUFallbacks;
|
|
limit=mbcsData->countToUFallbacks;
|
|
old=(int32_t)toUFallbacks[i].codePoint;
|
|
|
|
/* copy the last fallback entry here to keep the list contiguous */
|
|
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
|
|
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
|
|
mbcsData->countToUFallbacks=limit-1;
|
|
return old;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* isFallback is almost a boolean:
|
|
* 1 (TRUE) this is a fallback mapping
|
|
* 0 (FALSE) this is a precise mapping
|
|
* -1 the precision of this mapping is not specified
|
|
*/
|
|
static UBool
|
|
MBCSAddToUnicode(MBCSData *mbcsData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c,
|
|
int8_t flag) {
|
|
char buffer[10];
|
|
uint32_t offset=0;
|
|
int32_t i=0, entry, old;
|
|
uint8_t state=0;
|
|
|
|
if(mbcsData->ucm->states.countStates==0) {
|
|
fprintf(stderr, "error: there is no state information!\n");
|
|
return FALSE;
|
|
}
|
|
|
|
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
|
|
if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
|
|
state=1;
|
|
}
|
|
|
|
/*
|
|
* Walk down the state table like in conversion,
|
|
* much like getNextUChar().
|
|
* We assume that c<=0x10ffff.
|
|
*/
|
|
for(i=0;;) {
|
|
entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
|
|
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
|
|
if(i==length) {
|
|
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
|
|
state, printBytes(buffer, bytes, length), c);
|
|
return FALSE;
|
|
}
|
|
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
|
|
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
|
|
} else {
|
|
if(i<length) {
|
|
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n",
|
|
(length-i), state, printBytes(buffer, bytes, length), c);
|
|
return FALSE;
|
|
}
|
|
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
|
|
case MBCS_STATE_ILLEGAL:
|
|
fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
case MBCS_STATE_CHANGE_ONLY:
|
|
fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
case MBCS_STATE_UNASSIGNED:
|
|
fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
case MBCS_STATE_FALLBACK_DIRECT_16:
|
|
case MBCS_STATE_VALID_DIRECT_16:
|
|
case MBCS_STATE_FALLBACK_DIRECT_20:
|
|
case MBCS_STATE_VALID_DIRECT_20:
|
|
if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
|
|
/* the "direct" action's value is not "valid-direct-16-unassigned" any more */
|
|
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
|
|
old=MBCS_ENTRY_FINAL_VALUE(entry);
|
|
} else {
|
|
old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
|
|
}
|
|
if(flag>=0) {
|
|
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04lx\n",
|
|
c, printBytes(buffer, bytes, length), (long)old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04lx\n",
|
|
c, printBytes(buffer, bytes, length), (long)old);
|
|
}
|
|
/*
|
|
* Continue after the above warning
|
|
* if the precision of the mapping is unspecified.
|
|
*/
|
|
}
|
|
/* reassign the correct action code */
|
|
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
|
|
|
|
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
|
|
if(c<=0xffff) {
|
|
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
|
|
} else {
|
|
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
|
|
}
|
|
mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
|
|
break;
|
|
case MBCS_STATE_VALID_16:
|
|
/* bits 26..16 are not used, 0 */
|
|
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
/* check that this byte sequence is still unassigned */
|
|
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
|
|
if(flag>=0) {
|
|
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04lx\n",
|
|
c, printBytes(buffer, bytes, length), (long)old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04lx\n",
|
|
c, printBytes(buffer, bytes, length), (long)old);
