scuffed-code/icu4c/source/i18n/decimfmt.cpp
Steven R. Loomis 7e6c572256 ICU-10774 fix a knownissue: Collator::getAvailableLocales calculation.
Also, replace uhash_nextElement's parameter "-1" with UHASH_FIRST for clarity.
Also, improve service registration debugging code

X-SVN-Rev: 36836
2014-12-09 23:54:56 +00:00

5675 lines
204 KiB
C++

/*
*******************************************************************************
* Copyright (C) 1997-2014, International Business Machines Corporation and *
* others. All Rights Reserved. *
*******************************************************************************
*
* File DECIMFMT.CPP
*
* Modification History:
*
* Date Name Description
* 02/19/97 aliu Converted from java.
* 03/20/97 clhuang Implemented with new APIs.
* 03/31/97 aliu Moved isLONG_MIN to DigitList, and fixed it.
* 04/3/97 aliu Rewrote parsing and formatting completely, and
* cleaned up and debugged. Actually works now.
* Implemented NAN and INF handling, for both parsing
* and formatting. Extensive testing & debugging.
* 04/10/97 aliu Modified to compile on AIX.
* 04/16/97 aliu Rewrote to use DigitList, which has been resurrected.
* Changed DigitCount to int per code review.
* 07/09/97 helena Made ParsePosition into a class.
* 08/26/97 aliu Extensive changes to applyPattern; completely
* rewritten from the Java.
* 09/09/97 aliu Ported over support for exponential formats.
* 07/20/98 stephen JDK 1.2 sync up.
* Various instances of '0' replaced with 'NULL'
* Check for grouping size in subFormat()
* Brought subParse() in line with Java 1.2
* Added method appendAffix()
* 08/24/1998 srl Removed Mutex calls. This is not a thread safe class!
* 02/22/99 stephen Removed character literals for EBCDIC safety
* 06/24/99 helena Integrated Alan's NF enhancements and Java2 bug fixes
* 06/28/99 stephen Fixed bugs in toPattern().
* 06/29/99 stephen Fixed operator= to copy fFormatWidth, fPad,
* fPadPosition
********************************************************************************
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include "fphdlimp.h"
#include "unicode/decimfmt.h"
#include "unicode/choicfmt.h"
#include "unicode/ucurr.h"
#include "unicode/ustring.h"
#include "unicode/dcfmtsym.h"
#include "unicode/ures.h"
#include "unicode/uchar.h"
#include "unicode/uniset.h"
#include "unicode/curramt.h"
#include "unicode/currpinf.h"
#include "unicode/plurrule.h"
#include "unicode/utf16.h"
#include "unicode/numsys.h"
#include "unicode/localpointer.h"
#include "uresimp.h"
#include "ucurrimp.h"
#include "charstr.h"
#include "cmemory.h"
#include "patternprops.h"
#include "digitlst.h"
#include "cstring.h"
#include "umutex.h"
#include "uassert.h"
#include "putilimp.h"
#include <math.h>
#include "hash.h"
#include "decfmtst.h"
#include "dcfmtimp.h"
#include "plurrule_impl.h"
#include "decimalformatpattern.h"
/*
* On certain platforms, round is a macro defined in math.h
* This undefine is to avoid conflict between the macro and
* the function defined below.
*/
#ifdef round
#undef round
#endif
U_NAMESPACE_BEGIN
#ifdef FMT_DEBUG
#include <stdio.h>
static void _debugout(const char *f, int l, const UnicodeString& s) {
char buf[2000];
s.extract((int32_t) 0, s.length(), buf, "utf-8");
printf("%s:%d: %s\n", f,l, buf);
}
#define debugout(x) _debugout(__FILE__,__LINE__,x)
#define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
static const UnicodeString dbg_null("<NULL>","");
#define DEREFSTR(x) ((x!=NULL)?(*x):(dbg_null))
#else
#define debugout(x)
#define debug(x)
#endif
/* == Fastpath calculation. ==
*/
#if UCONFIG_FORMAT_FASTPATHS_49
inline DecimalFormatInternal& internalData(uint8_t *reserved) {
return *reinterpret_cast<DecimalFormatInternal*>(reserved);
}
inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
}
#else
#endif
/* For currency parsing purose,
* Need to remember all prefix patterns and suffix patterns of
* every currency format pattern,
* including the pattern of default currecny style
* and plural currency style. And the patterns are set through applyPattern.
