scuffed-code/icu4c/source/common/unorm.cpp
Markus Scherer 6cc849aea3 ICU-1007 memory cleanup
X-SVN-Rev: 5701
2001-09-06 01:20:43 +00:00

2626 lines
84 KiB
C++

/*
******************************************************************************
* Copyright (c) 1996-2001, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* File unorm.cpp
*
* Created by: Vladimir Weinstein 12052000
*
* Modification history :
*
* Date Name Description
* 02/01/01 synwee Added normalization quickcheck enum and method.
* 02/12/01 synwee Commented out quickcheck util api has been approved
* Added private method for doing FCD checks
* 02/23/01 synwee Modified quickcheck and checkFCE to run through
* string for codepoints < 0x300 for the normalization
* mode NFC.
* 05/25/01+ Markus Scherer total rewrite, implement all normalization here
* instead of just wrappers around normlzr.cpp,
* load unorm.dat, support Unicode 3.1 with
* supplementary code points, etc.
*/
#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "unicode/chariter.h"
#include "unicode/udata.h"
#include "unicode/unorm.h"
#include "cmemory.h"
#include "ustr_imp.h"
#include "umutex.h"
#include "unormimp.h"
/*
* This new implementation of the normalization code loads its data from
* unorm.dat, which is generated with the gennorm tool.
* The format of that file is described in unormimp.h .
*/
/* -------------------------------------------------------------------------- */
/* Korean Hangul and Jamo constants */
enum {
JAMO_L_BASE=0x1100, /* "lead" jamo */
JAMO_V_BASE=0x1161, /* "vowel" jamo */
JAMO_T_BASE=0x11a7, /* "trail" jamo */
HANGUL_BASE=0xac00,
JAMO_L_COUNT=19,
JAMO_V_COUNT=21,
JAMO_T_COUNT=28,
HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT
};
inline UBool
isHangulWithoutJamoT(UChar c) {
c-=HANGUL_BASE;
return c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
}
/* norm32 helpers */
/* is this a norm32 with a regular index? */
inline UBool
isNorm32Regular(uint32_t norm32) {
return norm32<_NORM_MIN_SPECIAL;
}
/* is this a norm32 with a special index for a lead surrogate? */
inline UBool
isNorm32LeadSurrogate(uint32_t norm32) {
return _NORM_MIN_SPECIAL<=norm32 && norm32<_NORM_SURROGATES_TOP;
}
/* is this a norm32 with a special index for a Hangul syllable or a Jamo? */
inline UBool
isNorm32HangulOrJamo(uint32_t norm32) {
return norm32>=_NORM_MIN_HANGUL;
}
/*
* Given isNorm32HangulOrJamo(),
* is this a Hangul syllable or a Jamo?
*/
inline UBool
isHangulJamoNorm32HangulOrJamoL(uint32_t norm32) {
return norm32<_NORM_MIN_JAMO_V;
}
/*
* Given norm32 for Jamo V or T,
* is this a Jamo V?
*/
inline UBool
isJamoVTNorm32JamoV(uint32_t norm32) {
return norm32<_NORM_JAMO_V_TOP;
}
/* load unorm.dat ----------------------------------------------------------- */
#define DATA_NAME "unorm"
#define DATA_TYPE "dat"
static UDataMemory *normData=NULL;
static UErrorCode dataErrorCode=U_ZERO_ERROR;
static int8_t haveNormData=0;
/*
* pointers into the memory-mapped unorm.dat
*/
static const uint16_t *indexes=NULL,
*normTrieIndex=NULL, *extraData=NULL,
*combiningTable=NULL,
*fcdTrieIndex=NULL;
/*
* note that there is no uint32_t *normTrieData:
* the indexes in the trie are adjusted so that they point to the data based on
* (uint32_t *)normTrieIndex - this saves one variable at runtime
*/
#define normTrieData ((uint32_t *)normTrieIndex)
/* similarly for the FCD trie index and data - but both are uint16_t * */
/* the Unicode version of the normalization data */
static UVersionInfo dataVersion={ 3, 1, 0, 0 };
U_CDECL_BEGIN
U_CFUNC UBool U_CALLCONV
unorm_cleanup() {
if(normData!=NULL) {
udata_close(normData);
normData=NULL;
}
dataErrorCode=U_ZERO_ERROR;
haveNormData=0;
return TRUE;
}
static UBool U_CALLCONV
isAcceptable(void * /* context */,
const char * /* type */, const char * /* name */,
const UDataInfo *pInfo) {
if(
pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */
pInfo->dataFormat[1]==0x6f &&
pInfo->dataFormat[2]==0x72 &&
pInfo->dataFormat[3]==0x6d &&
pInfo->formatVersion[0]==1 &&
pInfo->formatVersion[3]==_NORM_TRIE_SHIFT
) {
uprv_memcpy(dataVersion, pInfo->dataVersion, 4);
return TRUE;
} else {
return FALSE;
}
}
U_CDECL_END
static int8_t
loadNormData(UErrorCode &errorCode) {
/* load Unicode normalization data from file */
if(haveNormData==0) {
UDataMemory *data;
const uint16_t *p=NULL;
if(&errorCode==NULL || U_FAILURE(errorCode)) {
return 0;
}
/* open the data outside the mutex block */
data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errorCode);
dataErrorCode=errorCode;
if(U_FAILURE(errorCode)) {
return haveNormData=-1;
}
p=(const uint16_t *)udata_getMemory(data);
/* in the mutex block, set the data for this process */
umtx_lock(NULL);
if(normData==NULL) {
normData=data;
data=NULL;
indexes=p;
p=NULL;
}
umtx_unlock(NULL);
/* initialize some variables */
normTrieIndex=indexes+indexes[_NORM_INDEX_COUNT];
extraData=normTrieIndex+indexes[_NORM_INDEX_TRIE_INDEX_COUNT]+2*indexes[_NORM_INDEX_TRIE_DATA_COUNT];
combiningTable=extraData+indexes[_NORM_INDEX_UCHAR_COUNT];
fcdTrieIndex=combiningTable+indexes[_NORM_INDEX_COMBINE_DATA_COUNT];
haveNormData=1;
/* if a different thread set it first, then close the extra data */
if(data!=NULL) {
udata_close(data); /* NULL if it was set correctly */
}
}
return haveNormData;
}
inline UBool
_haveData(UErrorCode &errorCode) {
if(haveNormData!=0) {
errorCode=dataErrorCode;
return (UBool)(haveNormData>0);
} else {
return (UBool)(loadNormData(errorCode)>0);
}
}
U_CAPI UBool U_EXPORT2
unorm_haveData(UErrorCode *pErrorCode) {
return _haveData(*pErrorCode);
}
U_CAPI const uint16_t * U_EXPORT2
unorm_getFCDTrie(UErrorCode *pErrorCode) {
if(_haveData(*pErrorCode)) {
return fcdTrieIndex;
} else {
return NULL;
}
}
/* data access primitives --------------------------------------------------- */
inline uint32_t
_getNorm32(UChar c) {
return
normTrieData[
normTrieIndex[
c>>_NORM_TRIE_SHIFT
]+
(c&_NORM_STAGE_2_MASK)
];
}
inline uint32_t
_getNorm32FromSurrogatePair(uint32_t norm32, UChar c2) {
/* the surrogate index in norm32 is an offset over the BMP top of stage 1 */
uint32_t c=
((norm32>>(_NORM_EXTRA_SHIFT-10))&0xffc00)|
(c2&0x3ff);
return
normTrieData[
normTrieIndex[
_NORM_STAGE_1_BMP_COUNT+
(c>>_NORM_TRIE_SHIFT)
]+
(c&_NORM_STAGE_2_MASK)
];
}
/*
* get a norm32 from text with complete code points
* (like from decompositions)
*/
inline uint32_t
_getNorm32(const UChar *p, uint32_t mask) {
uint32_t norm32=_getNorm32(*p);
if((norm32&mask) && isNorm32LeadSurrogate(norm32)) {
/* *p is a lead surrogate, get the real norm32 */
norm32=_getNorm32FromSurrogatePair(norm32, *(p+1));
}
return norm32;
}
inline uint16_t
_getFCD16(UChar c) {
return
fcdTrieIndex[
fcdTrieIndex[
c>>_NORM_TRIE_SHIFT
]+
(c&_NORM_STAGE_2_MASK)
];
}
inline uint16_t
_getFCD16FromSurrogatePair(uint16_t fcd16, UChar c2) {
/* the surrogate index in fcd16 is an absolute offset over the start of stage 1 */
uint32_t c=
((uint32_t)fcd16<<10)|
(c2&0x3ff);
return
fcdTrieIndex[
fcdTrieIndex[
c>>_NORM_TRIE_SHIFT
]+
(c&_NORM_STAGE_2_MASK)
];
}
inline const uint16_t *
_getExtraData(uint32_t norm32) {
return extraData+(norm32>>_NORM_EXTRA_SHIFT);
}
/* get the canonical or compatibility decomposition for one character */
inline const UChar *
_decompose(uint32_t norm32, uint32_t qcMask, int32_t &length,
uint8_t &cc, uint8_t &trailCC) {
const UChar *p=(const UChar *)_getExtraData(norm32);
length=*p++;
if((norm32&qcMask&_NORM_QC_NFKD)!=0 && length>=0x100) {
/* use compatibility decomposition, skip canonical data */
p+=((length>>7)&1)+(length&_NORM_DECOMP_LENGTH_MASK);
length>>=8;
}
if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) {
/* get the lead and trail cc's */
UChar bothCCs=*p++;
cc=(uint8_t)(bothCCs>>8);
trailCC=(uint8_t)bothCCs;
} else {
/* lead and trail cc's are both 0 */
cc=trailCC=0;
}
length&=_NORM_DECOMP_LENGTH_MASK;
return p;
}
/* get the canonical decomposition for one character */
inline const UChar *
_decompose(uint32_t norm32, int32_t &length,