|
|
}
|
|
}
|
|
if(c>=0x10000) {
|
|
fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
}
|
|
if(flag>0) {
|
|
/* assign only if there is no precise mapping */
|
|
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
|
|
return setFallback(mbcsData, offset, c);
|
|
}
|
|
} else {
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
}
|
|
break;
|
|
case MBCS_STATE_VALID_16_PAIR:
|
|
/* bits 26..16 are not used, 0 */
|
|
/* bits 15..7 contain the final offset delta to two 16-bit code units */
|
|
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
|
|
/* check that this byte sequence is still unassigned */
|
|
old=mbcsData->unicodeCodeUnits[offset];
|
|
if(old<0xfffe) {
|
|
int32_t real;
|
|
if(old<0xd800) {
|
|
real=old;
|
|
} else if(old<=0xdfff) {
|
|
real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
|
|
} else /* old<=0xe001 */ {
|
|
real=mbcsData->unicodeCodeUnits[offset+1];
|
|
}
|
|
if(flag>=0) {
|
|
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04lx\n",
|
|
c, printBytes(buffer, bytes, length), (long)real);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04lx\n",
|
|
c, printBytes(buffer, bytes, length), (long)real);
|
|
}
|
|
}
|
|
if(flag>0) {
|
|
/* assign only if there is no precise mapping */
|
|
if(old<=0xdbff || old==0xe000) {
|
|
/* do nothing */
|
|
} else if(c<=0xffff) {
|
|
/* set a BMP fallback code point as a pair with 0xe001 */
|
|
mbcsData->unicodeCodeUnits[offset++]=0xe001;
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
} else {
|
|
/* set a fallback surrogate pair with two second surrogates */
|
|
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
|
|
}
|
|
} else {
|
|
if(c<0xd800) {
|
|
/* set a BMP code point */
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
} else if(c<=0xffff) {
|
|
/* set a BMP code point above 0xd800 as a pair with 0xe000 */
|
|
mbcsData->unicodeCodeUnits[offset++]=0xe000;
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
|
|
} else {
|
|
/* set a surrogate pair */
|
|
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
|
|
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
/* reserved, must never occur */
|
|
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02lx: 0x%s (U+%x)\n",
|
|
(unsigned long)entry, printBytes(buffer, bytes, length), c);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
|
|
static UBool
|
|
MBCSIsValid(NewConverter *cnvData,
|
|
const uint8_t *bytes, int32_t length) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
|
|
return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
|
|
}
|
|
|
|
static UBool
|
|
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c,
|
|
int8_t flag) {
|
|
uint16_t *p;
|
|
uint32_t index;
|
|
uint16_t old;
|
|
uint8_t b;
|
|
|
|
/* ignore |2 SUB mappings */
|
|
if(flag==2) {
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Walk down the triple-stage compact array ("trie") and
|
|
* allocate parts as necessary.
|
|
* Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
|
|
* We assume that length<=maxCharLength and that c<=0x10ffff.
|
|
*/
|
|
b=*bytes;
|
|
|
|
/* inspect stage 1 */
|
|
index=c>>10;
|
|
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
|
|
/* allocate another block in stage 2 */
|
|
if(mbcsData->stage2Top>=MBCS_MAX_STAGE_2_TOP) {
|
|
fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", c, b);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* each stage 2 block contains 64 16-bit words:
|
|
* 6 code point bits 9..4 with 1 stage 3 index
|
|
*/
|
|
mbcsData->stage1[index]=(uint16_t)mbcsData->stage2Top;
|
|
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
|
|
/* inspect stage 2 */
|
|
index=(uint32_t)mbcsData->stage1[index]+((c>>4)&0x3f);
|
|
if(mbcsData->stage2Single[index]==0) {
|
|
/* allocate another block in stage 3 */
|
|
if(mbcsData->stage3Top>=0x10000) {