*/
struct AffixPatternsForCurrency : public UMemory {
// negative prefix pattern
UnicodeString negPrefixPatternForCurrency;
// negative suffix pattern
UnicodeString negSuffixPatternForCurrency;
// positive prefix pattern
UnicodeString posPrefixPatternForCurrency;
// positive suffix pattern
UnicodeString posSuffixPatternForCurrency;
int8_t patternType;
AffixPatternsForCurrency(const UnicodeString& negPrefix,
const UnicodeString& negSuffix,
const UnicodeString& posPrefix,
const UnicodeString& posSuffix,
int8_t type) {
negPrefixPatternForCurrency = negPrefix;
negSuffixPatternForCurrency = negSuffix;
posPrefixPatternForCurrency = posPrefix;
posSuffixPatternForCurrency = posSuffix;
patternType = type;
}
#ifdef FMT_DEBUG
void dump() const {
debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" +
posPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
posSuffixPatternForCurrency + (UnicodeString)"\" )");
}
#endif
};
/* affix for currency formatting when the currency sign in the pattern
* equals to 3, such as the pattern contains 3 currency sign or
* the formatter style is currency plural format style.
*/
struct AffixesForCurrency : public UMemory {
// negative prefix
UnicodeString negPrefixForCurrency;
// negative suffix
UnicodeString negSuffixForCurrency;
// positive prefix
UnicodeString posPrefixForCurrency;
// positive suffix
UnicodeString posSuffixForCurrency;
int32_t formatWidth;
AffixesForCurrency(const UnicodeString& negPrefix,
const UnicodeString& negSuffix,
const UnicodeString& posPrefix,
const UnicodeString& posSuffix) {
negPrefixForCurrency = negPrefix;
negSuffixForCurrency = negSuffix;
posPrefixForCurrency = posPrefix;
posSuffixForCurrency = posSuffix;
}
#ifdef FMT_DEBUG
void dump() const {
debugout( UnicodeString("AffixesForCurrency( -=\"") +
negPrefixForCurrency + (UnicodeString)"\"/\"" +
negSuffixForCurrency + (UnicodeString)"\" +=\"" +
posPrefixForCurrency + (UnicodeString)"\"/\"" +
posSuffixForCurrency + (UnicodeString)"\" )");
}
#endif
};
U_CDECL_BEGIN
/**
* @internal ICU 4.2
*/
static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
/**
* @internal ICU 4.2
*/
static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
static UBool
U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
const AffixesForCurrency* affix_1 =
(AffixesForCurrency*)val1.pointer;
const AffixesForCurrency* affix_2 =
(AffixesForCurrency*)val2.pointer;
return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
}
static UBool
U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
const AffixPatternsForCurrency* affix_1 =
(AffixPatternsForCurrency*)val1.pointer;
const AffixPatternsForCurrency* affix_2 =
(AffixPatternsForCurrency*)val2.pointer;
return affix_1->negPrefixPatternForCurrency ==
affix_2->negPrefixPatternForCurrency &&
affix_1->negSuffixPatternForCurrency ==
affix_2->negSuffixPatternForCurrency &&
affix_1->posPrefixPatternForCurrency ==
affix_2->posPrefixPatternForCurrency &&
affix_1->posSuffixPatternForCurrency ==
affix_2->posSuffixPatternForCurrency &&
affix_1->patternType == affix_2->patternType;
}
U_CDECL_END
// *****************************************************************************
// class DecimalFormat
// *****************************************************************************
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
// Constants for characters used in programmatic (unlocalized) patterns.
#define kPatternZeroDigit ((UChar)0x0030) /*'0'*/
#define kPatternSignificantDigit ((UChar)0x0040) /*'@'*/
#define kPatternGroupingSeparator ((UChar)0x002C) /*','*/
#define kPatternDecimalSeparator ((UChar)0x002E) /*'.'*/
#define kPatternPerMill ((UChar)0x2030)
#define kPatternPercent ((UChar)0x0025) /*'%'*/
#define kPatternDigit ((UChar)0x0023) /*'#'*/
#define kPatternSeparator ((UChar)0x003B) /*';'*/
#define kPatternExponent ((UChar)0x0045) /*'E'*/
#define kPatternPlus ((UChar)0x002B) /*'+'*/
#define kPatternMinus ((UChar)0x002D) /*'-'*/
#define kPatternPadEscape ((UChar)0x002A) /*'*'*/
#define kQuote ((UChar)0x0027) /*'\''*/
/**
* The CURRENCY_SIGN is the standard Unicode symbol for currency. It
* is used in patterns and substitued with either the currency symbol,
* or if it is doubled, with the international currency symbol. If the
* CURRENCY_SIGN is seen in a pattern, then the decimal separator is
* replaced with the monetary decimal separator.
*/
#define kCurrencySign ((UChar)0x00A4)
#define kDefaultPad ((UChar)0x0020) /* */
const int32_t DecimalFormat::kDoubleIntegerDigits = 309;
const int32_t DecimalFormat::kDoubleFractionDigits = 340;
const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
/**
* These are the tags we expect to see in normal resource bundle files associated
* with a locale.