uint8_t &cc, uint8_t &trailCC) {
const UChar *p=(const UChar *)_getExtraData(norm32);
length=*p++;
if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) {
/* get the lead and trail cc's */
UChar bothCCs=*p++;
cc=(uint8_t)(bothCCs>>8);
trailCC=(uint8_t)bothCCs;
} else {
/* lead and trail cc's are both 0 */
cc=trailCC=0;
}
length&=_NORM_DECOMP_LENGTH_MASK;
return p;
}
/*
* get the combining class of (c, c2)=*p++
* before: p<limit after: p<=limit
* if only one code unit is used, then c2==0
*/
inline uint8_t
_getNextCC(const UChar *&p, const UChar *limit, UChar &c, UChar &c2) {
uint32_t norm32;
c=*p++;
norm32=_getNorm32(c);
if((norm32&_NORM_CC_MASK)==0) {
c2=0;
return 0;
} else {
if(!isNorm32LeadSurrogate(norm32)) {
c2=0;
} else {
/* c is a lead surrogate, get the real norm32 */
if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) {
++p;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
return 0;
}
}
return (uint8_t)(norm32>>_NORM_CC_SHIFT);
}
}
/*
* read backwards and get norm32
* return 0 if the character is <minC
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
inline uint32_t
_getPrevNorm32(const UChar *start, const UChar *&src,
uint32_t minC, uint32_t mask,
UChar &c, UChar &c2) {
uint32_t norm32;
c=*--src;
c2=0;
/* check for a surrogate before getting norm32 to see if we need to predecrement further */
if(c<minC) {
return 0;
} else if(!UTF_IS_SURROGATE(c)) {
return _getNorm32(c);
} else if(UTF_IS_SURROGATE_FIRST(c)) {
/* unpaired first surrogate */
return 0;
} else if(src!=start && UTF_IS_FIRST_SURROGATE(c2=*(src-1))) {
--src;
norm32=_getNorm32(c2);
if((norm32&mask)==0) {
/* all surrogate pairs with this lead surrogate have only irrelevant data */
return 0;
} else {
/* norm32 must be a surrogate special */
return _getNorm32FromSurrogatePair(norm32, c);
}
} else {
/* unpaired second surrogate */
c2=0;
return 0;
}
}
/*
* get the combining class of (c, c2)=*--p
* before: start<p after: start<=p
*/
inline uint8_t
_getPrevCC(const UChar *start, const UChar *&p) {
UChar c, c2;
return (uint8_t)(_getPrevNorm32(start, p, _NORM_MIN_WITH_LEAD_CC, _NORM_CC_MASK, c, c2)>>_NORM_CC_SHIFT);
}
/*
* is this (or does its decomposition begin with) a "true starter"?
* (cc==0 and NF*C_YES)
*/
inline UBool
_isTrueStarter(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) {
if((norm32&ccOrQCMask)==0) {
return TRUE; /* this is a true starter (could be Hangul or Jamo L) */
}
/* inspect its decomposition - not a Hangul or a surrogate here */
if((norm32&decompQCMask)!=0) {
const UChar *p;
int32_t length;
uint8_t cc, trailCC;
/* decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, decompQCMask, length, cc, trailCC);
if(cc==0) {
uint32_t qcMask=ccOrQCMask&_NORM_QC_MASK;
/* does it begin with NFC_YES? */
if((_getNorm32(p, qcMask)&qcMask)==0) {
/* yes, the decomposition begins with a true starter */
return TRUE;
}
}
}
return FALSE;
}
/* reorder UTF-16 in-place -------------------------------------------------- */
/*
* simpler, single-character version of _mergeOrdered() -
* bubble-insert one single code point into the preceding string
* which is already canonically ordered
* (c, c2) may or may not yet have been inserted at [current..p[
*
* it must be p=current+lengthof(c, c2) i.e. p=current+(c2==0 ? 1 : 2)
*
* before: [start..current[ is already ordered, and
* [current..p[ may or may not hold (c, c2) but
* must be exactly the same length as (c, c2)
* after: [start..p[ is ordered
*
* returns the trailing combining class
*/
static uint8_t
_insertOrdered(const UChar *start, UChar *current, UChar *p,
UChar c, UChar c2, uint8_t cc) {
const UChar *pBack, *pPreBack;
UChar *r;
uint8_t prevCC, trailCC=cc;
if(start<current && cc!=0) {
/* search for the insertion point where cc>=prevCC */
pPreBack=pBack=current;
prevCC=_getPrevCC(start, pPreBack);
if(cc<prevCC) {
/* this will be the last code point, so keep its cc */
trailCC=prevCC;
pBack=pPreBack;
while(start<pPreBack) {
prevCC=_getPrevCC(start, pPreBack);
if(cc>=prevCC) {
break;
}
pBack=pPreBack;
}
/*
* this is where we are right now with all these pointers:
* [start..pPreBack[ 0..? code points that we can ignore
* [pPreBack..pBack[ 0..1 code points with prevCC<=cc
* [pBack..current[ 0..n code points with >cc, move up to insert (c, c2)
* [current..p[ 1 code point (c, c2) with cc
*/
/* move the code units in between up */
r=p;
do {
*--r=*--current;
} while(pBack!=current);
}
}
/* insert (c, c2) */
*current=c;
if(c2!=0) {
*(current+1)=c2;
}
/* we know the cc of the last code point */
return trailCC;
}
/*
* merge two UTF-16 string parts together
* to canonically order (order by combining classes) their concatenation
*
* the two strings may already be adjacent, so that the merging is done in-place
* if the two strings are not adjacent, then the buffer holding the first one
* must be large enough
* the second string may or may not be ordered in itself
*
* before: [start..current[ is already ordered, and
* [next..limit[ may be ordered in itself, but
* is not in relation to [start..current[
* after: [start..current+(limit-next)[ is ordered
*
* the algorithm is a simple bubble-sort that takes the characters from *next++
* and inserts them in correct combining class order into the preceding part
* of the string
*
* since this function is called much less often than the single-code point
* _insertOrdered(), it just uses that for easier maintenance
* (see file version from before 2001aug31 for a more optimized version)
*
* returns the trailing combining class
*/
static uint8_t
_mergeOrdered(UChar *start, UChar *current,
const UChar *next, const UChar *limit, UBool isOrdered=TRUE) {
UChar *r;
UChar c, c2;
uint8_t cc, trailCC=0;
UBool adjacent;
adjacent= current==next;
if(start!=current || !isOrdered) {
while(next<limit) {
cc=_getNextCC(next, limit, c, c2);
if(cc==0) {
/* does not bubble back */
trailCC=0;
if(adjacent) {
current=(UChar *)next;
} else {
*current++=c;
if(c2!=0) {
*current++=c2;
}
}
if(isOrdered) {
break;
} else {
start=current;
}
} else {
r=current+(c2==0 ? 1 : 2);
trailCC=_insertOrdered(start, current, r, c, c2, cc);
current=r;
}
}
}
if(next==limit) {
/* we know the cc of the last code point */
return trailCC;
} else {
if(!adjacent) {
/* copy the second string part */
do {
*current++=*next++;
} while(next!=limit);
limit=current;
}
return _getPrevCC(start, limit);
}
}
/* quick check functions ---------------------------------------------------- */
static UBool
unorm_checkFCD(const UChar *src, int32_t srcLength) {
const UChar *limit;
UChar c, c2;
uint16_t fcd16;
int16_t prevCC, cc;
/* initialize */
prevCC=0;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* skip a run of code units below the minimum or with irrelevant data for the FCD check */
if(limit==NULL) {
for(;;) {
c=*src++;
if(c<_NORM_MIN_WITH_LEAD_CC) {
if(c==0) {
return TRUE;
}
/*
* delay _getFCD16(c) for any character <_NORM_MIN_WITH_LEAD_CC
* because chances are good that the next one will have
* a leading cc of 0;
* _getFCD16(-prevCC) is later called when necessary -
* -c fits into int16_t because it is <_NORM_MIN_WITH_LEAD_CC==0x300
*/
prevCC=-(int16_t)c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
}
} else {
for(;;) {
if(src==limit) {
return TRUE;
} else if((c=*src++)<_NORM_MIN_WITH_LEAD_CC) {
prevCC=-(int16_t)c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
}
}
/* check one above-minimum, relevant code unit */
if(UTF_IS_FIRST_SURROGATE(c)) {
/* c is a lead surrogate, get the real fcd16 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
} else {
fcd16=0;
}
}
/*
* prevCC has values from the following ranges:
* 0..0xff - the previous trail combining class
* <0 - the negative value of the previous code unit;
* that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16()
* was deferred so that average text is checked faster
*/
/* check the combining order */
cc=(int16_t)(fcd16>>8);
if(cc!=0) {
if(prevCC<0) {
/* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */
prevCC=(int16_t)_getFCD16((UChar)-prevCC)&0xff;
}
if(cc<prevCC) {
return FALSE;
}
}
prevCC=(int16_t)fcd16&0xff;
}
}
U_CAPI UNormalizationCheckResult U_EXPORT2
unorm_quickCheck(const UChar *src,
int32_t srcLength,
UNormalizationMode mode,
UErrorCode *pErrorCode) {
const UChar *limit;
uint32_t norm32, ccOrQCMask, qcMask;
UChar c, c2, minNoMaybe;
uint8_t cc, prevCC;
UNormalizationCheckResult result;
/* check arguments */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return UNORM_MAYBE;
}
if(src==NULL || srcLength<-1) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_MAYBE;
}
if(!_haveData(*pErrorCode)) {
return UNORM_MAYBE;
}
/* check for a valid mode and set the quick check minimum and mask */
switch(mode) {
case UNORM_NFC:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
qcMask=_NORM_QC_NFC;
break;
case UNORM_NFKC:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
qcMask=_NORM_QC_NFKC;
break;
case UNORM_NFD:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
qcMask=_NORM_QC_NFD;
break;
case UNORM_NFKD:
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
qcMask=_NORM_QC_NFKD;
break;
case UNORM_FCD:
return unorm_checkFCD(src, srcLength) ? UNORM_YES : UNORM_NO;
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return UNORM_MAYBE;
}
/* initialize */
ccOrQCMask=_NORM_CC_MASK|qcMask;
result=UNORM_YES;
prevCC=0;
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* skip a run of code units below the minimum or with irrelevant data for the quick check */
if(limit==NULL) {
for(;;) {
c=*src++;
if(c<minNoMaybe) {
if(c==0) {
return result;
}
} else if(((norm32=_getNorm32(c))&ccOrQCMask)!=0) {
break;
}
prevCC=0;
}
} else {
for(;;) {
if(src==limit) {
return result;
} else if((c=*src++)>=minNoMaybe && ((norm32=_getNorm32(c))&ccOrQCMask)!=0) {
break;
}
prevCC=0;
}
}
/* check one above-minimum, relevant code unit */
if(isNorm32LeadSurrogate(norm32)) {
/* c is a lead surrogate, get the real norm32 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
norm32=0;
}
}
/* check the combining order */
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
if(cc!=0 && cc<prevCC) {
return UNORM_NO;
}
prevCC=cc;
/* check for "no" or "maybe" quick check flags */
norm32&=qcMask;
if(norm32&_NORM_QC_ANY_NO) {
return UNORM_NO;
} else if(norm32!=0) {
result=UNORM_MAYBE;
}
}
return result;
}
/* make NFD & NFKD ---------------------------------------------------------- */
static int32_t
_decompose(UChar *&dest, int32_t &destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool ignoreHangul,
UGrowBuffer *growBuffer, void *context,
uint8_t &outTrailCC,
UErrorCode *pErrorCode) {
UChar buffer[3];
const UChar *limit, *prevSrc, *p;
UChar *reorderStart;
uint32_t norm32, ccOrQCMask, qcMask;
int32_t destIndex, length;
UChar c, c2, minNoMaybe;
uint8_t cc, prevCC, trailCC;
UBool canGrow;
if(!compat) {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
qcMask=_NORM_QC_NFD;
} else {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
qcMask=_NORM_QC_NFKD;
}
/* initialize */
reorderStart=dest;
ccOrQCMask=_NORM_CC_MASK|qcMask;
destIndex=0;
prevCC=0;
/* avoid compiler warnings */
norm32=0;
c=0;
/* do not attempt to grow if there is no growBuffer function or if it has failed before */
canGrow=(UBool)(growBuffer!=NULL);
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* count code units below the minimum or with irrelevant data for the quick check */
prevSrc=src;
if(limit==NULL) {
while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) {
prevCC=0;
++src;
}
} else {
while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) {
prevCC=0;
++src;
}
}
/* copy these code units all at once */
if(src!=prevSrc) {
length=(int32_t)(src-prevSrc);
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
}
destIndex+=length;
reorderStart=dest+destIndex; /* not valid if dest==NULL */
}
/* end of source reached? */
if(limit==NULL ? c==0 : src==limit) {
break;
}
/* c already contains *src and norm32 is set for it, increment src */
++src;
/* check one above-minimum, relevant code unit */
/*
* generally, set p and length to the decomposition string
* in simple cases, p==NULL and (c, c2) will hold the length code units to append
* in all cases, set cc to the lead and trailCC to the trail combining class
*
* the following merge-sort of the current character into the preceding,
* canonically ordered result text will use the optimized _insertOrdered()
* if there is only one single code point to process;
* this is indicated with p==NULL, and (c, c2) is the character to insert
* ((c, 0) for a BMP character and (lead surrogate, trail surrogate)
* for a supplementary character)
* otherwise, p[length] is merged in with _mergeOrdered()
*/
if(isNorm32HangulOrJamo(norm32)) {
if(ignoreHangul) {
c2=0;
p=NULL;
length=1;
} else {
/* Hangul syllable: decompose algorithmically */
p=buffer;
cc=trailCC=0;
c-=HANGUL_BASE;
c2=(UChar)(c%JAMO_T_COUNT);
c/=JAMO_T_COUNT;
if(c2>0) {
buffer[2]=(UChar)(JAMO_T_BASE+c2);
length=3;
} else {
length=2;
}
buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
}
} else {
if(isNorm32Regular(norm32)) {
c2=0;
length=1;
} else {
/* c is a lead surrogate, get the real norm32 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
length=2;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
length=1;
norm32=0;
}
}
/* get the decomposition and the lead and trail cc's */
if((norm32&qcMask)==0) {
/* c does not decompose */
cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT);
p=NULL;
} else {
/* c decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, qcMask, length, cc, trailCC);
if(length==1) {
/* fastpath a single code unit from decomposition */
c=*p;
c2=0;
p=NULL;
}
}
}
/* append the decomposition to the destination buffer, assume length>0 */
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
UChar *reorderSplit=dest+destIndex;
if(p==NULL) {
/* fastpath: single code point */
if(cc!=0 && cc<prevCC) {
/* (c, c2) is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_insertOrdered(reorderStart, reorderSplit, dest+destIndex, c, c2, cc);
} else {
/* just append (c, c2) */
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
}
} else {
/* general: multiple code points (ordered by themselves) from decomposition */
if(cc!=0 && cc<prevCC) {
/* the decomposition is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_mergeOrdered(reorderStart, reorderSplit, p, p+length);
} else {
/* just append the decomposition */
do {
dest[destIndex++]=*p++;
} while(--length>0);
}
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
}
prevCC=trailCC;
if(prevCC==0) {
reorderStart=dest+destIndex;
}
}
outTrailCC=prevCC;
return destIndex;
}
U_CFUNC int32_t
unorm_decompose(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool ignoreHangul,
UGrowBuffer *growBuffer, void *context,
UErrorCode *pErrorCode) {
int32_t destIndex;
uint8_t trailCC;
if(!_haveData(*pErrorCode)) {
return 0;
}
destIndex=_decompose(dest, destCapacity,
src, srcLength,
compat, ignoreHangul,
growBuffer, context,
trailCC,
pErrorCode);
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
}
/* make FCD ----------------------------------------------------------------- */
static const UChar *
_findSafeFCD(const UChar *src, const UChar *limit, uint16_t fcd16) {
UChar c, c2;
/*
* find the first position in [src..limit[ after some cc==0 according to FCD data
*
* at the beginning of the loop, we have fcd16 from before src
*
* stop at positions:
* - after trail cc==0
* - at the end of the source
* - before lead cc==0
*/
for(;;) {
/* stop if trail cc==0 for the previous character */
if((fcd16&0xff)==0) {
break;
}
/* get c=*src - stop at end of string */
if(src==limit) {
break;
}
c=*src;
/* stop if lead cc==0 for this character */
if(c<_NORM_MIN_WITH_LEAD_CC || (fcd16=_getFCD16(c))==0) {
break; /* catches terminating NUL, too */
}
if(!UTF_IS_FIRST_SURROGATE(c)) {
if(fcd16<=0xff) {