|
|
fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", c, b);
|
|
return FALSE;
|
|
}
|
|
/* each block has 16 uint16_t entries */
|
|
mbcsData->stage2Single[index]=(uint16_t)mbcsData->stage3Top;
|
|
uprv_memset(mbcsData->fromUBytes+2*mbcsData->stage3Top, 0, 32);
|
|
mbcsData->stage3Top+=16;
|
|
}
|
|
|
|
/* write the codepage entry into stage 3 and get the previous entry */
|
|
p=(uint16_t *)mbcsData->fromUBytes+mbcsData->stage2Single[index]+(c&0xf);
|
|
old=*p;
|
|
if(flag<=0) {
|
|
*p=(uint16_t)(0xf00|b);
|
|
} else if(IS_PRIVATE_USE(c)) {
|
|
*p=(uint16_t)(0xc00|b);
|
|
} else {
|
|
*p=(uint16_t)(0x800|b);
|
|
}
|
|
|
|
/* check that this Unicode code point was still unassigned */
|
|
if(old>=0x100) {
|
|
if(flag>=0) {
|
|
fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
|
|
c, b, old&0xff);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
|
|
c, b, old&0xff);
|
|
}
|
|
/* continue after the above warning if the precision of the mapping is unspecified */
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static UBool
|
|
MBCSAddFromUnicode(MBCSData *mbcsData,
|
|
const uint8_t *bytes, int32_t length,
|
|
UChar32 c,
|
|
int8_t flag) {
|
|
char buffer[10];
|
|
const uint8_t *pb;
|
|
uint8_t *p;
|
|
uint32_t index, b, old;
|
|
int32_t maxCharLength;
|
|
|
|
/* ignore |2 SUB mappings */
|
|
if(flag==2) {
|
|
return TRUE;
|
|
}
|
|
|
|
maxCharLength=mbcsData->ucm->states.maxCharLength;
|
|
|
|
if(maxCharLength==1) {
|
|
return MBCSSingleAddFromUnicode(mbcsData, bytes, length, c, flag);
|
|
}
|
|
|
|
if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
|
|
(*bytes==0xe || *bytes==0xf)
|
|
) {
|
|
fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
}
|
|
|
|
if(flag==1 && length==1 && *bytes==0) {
|
|
fprintf(stderr, "error: unable to encode a |1 fallback to 0x%02x\n",
|
|
c, *bytes);
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Walk down the triple-stage compact array ("trie") and
|
|
* allocate parts as necessary.
|
|
* Note that the first stage 2 and 3 blocks are reserved for
|
|
* all-unassigned mappings.
|
|
* We assume that length<=maxCharLength and that c<=0x10ffff.
|
|
*/
|
|
|
|
/* inspect stage 1 */
|
|
index=c>>10;
|
|
if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
|
|
/* allocate another block in stage 2 */
|
|
if(mbcsData->stage2Top>=MBCS_MAX_STAGE_2_TOP) {
|
|
fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* each stage 2 block contains 64 32-bit words:
|
|
* 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
|
|
*/
|
|
mbcsData->stage1[index]=(uint16_t)mbcsData->stage2Top;
|
|
mbcsData->stage2Top+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
|
|
/* inspect stage 2 */
|
|
index=mbcsData->stage1[index]+((c>>4)&0x3f);
|
|
if(mbcsData->stage2[index]==0) {
|
|
/* allocate another block in stage 3 */
|
|
if(mbcsData->stage3Top>=0x100000*(uint32_t)maxCharLength) {
|
|
fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
|
|
c, printBytes(buffer, bytes, length));
|
|
return FALSE;
|
|
}
|
|
/* each block has 16*maxCharLength bytes */
|
|
mbcsData->stage2[index]=(mbcsData->stage3Top/16)/maxCharLength;
|
|
uprv_memset(mbcsData->fromUBytes+mbcsData->stage3Top, 0, 16*maxCharLength);
|
|
mbcsData->stage3Top+=16*maxCharLength;
|
|
}
|
|
|
|
/* write the codepage bytes into stage 3 and get the previous bytes */
|
|
|
|
/* assemble the bytes into a single integer */
|
|
pb=bytes;
|
|
b=0;
|
|
switch(length) {
|
|
case 4:
|
|
b=*pb++;
|
|
case 3:
|
|
b=(b<<8)|*pb++;
|
|
case 2:
|
|
b=(b<<8)|*pb++;
|
|
case 1:
|
|
default:
|
|
b=(b<<8)|*pb++;
|
|
break;
|
|
}
|
|
|
|
old=0;
|
|
p=mbcsData->fromUBytes+(16*(uint32_t)(uint16_t)mbcsData->stage2[index]+(c&0xf))*maxCharLength;
|
|
switch(maxCharLength) {
|
|
case 2:
|
|
old=*(uint16_t *)p;
|
|
*(uint16_t *)p=(uint16_t)b;
|
|
break;
|
|
case 3:
|
|
old=(uint32_t)*p<<16;