*/
const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
static const char fgNumberElements[]="NumberElements";
static const char fgLatn[]="latn";
static const char fgPatterns[]="patterns";
static const char fgDecimalFormat[]="decimalFormat";
static const char fgCurrencyFormat[]="currencyFormat";
static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
static void copyString(const UnicodeString& src, UBool isBogus, UnicodeString *& dest, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (isBogus) {
delete dest;
dest = NULL;
} else {
if (dest != NULL) {
*dest = src;
} else {
dest = new UnicodeString(src);
if (dest == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
}
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance in the default locale.
DecimalFormat::DecimalFormat(UErrorCode& status) {
init();
UParseError parseError;
construct(status, parseError);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern in the default locale.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
UErrorCode& status) {
init();
UParseError parseError;
construct(status, parseError, &pattern);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UErrorCode& status) {
init();
UParseError parseError;
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status, parseError, &pattern, symbolsToAdopt);
}
DecimalFormat::DecimalFormat( const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UParseError& parseErr,
UErrorCode& status) {
init();
if (symbolsToAdopt == NULL)
status = U_ILLEGAL_ARGUMENT_ERROR;
construct(status,parseErr, &pattern, symbolsToAdopt);
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the default locale. The
// created instance owns the clone of the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
const DecimalFormatSymbols& symbols,
UErrorCode& status) {
init();
UParseError parseError;
construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern, the number format symbols, and the number format style.
// The created instance owns the clone of the symbols.
DecimalFormat::DecimalFormat(const UnicodeString& pattern,
DecimalFormatSymbols* symbolsToAdopt,
UNumberFormatStyle style,
UErrorCode& status) {
init();
fStyle = style;
UParseError parseError;
construct(status, parseError, &pattern, symbolsToAdopt);
}
//-----------------------------------------------------------------------------
// Common DecimalFormat initialization.
// Put all fields of an uninitialized object into a known state.
// Common code, shared by all constructors.
// Can not fail. Leave the object in good enough shape that the destructor
// or assignment operator can run successfully.
void
DecimalFormat::init() {
fPosPrefixPattern = 0;
fPosSuffixPattern = 0;
fNegPrefixPattern = 0;
fNegSuffixPattern = 0;
fCurrencyChoice = 0;
fMultiplier = NULL;
fScale = 0;
fGroupingSize = 0;
fGroupingSize2 = 0;
fDecimalSeparatorAlwaysShown = FALSE;
fSymbols = NULL;
fUseSignificantDigits = FALSE;
fMinSignificantDigits = 1;
fMaxSignificantDigits = 6;
fUseExponentialNotation = FALSE;
fMinExponentDigits = 0;
fExponentSignAlwaysShown = FALSE;
fBoolFlags.clear();
fRoundingIncrement = 0;
fRoundingMode = kRoundHalfEven;
fPad = 0;
fFormatWidth = 0;
fPadPosition = kPadBeforePrefix;
fStyle = UNUM_DECIMAL;
fCurrencySignCount = fgCurrencySignCountZero;
fAffixPatternsForCurrency = NULL;
fAffixesForCurrency = NULL;
fPluralAffixesForCurrency = NULL;
fCurrencyPluralInfo = NULL;
fCurrencyUsage = UCURR_USAGE_STANDARD;
#if UCONFIG_HAVE_PARSEALLINPUT
fParseAllInput = UNUM_MAYBE;
#endif
#if UCONFIG_FORMAT_FASTPATHS_49
DecimalFormatInternal &data = internalData(fReserved);
data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
#endif
fStaticSets = NULL;
}
//------------------------------------------------------------------------------
// Constructs a DecimalFormat instance with the specified number format
// pattern and the number format symbols in the desired locale. The
// created instance owns the symbols.
void
DecimalFormat::construct(UErrorCode& status,
UParseError& parseErr,
const UnicodeString* pattern,
DecimalFormatSymbols* symbolsToAdopt)
{
fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
fRoundingIncrement = NULL;
fRoundingMode = kRoundHalfEven;
fPad = kPatternPadEscape;
fPadPosition = kPadBeforePrefix;
if (U_FAILURE(status))
return;
fPosPrefixPattern = fPosSuffixPattern = NULL;
fNegPrefixPattern = fNegSuffixPattern = NULL;
setMultiplier(1);
fGroupingSize = 3;
fGroupingSize2 = 0;
fDecimalSeparatorAlwaysShown = FALSE;
fUseExponentialNotation = FALSE;
fMinExponentDigits = 0;
if (fSymbols == NULL)
{
fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
if (fSymbols == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
if (U_FAILURE(status)) {
return;
}
UErrorCode nsStatus = U_ZERO_ERROR;
NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
if (U_FAILURE(nsStatus)) {
status = nsStatus;
return;
}
UnicodeString str;
// Uses the default locale's number format pattern if there isn't
// one specified.