break;
}
++src;
} else if((src+1)!=limit && (c2=*(src+1), UTF_IS_SECOND_SURROGATE(c2))) {
/* c is a lead surrogate, get the real fcd16 */
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
if(fcd16<=0xff) {
break;
}
src+=2;
} else {
/* c is an unpaired first surrogate, lead cc==0 */
break;
}
}
return src;
}
static uint8_t
_decomposeFCD(const UChar *src, const UChar *decompLimit, const UChar *limit,
UChar *dest, int32_t &destIndex, int32_t &destCapacity,
UBool canGrow, UGrowBuffer *growBuffer, void *context) {
UChar *reorderStart;
const UChar *p;
uint32_t norm32;
int32_t length;
UChar c, c2;
uint8_t cc, prevCC, trailCC;
/*
* canonically decompose [src..decompLimit[
*
* all characters in this range have some non-zero cc,
* directly or in decomposition,
* so that we do not need to check in the following for quick-check limits etc.
*
* there _are_ _no_ Hangul syllables or Jamos in here because they are FCD-safe (cc==0)!
*
* we also do not need to check for c==0 because we have an established decompLimit
*/
reorderStart=dest+destIndex;
prevCC=0;
while(src<decompLimit) {
c=*src++;
norm32=_getNorm32(c);
if(isNorm32Regular(norm32)) {
c2=0;
length=1;
} else {
/*
* reminder: this function is called with [src..decompLimit[
* not containing any Hangul/Jamo characters,
* therefore the only specials are lead surrogates
*/
/* c is a lead surrogate, get the real norm32 */
if(src!=decompLimit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
length=2;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
length=1;
norm32=0;
}
}
/* get the decomposition and the lead and trail cc's */
if((norm32&_NORM_QC_NFD)==0) {
/* c does not decompose */
cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT);
p=NULL;
} else {
/* c decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, length, cc, trailCC);
if(length==1) {
/* fastpath a single code unit from decomposition */
c=*p;
c2=0;
p=NULL;
}
}
/* append the decomposition to the destination buffer, assume length>0 */
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
UChar *reorderSplit=dest+destIndex;
if(p==NULL) {
/* fastpath: single code point */
if(cc!=0 && cc<prevCC) {
/* (c, c2) is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_insertOrdered(reorderStart, reorderSplit, dest+destIndex, c, c2, cc);
} else {
/* just append (c, c2) */
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
}
} else {
/* general: multiple code points (ordered by themselves) from decomposition */
if(cc!=0 && cc<prevCC) {
/* the decomposition is out of order with respect to the preceding text */
destIndex+=length;
trailCC=_mergeOrdered(reorderStart, reorderSplit, p, p+length);
} else {
/* just append the decomposition */
do {
dest[destIndex++]=*p++;
} while(--length>0);
}
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
}
prevCC=trailCC;
if(prevCC==0) {
reorderStart=dest+destIndex;
}
}
return prevCC;
}
/*
* ### TODO:
* try to use the previous two functions in incremental FCD in collation
*/
static int32_t
unorm_makeFCD(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UGrowBuffer *growBuffer, void *context,
UErrorCode *pErrorCode) {
const UChar *limit, *prevSrc, *decompStart;
int32_t destIndex, length;
UChar c, c2;
uint16_t fcd16;
int16_t prevCC, cc;
UBool canGrow;
if(!_haveData(*pErrorCode)) {
return 0;
}
/* initialize */
decompStart=src;
destIndex=0;
prevCC=0;
/* avoid compiler warnings */
c=0;
fcd16=0;
/* do not attempt to grow if there is no growBuffer function or if it has failed before */
canGrow=(UBool)(growBuffer!=NULL);
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* skip a run of code units below the minimum or with irrelevant data for the FCD check */
prevSrc=src;
if(limit==NULL) {
for(;;) {
c=*src;
if(c<_NORM_MIN_WITH_LEAD_CC) {
if(c==0) {
break;
}
prevCC=-(int16_t)c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
++src;
}
} else {
for(;;) {
if(src==limit) {
break;
} else if((c=*src)<_NORM_MIN_WITH_LEAD_CC) {
prevCC=-(int16_t)c;
} else if((fcd16=_getFCD16(c))==0) {
prevCC=0;
} else {
break;
}
++src;
}
}
/* copy these code units all at once */
if(src!=prevSrc) {
length=(int32_t)(src-prevSrc);
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
}
destIndex+=length;
prevSrc=src;
}
/* now prevSrc==src - used later to adjust destIndex before decomposition */
/* end of source reached? */
if(limit==NULL ? c==0 : src==limit) {
break;
}
/*
* prevCC has values from the following ranges:
* 0..0xff - the previous trail combining class
* <0 - the negative value of the previous code unit;
* that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16()
* was deferred so that average text is checked faster
*/
/* set a pointer to after the last source position where prevCC==0 */
if(prevCC<0) {
/* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */
prevCC=(int16_t)_getFCD16((UChar)-prevCC)&0xff;
decompStart= prevCC==0 ? src : src-1;
} else if(prevCC==0) {
decompStart=src;
/* else do not change decompStart */
}
/* c already contains *src and fcd16 is set for it, increment src */
++src;
/* check one above-minimum, relevant code unit */
if(UTF_IS_FIRST_SURROGATE(c)) {
/* c is a lead surrogate, get the real fcd16 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
fcd16=_getFCD16FromSurrogatePair(fcd16, c2);
} else {
fcd16=0;
}
}
/* we are looking at the character at [prevSrc..src[ */
/* check the combining order */
cc=(int16_t)(fcd16>>8);
if(cc==0 || cc>=prevCC) {
/* the order is ok */
prevCC=(int16_t)fcd16&0xff;
} else {
/*
* back out the part of the source that we copied already but
* is now going to be decomposed;
* prevSrc is set to after what was copied
*/
destIndex-=(int32_t)(prevSrc-decompStart);
/*
* find the part of the source that needs to be decomposed;
* to be safe and simple, decompose to before the next character with lead cc==0
*/
src=_findSafeFCD(src, limit, fcd16);
/*
* the source text does not fulfill the conditions for FCD;
* decompose and reorder a limited piece of the text
*/
prevCC=_decomposeFCD(decompStart, src, limit,
dest, destIndex, destCapacity,
canGrow, growBuffer, context);
decompStart=src;
}
}
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
}
/* make NFC & NFKC ---------------------------------------------------------- */
enum {
_STACK_BUFFER_CAPACITY=100
};
/* get the composition properties of the next character */
inline uint32_t
_getNextCombining(UChar *&p, const UChar *limit,
UChar &c, UChar &c2,
uint16_t &combiningIndex, uint8_t &cc) {
uint32_t norm32, combineFlags;
c=*p++;
norm32=_getNorm32(c);
if((norm32&(_NORM_CC_MASK|_NORM_COMBINES_ANY))==0) {
c2=0;
combiningIndex=0;
cc=0;
return 0;
} else {
if(isNorm32Regular(norm32)) {
c2=0;
} else if(isNorm32HangulOrJamo(norm32)) {
/* a compatibility decomposition contained Jamos */
c2=0;
combiningIndex=(uint16_t)(0xfff0|(norm32>>_NORM_EXTRA_SHIFT));
cc=0;
return norm32&_NORM_COMBINES_ANY;
} else {
/* c is a lead surrogate, get the real norm32 */
if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) {
++p;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
c2=0;
combiningIndex=0;
cc=0;
return 0;
}
}
combineFlags=norm32&_NORM_COMBINES_ANY;
if(combineFlags!=0) {
combiningIndex=*(_getExtraData(norm32)-1);
}
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
return combineFlags;
}
}
/*
* given a composition-result starter (c, c2) - which means its cc==0,
* it combines forward, it has extra data, its norm32!=0,
* it is not a Hangul or Jamo,
* get just its combineFwdIndex
*
* norm32(c) is special if and only if c2!=0
*/
inline uint16_t
_getCombiningIndexFromStarter(UChar c, UChar c2) {
uint32_t norm32;
norm32=_getNorm32(c);
if(c2!=0) {
norm32=_getNorm32FromSurrogatePair(norm32, c2);
}
return *(_getExtraData(norm32)-1);
}
/*
* Find the recomposition result for
* a forward-combining character
* (specified with a pointer to its part of the combiningTable[])
* and a backward-combining character
* (specified with its combineBackIndex).