|
|
*p++=(uint8_t)(b>>16);
|
|
old|=(uint32_t)*p<<8;
|
|
*p++=(uint8_t)(b>>8);
|
|
old|=*p;
|
|
*p=(uint8_t)b;
|
|
break;
|
|
case 4:
|
|
old=*(uint32_t *)p;
|
|
*(uint32_t *)p=b;
|
|
break;
|
|
default:
|
|
/* will never occur */
|
|
break;
|
|
}
|
|
|
|
/* check that this Unicode code point was still unassigned */
|
|
if((mbcsData->stage2[index]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
|
|
if(flag>=0) {
|
|
fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02lx\n",
|
|
c, printBytes(buffer, bytes, length), (unsigned long)old);
|
|
return FALSE;
|
|
} else if(VERBOSE) {
|
|
fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02lx\n",
|
|
c, printBytes(buffer, bytes, length), (unsigned long)old);
|
|
}
|
|
/* continue after the above warning if the precision of the mapping is
|
|
unspecified */
|
|
}
|
|
if(flag<=0) {
|
|
/* set the roundtrip flag */
|
|
mbcsData->stage2[index]|=(1UL<<(16+(c&0xf)));
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
|
|
static UBool
|
|
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
|
|
MBCSData *mbcsData;
|
|
UCMapping *m;
|
|
UChar32 c;
|
|
int32_t i;
|
|
UBool isOK;
|
|
|
|
staticData->unicodeMask=table->unicodeMask;
|
|
if(staticData->unicodeMask==3) {
|
|
fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
|
|
return FALSE;
|
|
}
|
|
|
|
staticData->conversionType=UCNV_MBCS;
|
|
|
|
mbcsData=(MBCSData *)cnvData;
|
|
|
|
if(!MBCSStartMappings(mbcsData)) {
|
|
return FALSE;
|
|
}
|
|
|
|
isOK=TRUE;
|
|
|
|
m=table->mappings;
|
|
for(i=0; i<table->mappingsLength; ++m, ++i) {
|
|
c=m->u;
|
|
|
|
switch(m->f) {
|
|
case -1:
|
|
/* there was no precision/fallback indicator */
|
|
/* fall through to set the mappings */
|
|
case 0:
|
|
/* set roundtrip mappings */
|
|
isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, m->f) &&
|
|
MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, m->f);
|
|
break;
|
|
case 1:
|
|
/* set only a fallback mapping from Unicode to codepage */
|
|
staticData->hasFromUnicodeFallback=TRUE;
|
|
isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, m->f);
|
|
break;
|
|
case 2:
|
|
/* ignore |2 SUB mappings */
|
|
break;
|
|
case 3:
|
|
/* set only a fallback mapping from codepage to Unicode */
|
|
staticData->hasToUnicodeFallback=TRUE;
|
|
isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, m->f);
|
|
break;
|
|
default:
|
|
/* will not occur because the parser checked it already */
|
|
fprintf(stderr, "error: illegal fallback indicator %d\n", m->f);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
MBCSPostprocess(mbcsData, staticData);
|
|
|
|
return isOK;
|
|
}
|
|
|
|
static UBool
|
|
transformEUC(MBCSData *mbcsData) {
|
|
uint8_t *p8;
|
|
uint32_t i, value, oldLength, old3Top, new3Top;
|
|
uint8_t b;
|
|
|
|
oldLength=mbcsData->ucm->states.maxCharLength;
|
|
if(oldLength<3) {
|
|
return FALSE;
|
|
}
|
|
|
|
old3Top=mbcsData->stage3Top;
|
|
|
|
/* careful: 2-byte and 4-byte codes are stored in platform endianness! */
|
|
|
|
/* test if all first bytes are in {0, 0x8e, 0x8f} */
|
|
p8=mbcsData->fromUBytes;
|
|
|
|
#if !U_IS_BIG_ENDIAN
|
|
if(oldLength==4) {
|
|
p8+=3;
|
|
}
|
|
#endif
|
|
|
|
for(i=0; i<old3Top; i+=oldLength) {
|
|
b=p8[i];
|
|
if(b!=0 && b!=0x8e && b!=0x8f) {
|
|
/* some first byte does not fit the EUC pattern, nothing to be done */
|
|
return FALSE;
|
|
}
|
|
}
|
|
/* restore p if it was modified above */
|
|
p8=mbcsData->fromUBytes;
|
|
|
|
/* modify outputType and adjust stage3Top */
|
|
mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
|
|
mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
|
|
|
|
/*
|
|
* EUC-encode all byte sequences;
|
|
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
|
|
* p. 161 in chapter 4 "Encoding Methods"
|
|
*
|
|
* This also must reverse the byte order if the platform is little-endian!