if (pattern == NULL)
{
int32_t len = 0;
UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
status = U_ZERO_ERROR;
resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
}
str.setTo(TRUE, resStr, len);
pattern = &str;
ures_close(resource);
ures_close(top);
}
delete ns;
if (U_FAILURE(status))
{
return;
}
if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
// If it looks like we are going to use a currency pattern
// then do the time consuming lookup.
setCurrencyForSymbols();
} else {
setCurrencyInternally(NULL, status);
}
const UnicodeString* patternUsed;
UnicodeString currencyPluralPatternForOther;
// apply pattern
if (fStyle == UNUM_CURRENCY_PLURAL) {
fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
if (U_FAILURE(status)) {
return;
}
// the pattern used in format is not fixed until formatting,
// in which, the number is known and
// will be used to pick the right pattern based on plural count.
// Here, set the pattern as the pattern of plural count == "other".
// For most locale, the patterns are probably the same for all
// plural count. If not, the right pattern need to be re-applied
// during format.
fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
patternUsed = &currencyPluralPatternForOther;
// TODO: not needed?
setCurrencyForSymbols();
} else {
patternUsed = pattern;
}
if (patternUsed->indexOf(kCurrencySign) != -1) {
// initialize for currency, not only for plural format,
// but also for mix parsing
if (fCurrencyPluralInfo == NULL) {
fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
if (U_FAILURE(status)) {
return;
}
}
// need it for mix parsing
setupCurrencyAffixPatterns(status);
// expanded affixes for plural names
if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
}
}
applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
// expand affixes
if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
expandAffixAdjustWidth(NULL);
}
// If it was a currency format, apply the appropriate rounding by
// resetting the currency. NOTE: this copies fCurrency on top of itself.
if (fCurrencySignCount != fgCurrencySignCountZero) {
setCurrencyInternally(getCurrency(), status);
}
#if UCONFIG_FORMAT_FASTPATHS_49
DecimalFormatInternal &data = internalData(fReserved);
data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
data.fFastParseStatus = kFastpathNO; // allow it to be calculated
handleChanged();
#endif
}
void
DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
UParseError parseErr;
fAffixPatternsForCurrency = initHashForAffixPattern(status);
if (U_FAILURE(status)) {
return;
}
NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
if (U_FAILURE(status)) {
return;
}
// Save the default currency patterns of this locale.
// Here, chose onlyApplyPatternWithoutExpandAffix without
// expanding the affix patterns into affixes.
UnicodeString currencyPattern;
UErrorCode error = U_ZERO_ERROR;
UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
int32_t patLen = 0;
const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
error = U_ZERO_ERROR;
resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat, &patLen, &error);
}
ures_close(numElements);
ures_close(resource);
delete ns;
if (U_SUCCESS(error)) {
applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
parseErr, status);
AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
*fNegPrefixPattern,
*fNegSuffixPattern,
*fPosPrefixPattern,
*fPosSuffixPattern,
UCURR_SYMBOL_NAME);
fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
}
// save the unique currency plural patterns of this locale.
Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
const UHashElement* element = NULL;
int32_t pos = UHASH_FIRST;
Hashtable pluralPatternSet;
while ((element = pluralPtn->nextElement(pos)) != NULL) {
const UHashTok valueTok = element->value;
const UnicodeString* value = (UnicodeString*)valueTok.pointer;
const UHashTok keyTok = element->key;
const UnicodeString* key = (UnicodeString*)keyTok.pointer;
if (pluralPatternSet.geti(*value) != 1) {
pluralPatternSet.puti(*value, 1, status);
applyPatternWithoutExpandAffix(*value, false, parseErr, status);
AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
*fNegPrefixPattern,
*fNegSuffixPattern,
*fPosPrefixPattern,
*fPosSuffixPattern,
UCURR_LONG_NAME);
fAffixPatternsForCurrency->put(*key, affixPtn, status);
}
}
}
void
DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
UBool setupForCurrentPattern,
UBool setupForPluralPattern,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
UParseError parseErr;
if (setupForCurrentPattern) {
if (fAffixesForCurrency) {
deleteHashForAffix(fAffixesForCurrency);
}
fAffixesForCurrency = initHashForAffix(status);
if (U_SUCCESS(status)) {
applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
StringEnumeration* keywords = pluralRules->getKeywords(status);
if (U_SUCCESS(status)) {
const UnicodeString* pluralCount;
while ((pluralCount = keywords->snext(status)) != NULL) {
if ( U_SUCCESS(status) ) {
expandAffixAdjustWidth(pluralCount);
AffixesForCurrency* affix = new AffixesForCurrency(
fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
fAffixesForCurrency->put(*pluralCount, affix, status);
}
}
}
delete keywords;
}
}
if (U_FAILURE(status)) {
return;
}
if (setupForPluralPattern) {
if (fPluralAffixesForCurrency) {
deleteHashForAffix(fPluralAffixesForCurrency);
}
fPluralAffixesForCurrency = initHashForAffix(status);
if (U_SUCCESS(status)) {
const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
StringEnumeration* keywords = pluralRules->getKeywords(status);
if (U_SUCCESS(status)) {
const UnicodeString* pluralCount;
while ((pluralCount = keywords->snext(status)) != NULL) {
if ( U_SUCCESS(status) ) {
UnicodeString ptn;
fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
AffixesForCurrency* affix = new AffixesForCurrency(
fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
fPluralAffixesForCurrency->put(*pluralCount, affix, status);
}
}
}
delete keywords;
}
}
}
//------------------------------------------------------------------------------
DecimalFormat::~DecimalFormat()
{
delete fPosPrefixPattern;
delete fPosSuffixPattern;
delete fNegPrefixPattern;
delete fNegSuffixPattern;
delete fCurrencyChoice;
delete fMultiplier;
delete fSymbols;
delete fRoundingIncrement;
deleteHashForAffixPattern();
deleteHashForAffix(fAffixesForCurrency);
deleteHashForAffix(fPluralAffixesForCurrency);
delete fCurrencyPluralInfo;
}
//------------------------------------------------------------------------------
// copy constructor
DecimalFormat::DecimalFormat(const DecimalFormat &source) :
NumberFormat(source) {
init();
*this = source;
}
//------------------------------------------------------------------------------
// assignment operator
template <class T>
static void _copy_ptr(T** pdest, const T* source) {
if (source == NULL) {
delete *pdest;
*pdest = NULL;
} else if (*pdest == NULL) {
*pdest = new T(*source);
} else {
**pdest = *source;
}
}
template <class T>
static void _clone_ptr(T** pdest, const T* source) {
delete *pdest;
if (source == NULL) {
*pdest = NULL;
} else {
*pdest = static_cast<T*>(source->clone());
}
}
DecimalFormat&
DecimalFormat::operator=(const DecimalFormat& rhs)
{
if(this != &rhs) {
UErrorCode status = U_ZERO_ERROR;
NumberFormat::operator=(rhs);
fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
fPositivePrefix = rhs.fPositivePrefix;
fPositiveSuffix = rhs.fPositiveSuffix;
fNegativePrefix = rhs.fNegativePrefix;
fNegativeSuffix = rhs.fNegativeSuffix;
_copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
_copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
_copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
_copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
_clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
setRoundingIncrement(rhs.getRoundingIncrement());
fRoundingMode = rhs.fRoundingMode;
setMultiplier(rhs.getMultiplier());
fGroupingSize = rhs.fGroupingSize;
fGroupingSize2 = rhs.fGroupingSize2;
fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
_copy_ptr(&fSymbols, rhs.fSymbols);
fUseExponentialNotation = rhs.fUseExponentialNotation;
fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
fBoolFlags = rhs.fBoolFlags;
/*Bertrand A. D. Update 98.03.17*/
fCurrencySignCount = rhs.fCurrencySignCount;
/*end of Update*/
fMinExponentDigits = rhs.fMinExponentDigits;
/* sfb 990629 */
fFormatWidth = rhs.fFormatWidth;
fPad = rhs.fPad;
fPadPosition = rhs.fPadPosition;
/* end sfb */
fMinSignificantDigits = rhs.fMinSignificantDigits;
fMaxSignificantDigits = rhs.fMaxSignificantDigits;
fUseSignificantDigits = rhs.fUseSignificantDigits;
fFormatPattern = rhs.fFormatPattern;
fCurrencyUsage = rhs.fCurrencyUsage;
fStyle = rhs.fStyle;
_clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
deleteHashForAffixPattern();
if (rhs.fAffixPatternsForCurrency) {
UErrorCode status = U_ZERO_ERROR;
fAffixPatternsForCurrency = initHashForAffixPattern(status);
copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
fAffixPatternsForCurrency, status);
}
deleteHashForAffix(fAffixesForCurrency);
if (rhs.fAffixesForCurrency) {
UErrorCode status = U_ZERO_ERROR;
fAffixesForCurrency = initHashForAffixPattern(status);
copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
}
deleteHashForAffix(fPluralAffixesForCurrency);
if (rhs.fPluralAffixesForCurrency) {
UErrorCode status = U_ZERO_ERROR;
fPluralAffixesForCurrency = initHashForAffixPattern(status);
copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
}
#if UCONFIG_FORMAT_FASTPATHS_49
DecimalFormatInternal &data = internalData(fReserved);
const DecimalFormatInternal &rhsData = internalData(rhs.fReserved);
data = rhsData;
#endif
}
return *this;
}
//------------------------------------------------------------------------------
UBool
DecimalFormat::operator==(const Format& that) const
{
if (this == &that)
return TRUE;
// NumberFormat::operator== guarantees this cast is safe
const DecimalFormat* other = (DecimalFormat*)&that;
#ifdef FMT_DEBUG
// This code makes it easy to determine why two format objects that should
// be equal aren't.