*
* If these two characters combine, then set (value, value2)
* with the code unit(s) of the composition character.
*
* Return value:
* 0 do not combine
* 1 combine
* >1 combine, and the composition is a forward-combining starter
*
* See unormimp.h for a description of the composition table format.
*/
inline uint16_t
_combine(const uint16_t *table, uint16_t combineBackIndex,
uint16_t &value, uint16_t &value2) {
uint16_t key;
/* search in the starter's composition table */
for(;;) {
key=*table++;
if(key>=combineBackIndex) {
break;
}
table+= *table&0x8000 ? 2 : 1;
}
/* mask off bit 15, the last-entry-in-the-list flag */
if((key&0x7fff)==combineBackIndex) {
/* found! combine! */
value=*table;
/* is the composition a starter that combines forward? */
key=(value&0x2000)+1;
/* get the composition result code point from the variable-length result value */
if(value&0x8000) {
if(value&0x4000) {
/* surrogate pair composition result */
value=(value&0x3ff)|0xd800;
value2=*(table+1);
} else {
/* BMP composition result U+2000..U+ffff */
value=*(table+1);
value2=0;
}
} else {
/* BMP composition result U+0000..U+1fff */
value&=0x1fff;
value2=0;
}
return key;
} else {
/* not found */
return 0;
}
}
/*
* recompose the characters in [p..limit[ (which is canonically ordered),
* adjust limit, and return the trailing cc
*
* since for NFKC we may get Jamos in decompositions, we need to
* recompose those too
*
* note that recomposition never lengthens the text:
* any character consists of either one or two code units;
* a composition may contain at most one more code unit than the original starter,
* while the combining mark that is removed has at least one code unit
*/
static uint8_t
_recompose(UChar *p, UChar *&limit) {
UChar *starter, *pRemove, *q, *r;
uint32_t combineFlags;
UChar c, c2;
uint16_t combineFwdIndex, combineBackIndex;
uint16_t result, value, value2;
uint8_t cc, prevCC;
UBool starterIsSupplementary;
starter=NULL; /* no starter */
combineFwdIndex=0; /* will not be used until starter!=NULL - avoid compiler warnings */
starterIsSupplementary=FALSE; /* will not be used until starter!=NULL - avoid compiler warnings */
prevCC=0;
for(;;) {
combineFlags=_getNextCombining(p, limit, c, c2, combineBackIndex, cc);
if((combineFlags&_NORM_COMBINES_BACK) && starter!=NULL) {
if(combineBackIndex&0x8000) {
/* c is a Jamo V/T, see if we can compose it with the previous character */
pRemove=NULL; /* NULL while no Hangul composition */
c2=*starter;
if(combineBackIndex==0xfff2) {
/* Jamo V, compose with previous Jamo L and following Jamo T */
c2=(UChar)(c2-JAMO_L_BASE);
if(c2<JAMO_L_COUNT) {
pRemove=p-1;
c=(UChar)(HANGUL_BASE+(c2*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT);
if(p!=limit && (c2=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) {
++p;
c+=c2;
}
*starter=c;
}
} else {
/* Jamo T, compose with previous Hangul that does not have a Jamo T */
if(isHangulWithoutJamoT(c2)) {
pRemove=p-1;
*starter=(UChar)(c2+(c-JAMO_T_BASE));
}
}
if(pRemove!=NULL) {
/* remove the Jamo(s) */
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
p=pRemove;
limit=q;
}
c2=0; /* c2 held *starter temporarily */
/*
* now: cc==0 and the combining index does not include "forward" ->
* the rest of the loop body will reset starter to NULL;
* technically, a composed Hangul syllable is a starter, but it
* does not combine forward now that we have consumed all eligible Jamos;
* for Jamo V/T, combineFlags does not contain _NORM_COMBINES_FWD
*/
} else if(
/* the starter is not a Jamo V/T and */
!(combineFwdIndex&0x8000) &&
/* the combining mark is not blocked and */
(prevCC<cc || prevCC==0) &&
/* the starter and the combining mark (c, c2) do combine */
0!=(result=_combine(combiningTable+combineFwdIndex, combineBackIndex, value, value2))
) {
/* replace the starter with the composition, remove the combining mark */
pRemove= c2==0 ? p-1 : p-2; /* pointer to the combining mark */
/* replace the starter with the composition */
*starter=(UChar)value;
if(starterIsSupplementary) {
if(value2!=0) {
/* both are supplementary */
*(starter+1)=(UChar)value2;
} else {
/* the composition is shorter than the starter, move the intermediate characters forward one */
starterIsSupplementary=FALSE;
q=starter+1;
r=q+1;
while(r<pRemove) {
*q++=*r++;
}
--pRemove;
}
} else if(value2!=0) {
/* the composition is longer than the starter, move the intermediate characters back one */
starterIsSupplementary=TRUE;
++starter; /* temporarily increment for the loop boundary */
q=pRemove;
r=++pRemove;
while(starter<q) {
*--r=*--q;
}
*starter=(UChar)value2;
--starter; /* undo the temporary increment */
/* } else { both are on the BMP, nothing more to do */
}
/* remove the combining mark by moving the following text over it */
if(pRemove<p) {
q=pRemove;
r=p;
while(r<limit) {
*q++=*r++;
}
p=pRemove;
limit=q;
}
/* keep prevCC because we removed the combining mark */
/* done? */
if(p==limit) {
return prevCC;
}
/* is the composition a starter that combines forward? */
if(result>1) {
combineFwdIndex=_getCombiningIndexFromStarter((UChar)value, (UChar)value2);
} else {
starter=NULL;
}
/* we combined and set prevCC, continue with looking for compositions */
continue;
}
}
/* no combination this time */
prevCC=cc;
if(p==limit) {
return prevCC;
}
/* if (c, c2) did not combine, then check if it is a starter */
if(cc==0) {
/* found a new starter */
if(combineFlags&_NORM_COMBINES_FWD) {
/* it may combine with something, prepare for it */
if(c2==0) {
starterIsSupplementary=FALSE;
starter=p-1;
} else {
starterIsSupplementary=TRUE;
starter=p-2;
}
combineFwdIndex=combineBackIndex;
} else {
/* it will not combine with anything */
starter=NULL;
}
}
}
}
/* find the first true starter in [src..limit[ and return the pointer to it */
static const UChar *
_findNextStarter(const UChar *src, const UChar *limit,
uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe) {
const UChar *p;
uint32_t norm32, ccOrQCMask;
int32_t length;
UChar c, c2;
uint8_t cc, trailCC;
ccOrQCMask=_NORM_CC_MASK|qcMask;
for(;;) {
if(src==limit) {
break; /* end of string */
}
c=*src;
if(c<minNoMaybe) {
break; /* catches NUL terminater, too */
}
norm32=_getNorm32(c);
if((norm32&ccOrQCMask)==0) {
break; /* true starter */
}
if((norm32&decompQCMask)==0) {
++src; /* does not decompose, continue */
continue;
}
/* no Hangul/Jamo here because they are all true starters or don't decompose */
if(isNorm32Regular(norm32)) {
c2=0;
} else {
/* c is a lead surrogate, get the real norm32 */
if((src+1)==limit || UTF_IS_SECOND_SURROGATE(c2=*(src+1))) {
break; /* unmatched first surrogate */
}
norm32=_getNorm32FromSurrogatePair(norm32, c2);
if((norm32&ccOrQCMask)==0) {
break; /* true starter */
} else if((norm32&decompQCMask)==0) {
src+=2; /* does not decompose, continue */
continue;
}
}
/* (c, c2) decomposes, get everything from the variable-length extra data */
p=_decompose(norm32, decompQCMask, length, cc, trailCC);
/* get the first character's norm32 to check if it is a true starter */
if(cc==0 && (_getNorm32(p, qcMask)&qcMask)==0) {
break; /* true starter */
}
src+= c2==0 ? 1 : 2; /* not a true starter, continue */
}
return src;
}
/*
* recompose around the current character:
* this function is called when unorm_decompose() finds a quick check "no" or "maybe"
* after some text (with quick check "yes") has been copied already
*
* decompose this character as well as parts of the source surrounding it,
* bounded by the previous and the next true starter,
* and then recompose this decomposition
*/
static const UChar *
_composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length,