|
|
*/
|
|
if(oldLength==3) {
|
|
uint16_t *q=(uint16_t *)p8;
|
|
for(i=0; i<old3Top; i+=oldLength) {
|
|
b=*p8;
|
|
if(b==0) {
|
|
/* short sequences are stored directly */
|
|
/* code set 0 or 1 */
|
|
(*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
|
|
} else if(b==0x8e) {
|
|
/* code set 2 */
|
|
(*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
|
|
} else /* b==0x8f */ {
|
|
/* code set 3 */
|
|
(*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
|
|
}
|
|
p8+=3;
|
|
}
|
|
} else /* oldLength==4 */ {
|
|
uint8_t *q=p8;
|
|
uint32_t *p32=(uint32_t *)p8;
|
|
for(i=0; i<old3Top; i+=4) {
|
|
value=(*p32++);
|
|
if(value<=0xffffff) {
|
|
/* short sequences are stored directly */
|
|
/* code set 0 or 1 */
|
|
(*q++)=(uint8_t)(value>>16);
|
|
(*q++)=(uint8_t)(value>>8);
|
|
(*q++)=(uint8_t)value;
|
|
} else if(value<=0x8effffff) {
|
|
/* code set 2 */
|
|
(*q++)=(uint8_t)((value>>16)&0x7f);
|
|
(*q++)=(uint8_t)(value>>8);
|
|
(*q++)=(uint8_t)value;
|
|
} else /* first byte is 0x8f */ {
|
|
/* code set 3 */
|
|
(*q++)=(uint8_t)(value>>16);
|
|
(*q++)=(uint8_t)((value>>8)&0x7f);
|
|
(*q++)=(uint8_t)value;
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
|
|
* as possible. Overlapping is done on unassigned head and tail
|
|
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
|
|
* Stage 1 indexes need to be adjusted accordingly.
|
|
* This function is very similar to genprops/store.c/compactStage().
|
|
*/
|
|
static void
|
|
singleCompactStage2(MBCSData *mbcsData) {
|
|
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
|
|
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
|
|
uint16_t i, start, prevEnd, newStart;
|
|
|
|
/* enter the all-unassigned first stage 2 block into the map */
|
|
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
|
|
|
|
/* begin with the first block after the all-unassigned one */
|
|
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
|
|
while(start<mbcsData->stage2Top) {
|
|
prevEnd=(uint16_t)(newStart-1);
|
|
|
|
/* find the size of the overlap */
|
|
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
|
|
|
|
if(i>0) {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
|
|
|
|
/* move the non-overlapping indexes to their new positions */
|
|
start+=i;
|
|
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
|
|
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
|
|
}
|
|
} else if(newStart<start) {
|
|
/* move the indexes to their new positions */
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
|
|
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
|
|
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
|
|
}
|
|
} else /* no overlap && newStart==start */ {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
|
|
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
/* adjust stage2Top */
|
|
if(VERBOSE && newStart<mbcsData->stage2Top) {
|
|
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
|
|
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
|
|
(long)(mbcsData->stage2Top-newStart)*2);
|
|
}
|
|
mbcsData->stage2Top=newStart;
|
|
|
|
/* now adjust stage 1 */
|
|
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
|
|
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
|
|
}
|
|
}
|
|
|
|
/* Compact stage 3 for SBCS - same algorithm as above. */
|
|
static void
|
|
singleCompactStage3(MBCSData *mbcsData) {
|
|
uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
|
|
|
|
/* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
|
|
uint16_t map[0x1000];
|
|
uint16_t i, start, prevEnd, newStart;
|
|
|
|
/* enter the all-unassigned first stage 3 block into the map */
|
|
map[0]=0;
|
|
|
|