UBool first = TRUE;
if (!NumberFormat::operator==(that)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("NumberFormat::!=");
} else {
if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
*fPosPrefixPattern == *other->fPosPrefixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Pos Prefix !=");
}
if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
fPositiveSuffix == other->fPositiveSuffix)
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
*fPosSuffixPattern == *other->fPosSuffixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Pos Suffix !=");
}
if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
fNegativePrefix == other->fNegativePrefix)
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
*fNegPrefixPattern == *other->fNegPrefixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Neg Prefix ");
if (fNegPrefixPattern == NULL) {
debug("NULL(");
debugout(fNegativePrefix);
debug(")");
} else {
debugout(*fNegPrefixPattern);
}
debug(" != ");
if (other->fNegPrefixPattern == NULL) {
debug("NULL(");
debugout(other->fNegativePrefix);
debug(")");
} else {
debugout(*other->fNegPrefixPattern);
}
}
if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
fNegativeSuffix == other->fNegativeSuffix)
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
*fNegSuffixPattern == *other->fNegSuffixPattern))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Neg Suffix ");
if (fNegSuffixPattern == NULL) {
debug("NULL(");
debugout(fNegativeSuffix);
debug(")");
} else {
debugout(*fNegSuffixPattern);
}
debug(" != ");
if (other->fNegSuffixPattern == NULL) {
debug("NULL(");
debugout(other->fNegativeSuffix);
debug(")");
} else {
debugout(*other->fNegSuffixPattern);
}
}
if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
|| (fRoundingIncrement != NULL &&
other->fRoundingIncrement != NULL &&
*fRoundingIncrement == *other->fRoundingIncrement))) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Rounding Increment !=");
}
if (fRoundingMode != other->fRoundingMode) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Rounding Mode %d != %d", (int)fRoundingMode, (int)other->fRoundingMode);
}
if (getMultiplier() != other->getMultiplier()) {
if (first) { printf("[ "); first = FALSE; }
printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
}
if (fGroupingSize != other->fGroupingSize) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
}
if (fGroupingSize2 != other->fGroupingSize2) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
}
if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
printf("fDecimalSeparatorAlwaysShown %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
}
if (fUseExponentialNotation != other->fUseExponentialNotation) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fUseExponentialNotation !=");
}
if (fUseExponentialNotation &&
fMinExponentDigits != other->fMinExponentDigits) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fMinExponentDigits !=");
}
if (fUseExponentialNotation &&
fExponentSignAlwaysShown != other->fExponentSignAlwaysShown) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fExponentSignAlwaysShown !=");
}
if (fBoolFlags.getAll() != other->fBoolFlags.getAll()) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fBoolFlags !=");
}
if (*fSymbols != *(other->fSymbols)) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("Symbols !=");
}
// TODO Add debug stuff for significant digits here
if (fUseSignificantDigits != other->fUseSignificantDigits) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fUseSignificantDigits !=");
}
if (fUseSignificantDigits &&
fMinSignificantDigits != other->fMinSignificantDigits) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fMinSignificantDigits !=");
}
if (fUseSignificantDigits &&
fMaxSignificantDigits != other->fMaxSignificantDigits) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fMaxSignificantDigits !=");
}
if (fFormatWidth != other->fFormatWidth) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fFormatWidth !=");
}
if (fPad != other->fPad) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fPad !=");
}
if (fPadPosition != other->fPadPosition) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fPadPosition !=");
}
if (fStyle == UNUM_CURRENCY_PLURAL &&
fStyle != other->fStyle)
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fStyle !=");
}
if (fStyle == UNUM_CURRENCY_PLURAL &&
fFormatPattern != other->fFormatPattern) {
if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
debug("fFormatPattern !=");
}
if (!first) { printf(" ]"); }
if (fCurrencySignCount != other->fCurrencySignCount) {
debug("fCurrencySignCount !=");
}
if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
debug("fCurrencyPluralInfo == ");
if (fCurrencyPluralInfo == NULL) {
debug("fCurrencyPluralInfo == NULL");
}
}
if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
*fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
debug("fCurrencyPluralInfo !=");