const UChar *&prevStarter, const UChar *prevSrc, const UChar *src, const UChar *limit,
uint32_t norm32,
uint32_t qcMask, uint8_t &prevCC,
int32_t &destIndex,
UErrorCode *pErrorCode) {
UChar *recomposeLimit;
uint32_t decompQCMask;
UChar minNoMaybe;
uint8_t trailCC;
decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */
if(!(decompQCMask&_NORM_QC_NFKD)) {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE];
} else {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE];
}
/*
* find the last true starter in [prevStarter..src[
* it is either the decomposition of the current character (at prevSrc),
* or prevStarter
*/
if(_isTrueStarter(norm32, _NORM_CC_MASK|qcMask, decompQCMask)) {
prevStarter=prevSrc;
} else {
/* adjust destIndex: back out what had been copied with qc "yes" */
destIndex-=(int32_t)(prevSrc-prevStarter);
}
/* find the next true starter in [src..limit[ */
src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe);
/* decompose [prevStarter..src[ */
length=_decompose(buffer, bufferCapacity,
prevStarter, src-prevStarter,
(decompQCMask&_NORM_QC_NFKD)!=0, FALSE,
u_growBufferFromStatic, stackBuffer,
trailCC,
pErrorCode);
/* set the next starter */
prevStarter=src;
/* recompose the decomposition */
recomposeLimit=buffer+length;
if(length>=2) {
prevCC=_recompose(buffer, recomposeLimit);
}
/* return with a pointer to the recomposition and its length */
length=recomposeLimit-buffer;
return buffer;
}
U_CFUNC int32_t
unorm_compose(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UBool compat, UBool /* ### TODO: need to do this? -- ignoreHangul -- ### */,
UGrowBuffer *growBuffer, void *context,
UErrorCode *pErrorCode) {
UChar stackBuffer[_STACK_BUFFER_CAPACITY];
UChar *buffer;
int32_t bufferCapacity;
const UChar *limit, *prevSrc, *reorderStart, *prevStarter;
uint32_t norm32, ccOrQCMask, qcMask;
int32_t destIndex, length;
UChar c, c2, minNoMaybe;
uint8_t cc, prevCC;
UBool canGrow;
if(!_haveData(*pErrorCode)) {
return 0;
}
if(!compat) {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
qcMask=_NORM_QC_NFC;
} else {
minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
qcMask=_NORM_QC_NFKC;
}
/* initialize */
buffer=stackBuffer;
bufferCapacity=_STACK_BUFFER_CAPACITY;
/*
* prevStarter points to the last character before the current one
* that is a "true" starter with cc==0 and quick check "yes".
*
* prevStarter will be used instead of looking for a true starter
* while incrementally decomposing [prevStarter..prevSrc[
* in _composePart(). Having a good prevStarter allows to just decompose
* the entire [prevStarter..prevSrc[.
*
* This relies on the assumption that the decomposition of a true starter
* also begins with a true starter. gennorm/store.c checks for this.
*/
prevStarter=src;
reorderStart=dest;
ccOrQCMask=_NORM_CC_MASK|qcMask;
destIndex=0;
prevCC=0;
/* avoid compiler warnings */
norm32=0;
c=0;
/* do not attempt to grow if there is no growBuffer function or if it has failed before */
canGrow=(UBool)(growBuffer!=NULL);
if(srcLength>=0) {
/* string with length */
limit=src+srcLength;
} else /* srcLength==-1 */ {
/* zero-terminated string */
limit=NULL;
}
U_ALIGN_CODE(16);
for(;;) {
/* count code units below the minimum or with irrelevant data for the quick check */
prevSrc=src;
if(limit==NULL) {
while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) {
prevCC=0;
++src;
}
} else {
while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) {
prevCC=0;
++src;
}
}
/* copy these code units all at once */
if(src!=prevSrc) {
length=(int32_t)(src-prevSrc);
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR);
}
destIndex+=length;
reorderStart=dest+destIndex; /* not valid if dest==NULL */
/* set prevStarter to the last character in the quick check loop */
prevStarter=src-1;
if(UTF_IS_SECOND_SURROGATE(*prevStarter) && prevSrc<prevStarter && UTF_IS_FIRST_SURROGATE(*(prevStarter-1))) {
--prevStarter;
}
prevSrc=src;
}
/* end of source reached? */
if(limit==NULL ? c==0 : src==limit) {
break;
}
/* c already contains *src and norm32 is set for it, increment src */
++src;
/*
* source buffer pointers:
*
* all done quick check current char not yet
* "yes" but (c, c2) processed
* may combine
* forward
* [-------------[-------------[-------------[-------------[
* | | | | |
* start prevStarter prevSrc src limit
*
*
* destination buffer pointers and indexes:
*
* all done might take not filled yet
* characters for
* reordering
* [-------------[-------------[-------------[
* | | | |
* dest reorderStart destIndex destCapacity
*/
/* check one above-minimum, relevant code unit */
/*
* norm32 is for c=*(src-1), and the quick check flag is "no" or "maybe", and/or cc!=0
* check for Jamo V/T, then for surrogates and regular characters
* c is not a Hangul syllable because they are not marked with no/maybe for NFC & NFKC (and their cc==0)
*/
if(isNorm32HangulOrJamo(norm32)) {
/*
* Jamo V/T:
* try to compose with the previous character, Jamo V also with a following Jamo T,
* and set values here right now in case we just continue with the main loop
*/
length=1;
prevCC=cc=0;
prevStarter=prevSrc;
reorderStart=dest+destIndex;
if(/* ### TODO: do we need to do this? !ignoreHangul && ### */ destIndex>0) {
/* c is a Jamo V/T, see if we can compose it with the previous character */
c2=*(prevSrc-1);
if(isJamoVTNorm32JamoV(norm32)) {
/* Jamo V, compose with previous Jamo L and following Jamo T */
c2=(UChar)(c2-JAMO_L_BASE);
if(c2<JAMO_L_COUNT) {
c=(UChar)(HANGUL_BASE+(c2*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT);
if(src!=limit && (c2=(UChar)(*src-JAMO_T_BASE))<JAMO_T_COUNT) {
++src;
c+=c2;
}
if(destIndex<=destCapacity) {
dest[destIndex-1]=c;
}
continue;
}
} else {
/* Jamo T, compose with previous Hangul that does not have a Jamo T */
if(isHangulWithoutJamoT(c2)) {
if(destIndex<=destCapacity) {
dest[destIndex-1]=(UChar)(c2+(c-JAMO_T_BASE));
}
continue;
}
}
}
c2=0;
} else {
if(isNorm32Regular(norm32)) {
c2=0;
length=1;
} else {
/* c is a lead surrogate, get the real norm32 */
if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) {
++src;
length=2;
norm32=_getNorm32FromSurrogatePair(norm32, c2);
} else {
/* c is an unpaired lead surrogate, nothing to do */
c2=0;
length=1;
norm32=0;
}
}
/* we are looking at the character (c, c2) at [prevSrc..src[ */
if((norm32&qcMask)==0) {
cc=(uint8_t)(norm32>>_NORM_CC_SHIFT);
} else {
const UChar *p;
/*
* find appropriate boundaries around this character,
* decompose the source text from between the boundaries,
* and recompose it
*
* this puts the intermediate text into the side buffer because
* it might be longer than the recomposition end result,
* or the destination buffer may be too short or missing
*
* note that destIndex may be adjusted backwards to account
* for source text that passed the quick check but needed to
* take part in the recomposition
*/
p=_composePart(stackBuffer, buffer, bufferCapacity, length,
prevStarter, /* in/out, will be set to the following true starter */
prevSrc, src, limit,
norm32,
qcMask,
prevCC, /* output */
destIndex, /* will be adjusted */
pErrorCode);
if(p==NULL) {
destIndex=0; /* an error occurred (out of memory) */
break;
}
/* append the recomposed buffer contents to the destination buffer */
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
while(length>0) {
dest[destIndex++]=*p++;
--length;
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
}
src=prevStarter;
continue;
}
}
/* append the single code point (c, c2) to the destination buffer */
if( (destIndex+length)<=destCapacity ||
/* attempt to grow the buffer */
(canGrow && (canGrow=growBuffer(context, &dest, &destCapacity,
limit==NULL ?