/* begin with the first block after the all-unassigned one */
|
|
start=newStart=16;
|
|
while(start<mbcsData->stage3Top) {
|
|
prevEnd=(uint16_t)(newStart-1);
|
|
|
|
/* find the size of the overlap */
|
|
for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
|
|
|
|
if(i>0) {
|
|
map[start>>4]=(uint16_t)(newStart-i);
|
|
|
|
/* move the non-overlapping indexes to their new positions */
|
|
start+=i;
|
|
for(i=(uint16_t)(16-i); i>0; --i) {
|
|
stage3[newStart++]=stage3[start++];
|
|
}
|
|
} else if(newStart<start) {
|
|
/* move the indexes to their new positions */
|
|
map[start>>4]=newStart;
|
|
for(i=16; i>0; --i) {
|
|
stage3[newStart++]=stage3[start++];
|
|
}
|
|
} else /* no overlap && newStart==start */ {
|
|
map[start>>4]=start;
|
|
start=newStart+=16;
|
|
}
|
|
}
|
|
|
|
/* adjust stage3Top */
|
|
if(VERBOSE && newStart<mbcsData->stage3Top) {
|
|
printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
|
|
(unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
|
|
(long)(mbcsData->stage3Top-newStart)*2);
|
|
}
|
|
mbcsData->stage3Top=newStart;
|
|
|
|
/* now adjust stage 2 */
|
|
for(i=0; i<mbcsData->stage2Top; ++i) {
|
|
mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compact stage 2 by overlapping adjacent stage 2 blocks as far
|
|
* as possible. Overlapping is done on unassigned head and tail
|
|
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
|
|
* Stage 1 indexes need to be adjusted accordingly.
|
|
* This function is very similar to genprops/store.c/compactStage().
|
|
*/
|
|
static void
|
|
compactStage2(MBCSData *mbcsData) {
|
|
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
|
|
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
|
|
uint16_t i, start, prevEnd, newStart;
|
|
|
|
/* enter the all-unassigned first stage 2 block into the map */
|
|
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
|
|
|
|
/* begin with the first block after the all-unassigned one */
|
|
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
|
|
while(start<mbcsData->stage2Top) {
|
|
prevEnd=(uint16_t)(newStart-1);
|
|
|
|
/* find the size of the overlap */
|
|
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
|
|
|
|
if(i>0) {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
|
|
|
|
/* move the non-overlapping indexes to their new positions */
|
|
start+=i;
|
|
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
|
|
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
|
|
}
|
|
} else if(newStart<start) {
|
|
/* move the indexes to their new positions */
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
|
|
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
|
|
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
|
|
}
|
|
} else /* no overlap && newStart==start */ {
|
|
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
|
|
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
|
|
}
|
|
}
|
|
|
|
/* adjust stage2Top */
|
|
if(VERBOSE && newStart<mbcsData->stage2Top) {
|
|
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
|
|
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
|
|
(long)(mbcsData->stage2Top-newStart)*4);
|
|
}
|
|
mbcsData->stage2Top=newStart;
|
|
|
|
/* now adjust stage 1 */
|
|
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
|
|
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
|
|
}
|
|
}
|
|
|
|
static void
|
|
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) {
|
|
UCMStates *states;
|
|
int32_t maxCharLength;
|
|
|
|
states=&mbcsData->ucm->states;
|
|
maxCharLength=states->maxCharLength;
|
|
|
|
/* this needs to be printed before the EUC transformation because later maxCharLength might not be correct */
|
|