}
if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
debug("fCurrencyPluralInfo one NULL, the other not");
}
if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
debug("fCurrencyPluralInfo == ");
}
}
#endif
return (
NumberFormat::operator==(that) &&
((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
(fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
(((fPosPrefixPattern == other->fPosPrefixPattern && // both null
fPositivePrefix == other->fPositivePrefix)
|| (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
*fPosPrefixPattern == *other->fPosPrefixPattern)) &&
((fPosSuffixPattern == other->fPosSuffixPattern && // both null
fPositiveSuffix == other->fPositiveSuffix)
|| (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
*fPosSuffixPattern == *other->fPosSuffixPattern)) &&
((fNegPrefixPattern == other->fNegPrefixPattern && // both null
fNegativePrefix == other->fNegativePrefix)
|| (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
*fNegPrefixPattern == *other->fNegPrefixPattern)) &&
((fNegSuffixPattern == other->fNegSuffixPattern && // both null
fNegativeSuffix == other->fNegativeSuffix)
|| (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
*fNegSuffixPattern == *other->fNegSuffixPattern)))) &&
((fRoundingIncrement == other->fRoundingIncrement) // both null
|| (fRoundingIncrement != NULL &&
other->fRoundingIncrement != NULL &&
*fRoundingIncrement == *other->fRoundingIncrement)) &&
fRoundingMode == other->fRoundingMode &&
getMultiplier() == other->getMultiplier() &&
fGroupingSize == other->fGroupingSize &&
fGroupingSize2 == other->fGroupingSize2 &&
fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
fUseExponentialNotation == other->fUseExponentialNotation &&
(!fUseExponentialNotation ||
(fMinExponentDigits == other->fMinExponentDigits && fExponentSignAlwaysShown == other->fExponentSignAlwaysShown)) &&
fBoolFlags.getAll() == other->fBoolFlags.getAll() &&
*fSymbols == *(other->fSymbols) &&
fUseSignificantDigits == other->fUseSignificantDigits &&
(!fUseSignificantDigits ||
(fMinSignificantDigits == other->fMinSignificantDigits && fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
fFormatWidth == other->fFormatWidth &&
fPad == other->fPad &&
fPadPosition == other->fPadPosition &&
(fStyle != UNUM_CURRENCY_PLURAL ||
(fStyle == other->fStyle && fFormatPattern == other->fFormatPattern)) &&
fCurrencySignCount == other->fCurrencySignCount &&
((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
fCurrencyPluralInfo == NULL) ||
(fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
*fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))) &&
fCurrencyUsage == other->fCurrencyUsage
// depending on other settings we may also need to compare
// fCurrencyChoice (mostly deprecated?),
// fAffixesForCurrency & fPluralAffixesForCurrency (only relevant in some cases)
);
}
//------------------------------------------------------------------------------
Format*
DecimalFormat::clone() const
{
return new DecimalFormat(*this);
}
FixedDecimal
DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
FixedDecimal result;
if (U_FAILURE(status)) {
return result;
}
if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
// For NaN and Infinity the state of the formatter is ignored.
result.init(number);
return result;
}
if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
// Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
// through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
// printf("getFixedDecimal(%g): taking fast path.\n", number);
result.adjustForMinFractionDigits(getMinimumFractionDigits());
} else {
// Slow path. Create a DigitList, and have this formatter round it according to the
// requirements of the format, and fill the fixedDecimal from that.
DigitList digits;
digits.set(number);
result = getFixedDecimal(digits, status);
}
return result;
}
// MSVC optimizer bug?
// turn off optimization as it causes different behavior in the int64->double->int64 conversion
#if defined (_MSC_VER)
#pragma optimize ( "", off )
#endif
FixedDecimal
DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
if (U_FAILURE(status)) {
return FixedDecimal();
}
if (!number.isNumeric()) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return FixedDecimal();
}
DigitList *dl = number.getDigitList();
if (dl != NULL) {
DigitList clonedDL(*dl);
return getFixedDecimal(clonedDL, status);
}
Formattable::Type type = number.getType();
if (type == Formattable::kDouble || type == Formattable::kLong) {
return getFixedDecimal(number.getDouble(status), status);
}
if (type == Formattable::kInt64) {
// "volatile" here is a workaround to avoid optimization issues.
volatile double fdv = number.getDouble(status);
// Note: conversion of int64_t -> double rounds with some compilers to
// values beyond what can be represented as a 64 bit int. Subsequent
// testing or conversion with int64_t produces bad results.