2*destCapacity+length+20 :
destCapacity+length+2*(limit-src)+20,
destIndex))!=FALSE)
) {
if(cc!=0 && cc<prevCC) {
/* (c, c2) is out of order with respect to the preceding text */
UChar *reorderSplit=dest+destIndex;
destIndex+=length;
prevCC=_insertOrdered(reorderStart, reorderSplit, dest+destIndex, c, c2, cc);
} else {
/* just append (c, c2) */
dest[destIndex++]=c;
if(c2!=0) {
dest[destIndex++]=c2;
}
prevCC=cc;
}
} else {
/* buffer overflow */
/* keep incrementing the destIndex for preflighting */
destIndex+=length;
prevCC=cc;
}
}
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode);
}
/*
### TODO
task items:
- 2.0 Java sample code from unicode.org compare vs. JNI around C implementation - do monkey test
- 2.1 port that sample code to C/C++ and run as part of regular test suite
*/
/* normalize() API ---------------------------------------------------------- */
/**
* Internal API for normalizing.
* Does not check for bad input and uses growBuffer.
* @internal
*/
U_CFUNC int32_t
unorm_internalNormalize(UChar *dest, int32_t destCapacity,
const UChar *src, int32_t srcLength,
UNormalizationMode mode, UBool ignoreHangul,
UGrowBuffer *growBuffer, void *context,
UErrorCode *pErrorCode) {
switch(mode) {
case UNORM_NFD:
return unorm_decompose(dest, destCapacity,
src, srcLength,
FALSE, ignoreHangul,
growBuffer, context,
pErrorCode);
case UNORM_NFKD:
return unorm_decompose(dest, destCapacity,
src, srcLength,
TRUE, ignoreHangul,
growBuffer, context,
pErrorCode);
case UNORM_NFC:
return unorm_compose(dest, destCapacity,
src, srcLength,
FALSE, ignoreHangul,
growBuffer, context,
pErrorCode);
case UNORM_NFKC:
return unorm_compose(dest, destCapacity,
src, srcLength,
TRUE, ignoreHangul,
growBuffer, context,
pErrorCode);
case UNORM_FCD:
return unorm_makeFCD(dest, destCapacity,
src, srcLength,
growBuffer, context,
pErrorCode);
case UNORM_NONE:
/* just copy the string */
if(srcLength==-1) {
srcLength=u_strlen(src);
}
if( srcLength<=destCapacity ||
/* attempt to grow the buffer */
(growBuffer!=NULL && growBuffer(context, &dest, &destCapacity, srcLength+1, 0))
) {
uprv_memcpy(dest, src, srcLength*U_SIZEOF_UCHAR);
}
return u_terminateUChars(dest, destCapacity, srcLength, pErrorCode);
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
}
/** Public API for normalizing. */
U_CAPI int32_t
unorm_normalize(const UChar *src, int32_t srcLength,
UNormalizationMode mode, int32_t option,
UChar *dest, int32_t destCapacity,
UErrorCode *pErrorCode) {
/* check argument values */
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if( destCapacity<0 || (dest==NULL && destCapacity>0) ||
src==NULL || srcLength<-1
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* check for overlapping src and destination */
if( (src>=dest && src<(dest+destCapacity)) ||
(srcLength>0 && dest>=src && dest<(src+srcLength))
) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return unorm_internalNormalize(dest, destCapacity,
src, srcLength,
mode, (UBool)((option&UNORM_IGNORE_HANGUL)!=0),
NULL, NULL,
pErrorCode);
}
/* iteration functions ------------------------------------------------------ */
/*
* These iteration functions are the core implementations of the
* Normalizer class iteration API.
* They read from a CharacterIterator into their own buffer
* and normalize into the Normalizer iteration buffer.
* Normalizer itself then iterates over its buffer until that needs to be
* filled again.
*/
/* backward iteration ------------------------------------------------------- */
/*
* read backwards and get norm32
* return 0 if the character is <minC
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
inline uint32_t
_getPrevNorm32(CharacterIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) {
uint32_t norm32;
/* need src.hasPrevious() */
c=src.previous();
c2=0;
/* check for a surrogate before getting norm32 to see if we need to predecrement further */
if(c<minC) {
return 0;
} else if(!UTF_IS_SURROGATE(c)) {
return _getNorm32(c);
} else if(UTF_IS_SURROGATE_FIRST(c) || !src.hasPrevious()) {
/* unpaired surrogate */
return 0;
} else if(UTF_IS_FIRST_SURROGATE(c2=src.previous())) {
norm32=_getNorm32(c2);
if((norm32&mask)==0) {
/* all surrogate pairs with this lead surrogate have irrelevant data */
return 0;
} else {
/* norm32 must be a surrogate special */
return _getNorm32FromSurrogatePair(norm32, c);
}
} else {
/* unpaired second surrogate, undo the c2=src.previous() movement */
src.move(1, CharacterIterator::kCurrent);
return 0;
}
}
/*
* read backwards and check if the character is a previous-iteration boundary
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
typedef UBool
IsPrevBoundaryFn(CharacterIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2);
/*
* read backwards and check if the combining class is 0
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
static UBool
_isPrevCCZero(CharacterIterator &src, uint32_t minC, uint32_t ccMask, UChar &c, UChar &c2) {
return (_getPrevNorm32(src, minC, ccMask, c, c2)&ccMask)==0;
}
/*
* read backwards and check if the character is (or its decomposition begins with)
* a "true starter" (cc==0 and NF*C_YES)
* if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!)