if(VERBOSE) {
|
|
printf("number of codepage characters in 16-blocks: 0x%lx=%lu\n",
|
|
(unsigned long)mbcsData->stage3Top/maxCharLength,
|
|
(unsigned long)mbcsData->stage3Top/maxCharLength);
|
|
}
|
|
|
|
ucm_optimizeStates(states,
|
|
&mbcsData->unicodeCodeUnits,
|
|
mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
|
|
VERBOSE);
|
|
|
|
/* try to compact the fromUnicode tables */
|
|
transformEUC(mbcsData);
|
|
if(maxCharLength==1) {
|
|
singleCompactStage3(mbcsData);
|
|
singleCompactStage2(mbcsData);
|
|
} else {
|
|
compactStage2(mbcsData);
|
|
}
|
|
}
|
|
|
|
static uint32_t
|
|
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
|
|
UNewDataMemory *pData, int32_t tableType) {
|
|
MBCSData *mbcsData=(MBCSData *)cnvData;
|
|
uint32_t top;
|
|
int32_t i, stage1Top;
|
|
|
|
_MBCSHeader header={ 0 };
|
|
|
|
/* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
|
|
if(mbcsData->ucm->states.maxCharLength==1) {
|
|
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
|
|
} else {
|
|
stage1Top=0x40; /* 0x40==64 */
|
|
}
|
|
for(i=0; i<stage1Top; ++i) {
|
|
mbcsData->stage1[i]+=(uint16_t)stage1Top;
|
|
}
|
|
|
|
/* stage2Top has counted 16-bit results, now we need to count bytes */
|
|
mbcsData->stage2Top*=2;
|
|
|
|
/* stage3Top has counted 16-bit results, now we need to count bytes */
|
|
mbcsData->stage3Top*=2;
|
|
} else {
|
|
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
|
|
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
|
|
} else {
|
|
stage1Top=0x40; /* 0x40==64 */
|
|
}
|
|
for(i=0; i<stage1Top; ++i) {
|
|
mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
|
|
}
|
|
|
|
/* stage2Top has counted 32-bit results, now we need to count bytes */
|
|
mbcsData->stage2Top*=4;
|
|
|
|
/* stage3Top has already counted bytes */
|
|
}
|
|
|
|
/* round up stage2Top and stage3Top so that the sizes of all data blocks are multiples of 4 */
|
|
mbcsData->stage2Top=(mbcsData->stage2Top+3)&~3;
|
|
mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
|
|
|
|
/* fill the header */
|
|
header.version[0]=4;
|
|
header.version[1]=2;
|
|
header.countStates=mbcsData->ucm->states.countStates;
|
|
header.countToUFallbacks=mbcsData->countToUFallbacks;
|
|
|
|
header.offsetToUCodeUnits=
|
|
sizeof(_MBCSHeader)+
|
|
mbcsData->ucm->states.countStates*1024+
|
|
mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
|
|
header.offsetFromUTable=
|
|
header.offsetToUCodeUnits+
|
|
mbcsData->ucm->states.countToUCodeUnits*2;
|
|
header.offsetFromUBytes=
|
|
header.offsetFromUTable+
|
|
stage1Top*2+
|
|
mbcsData->stage2Top;
|
|
header.fromUBytesLength=mbcsData->stage3Top;
|
|
|
|
top=header.offsetFromUBytes+header.fromUBytesLength;
|
|
|
|
header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
|
|
|
|
if(tableType&TABLE_EXT) {
|
|
if(top>0xffffff) {
|
|
fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", top);
|
|
return 0;
|
|
}
|
|
|
|
header.flags|=top<<8;
|
|
}
|
|
|
|
/* write the MBCS data */
|
|
udata_writeBlock(pData, &header, sizeof(_MBCSHeader));
|
|
udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
|
|
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
|
|
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
|
|
udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
|
|
if(mbcsData->ucm->states.maxCharLength==1) {
|
|
udata_writeBlock(pData, mbcsData->stage2Single, mbcsData->stage2Top);
|
|
} else {
|
|
udata_writeBlock(pData, mbcsData->stage2, mbcsData->stage2Top);
|
|
}
|
|
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
|
|
|
|
/* return the number of bytes that should have been written */
|
|
return header.offsetFromUBytes+header.fromUBytesLength;
|
|
}
|