*/
static UBool
_isPrevTrueStarter(CharacterIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
uint32_t norm32, decompQCMask;
decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */
norm32=_getPrevNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2);
return _isTrueStarter(norm32, ccOrQCMask, decompQCMask);
}
static int32_t
_findPreviousIterationBoundary(CharacterIterator &src,
IsPrevBoundaryFn *isPrevBoundary, uint32_t minC, uint32_t mask,
UChar *&buffer, int32_t bufferCapacity,
int32_t &startIndex,
UErrorCode *pErrorCode) {
UChar *stackBuffer;
UChar c, c2;
UBool isBoundary;
/* initialize */
stackBuffer=buffer;
startIndex=bufferCapacity; /* fill the buffer from the end backwards */
while(src.hasPrevious()) {
isBoundary=isPrevBoundary(src, minC, mask, c, c2);
/* always write this character to the front of the buffer */
/* make sure there is enough space in the buffer */
if(startIndex < (c2==0 ? 1 : 2)) {
int32_t bufferLength=bufferCapacity;
if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferCapacity, bufferLength)) {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
src.setToStart();
return 0;
}
/* move the current buffer contents up */
uprv_memmove(buffer+(bufferCapacity-bufferLength), buffer, bufferLength*U_SIZEOF_UCHAR);
startIndex+=bufferCapacity-bufferLength;
}
buffer[--startIndex]=c;
if(c2!=0) {
buffer[--startIndex]=c2;
}
/* stop if this just-copied character is a boundary */
if(isBoundary) {
break;
}
}
/* return the length of the buffer contents */
return bufferCapacity-startIndex;
}
U_CFUNC int32_t
unorm_previousNormalize(UChar *dest, int32_t destCapacity,
CharacterIterator &src,
UNormalizationMode mode, UBool ignoreHangul,
UGrowBuffer *growBuffer, void *context,
UErrorCode *pErrorCode) {
UChar stackBuffer[40];
UChar *buffer;
IsPrevBoundaryFn *isPreviousBoundary;
uint32_t mask;
int32_t startIndex, bufferLength, destLength;
UChar minC;
switch(mode) {
case UNORM_NFD:
case UNORM_NFKD:
case UNORM_FCD:
isPreviousBoundary=_isPrevCCZero;
minC=_NORM_MIN_WITH_LEAD_CC;
mask=_NORM_CC_MASK;
break;
case UNORM_NFC:
isPreviousBoundary=_isPrevTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFC;
break;
case UNORM_NFKC:
isPreviousBoundary=_isPrevTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFKC;
break;
case UNORM_NONE:
if(src.hasPrevious()) {
UChar32 c=src.previous32();
destLength=0;
UTF_APPEND_CHAR_UNSAFE(dest, destLength, c);
return destLength;
} else {
return 0;
}
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
buffer=stackBuffer;
bufferLength=_findPreviousIterationBoundary(src,
isPreviousBoundary, minC, mask,
buffer, sizeof(stackBuffer)/U_SIZEOF_UCHAR,
startIndex,
pErrorCode);
if(bufferLength>0) {
destLength=unorm_internalNormalize(dest, destCapacity,
buffer+startIndex, bufferLength,
mode, ignoreHangul,
growBuffer, context, pErrorCode);
} else {
destLength=0;
}
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return destLength;
}
/* forward iteration -------------------------------------------------------- */
/*
* read forward and get norm32
* return 0 if the character is <minC
* if c2!=0 then (c2, c) is a surrogate pair
* always reads complete characters
*/
inline uint32_t
_getNextNorm32(CharacterIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) {
uint32_t norm32;
/* need src.hasNext() */
c=src.nextPostInc();
c2=0;
if(c<minC) {
return 0;
}
norm32=_getNorm32(c);
if(UTF_IS_FIRST_SURROGATE(c) && src.hasNext() && UTF_IS_SECOND_SURROGATE(c2=src.current())) {
src.move(1, CharacterIterator::kCurrent); /* skip the c2 surrogate */
if((norm32&mask)==0) {
/* irrelevant data */
return 0;
} else {
/* norm32 must be a surrogate special */
return _getNorm32FromSurrogatePair(norm32, c2);
}
}
return norm32;
}
/*
* read forward and check if the character is a next-iteration boundary
* if c2!=0 then (c, c2) is a surrogate pair
*/
typedef UBool
IsNextBoundaryFn(CharacterIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2);
/*
* read forward and check if the combining class is 0
* if c2!=0 then (c, c2) is a surrogate pair
*/
static UBool
_isNextCCZero(CharacterIterator &src, uint32_t minC, uint32_t ccMask, UChar &c, UChar &c2) {
return (_getNextNorm32(src, minC, ccMask, c, c2)&ccMask)==0;
}
/*
* read forward and check if the character is (or its decomposition begins with)
* a "true starter" (cc==0 and NF*C_YES)
* if c2!=0 then (c, c2) is a surrogate pair
*/
static UBool
_isNextTrueStarter(CharacterIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) {
uint32_t norm32, decompQCMask;
decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */
norm32=_getNextNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2);
return _isTrueStarter(norm32, ccOrQCMask, decompQCMask);
}
static int32_t
_findNextIterationBoundary(CharacterIterator &src,
IsNextBoundaryFn *isNextBoundary, uint32_t minC, uint32_t mask,
UChar *&buffer, int32_t bufferCapacity,
UErrorCode *pErrorCode) {
UChar *stackBuffer;
int32_t bufferIndex;
UChar c, c2;
if(!src.hasNext()) {
return 0;
}
/* initialize */
stackBuffer=buffer;
/* get one character and ignore its properties */
buffer[0]=c=src.current();
bufferIndex=1;
c2=src.next();
if(UTF_IS_FIRST_SURROGATE(c) && UTF_IS_SECOND_SURROGATE(c2)) {
buffer[bufferIndex++]=c2;
src.move(1, CharacterIterator::kCurrent); /* skip the c2 surrogate */
}
/* get all following characters until we see a boundary */
/* checking hasNext() instead of c!=DONE on the off-chance that U+ffff is part of the string */
while(src.hasNext()) {
if(isNextBoundary(src, minC, mask, c, c2)) {
/* back out the latest movement to stop at the boundary */
src.move(c2==0 ? -1 : -2, CharacterIterator::kCurrent);
break;
} else {
if(bufferIndex+(c2==0 ? 1 : 2)<=bufferCapacity ||
/* attempt to grow the buffer */
u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity,
2*bufferCapacity,
bufferIndex)
) {
buffer[bufferIndex++]=c;
if(c2!=0) {
buffer[bufferIndex++]=c2;
}
} else {
*pErrorCode=U_MEMORY_ALLOCATION_ERROR;
src.setToEnd();
return 0;
}
}
}
/* return the length of the buffer contents */
return bufferIndex;
}
U_CFUNC int32_t
unorm_nextNormalize(UChar *dest, int32_t destCapacity,
CharacterIterator &src,
UNormalizationMode mode, UBool ignoreHangul,
UGrowBuffer *growBuffer, void *context,
UErrorCode *pErrorCode) {
UChar stackBuffer[40];
UChar *buffer;
IsNextBoundaryFn *isNextBoundary;
uint32_t mask;
int32_t bufferLength, destLength;
UChar minC;
switch(mode) {
case UNORM_NFD:
case UNORM_NFKD:
case UNORM_FCD:
isNextBoundary=_isNextCCZero;
minC=_NORM_MIN_WITH_LEAD_CC;
mask=_NORM_CC_MASK;
break;
case UNORM_NFC:
isNextBoundary=_isNextTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFC;
break;
case UNORM_NFKC:
isNextBoundary=_isNextTrueStarter;
minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE];
mask=_NORM_CC_MASK|_NORM_QC_NFKC;
break;
case UNORM_NONE:
if(src.hasNext()) {
UChar32 c=src.next32PostInc();
destLength=0;
UTF_APPEND_CHAR_UNSAFE(dest, destLength, c);
return destLength;
} else {
return 0;
}
default:
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
buffer=stackBuffer;
bufferLength=_findNextIterationBoundary(src,
isNextBoundary, minC, mask,
buffer, sizeof(stackBuffer)/U_SIZEOF_UCHAR,
pErrorCode);
if(bufferLength>0) {
destLength=unorm_internalNormalize(dest, destCapacity,
buffer, bufferLength,
mode, ignoreHangul,
growBuffer, context, pErrorCode);
} else {
destLength=0;
}
/* cleanup */
if(buffer!=stackBuffer) {
uprv_free(buffer);
}
return destLength;
}
/*
* ### TODO: check if NF*D and FCD iteration finds optimal boundaries
* and if not, how hard it would be to improve it.
* For example, see _findSafeFCD().
*/