// So filter the problematic values, route them to DigitList.
if (fdv != (double)U_INT64_MAX && fdv != (double)U_INT64_MIN &&
number.getInt64() == (int64_t)fdv) {
return getFixedDecimal(number.getDouble(status), status);
}
}
// The only case left is type==int64_t, with a value with more digits than a double can represent.
// Any formattable originating as a big decimal will have had a pre-existing digit list.
// Any originating as a double or int32 will have been handled as a double.
U_ASSERT(type == Formattable::kInt64);
DigitList digits;
digits.set(number.getInt64());
return getFixedDecimal(digits, status);
}
// end workaround MSVC optimizer bug
#if defined (_MSC_VER)
#pragma optimize ( "", on )
#endif
// Create a fixed decimal from a DigitList.
// The digit list may be modified.
// Internal function only.
FixedDecimal
DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
// Round the number according to the requirements of this Format.
FixedDecimal result;
_round(number, number, result.isNegative, status);
// The int64_t fields in FixedDecimal can easily overflow.
// In deciding what to discard in this event, consider that fixedDecimal
// is being used only with PluralRules, and those rules mostly look at least significant
// few digits of the integer part, and whether the fraction part is zero or not.
//
// So, in case of overflow when filling in the fields of the FixedDecimal object,
// for the integer part, discard the most significant digits.
// for the fraction part, discard the least significant digits,
// don't truncate the fraction value to zero.
// For simplicity, the int64_t fields are limited to 18 decimal digits, even
// though they could hold most (but not all) 19 digit values.
// Integer Digits.
int32_t di = number.getDecimalAt()-18; // Take at most 18 digits.
if (di < 0) {
di = 0;
}
result.intValue = 0;
for (; di<number.getDecimalAt(); di++) {
result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
}
if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
// The number is something like 100000000000000000000000.
// More than 18 digits integer digits, but the least significant 18 are all zero.
// We don't want to return zero as the int part, but want to keep zeros
// for several of the least significant digits.
result.intValue = 100000000000000000LL;
}
// Fraction digits.
result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
for (di = number.getDecimalAt(); di < number.getCount(); di++) {
result.visibleDecimalDigitCount++;
if (result.decimalDigits < 100000000000000000LL) {
// 9223372036854775807 Largest 64 bit signed integer
int32_t digitVal = number.getDigit(di) & 0x0f; // getDigit() returns a char, '0'-'9'.
result.decimalDigits = result.decimalDigits * 10 + digitVal;
if (digitVal > 0) {
result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
}
}
}
result.hasIntegerValue = (result.decimalDigits == 0);
// Trailing fraction zeros. The format specification may require more trailing
// zeros than the numeric value. Add any such on now.
int32_t minFractionDigits;
if (areSignificantDigitsUsed()) {
minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
if (minFractionDigits < 0) {
minFractionDigits = 0;
}
} else {
minFractionDigits = getMinimumFractionDigits();
}
result.adjustForMinFractionDigits(minFractionDigits);
return result;
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format(int32_t number,
UnicodeString& appendTo,
FieldPosition& fieldPosition) const
{
return format((int64_t)number, appendTo, fieldPosition);
}
UnicodeString&
DecimalFormat::format(int32_t number,
UnicodeString& appendTo,
FieldPosition& fieldPosition,
UErrorCode& status) const
{
return format((int64_t)number, appendTo, fieldPosition, status);
}
UnicodeString&
DecimalFormat::format(int32_t number,
UnicodeString& appendTo,
FieldPositionIterator* posIter,
UErrorCode& status) const
{
return format((int64_t)number, appendTo, posIter, status);
}
#if UCONFIG_FORMAT_FASTPATHS_49
void DecimalFormat::handleChanged() {
DecimalFormatInternal &data = internalData(fReserved);
if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
return; // still constructing. Wait.
}
data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
#if UCONFIG_HAVE_PARSEALLINPUT
if(fParseAllInput == UNUM_NO) {
debug("No Parse fastpath: fParseAllInput==UNUM_NO");
} else
#endif
if (fFormatWidth!=0) {
debug("No Parse fastpath: fFormatWidth");
} else if(fPositivePrefix.length()>0) {
debug("No Parse fastpath: positive prefix");
} else if(fPositiveSuffix.length()>0) {
debug("No Parse fastpath: positive suffix");
} else if(fNegativePrefix.length()>1
|| ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
debug("No Parse fastpath: negative prefix that isn't '-'");
} else if(fNegativeSuffix.length()>0) {
debug("No Parse fastpath: negative suffix");
} else {
data.fFastParseStatus = kFastpathYES;
debug("parse fastpath: YES");
}
if(fUseExponentialNotation) {
debug("No format fastpath: fUseExponentialNotation");
} else if(fFormatWidth!=0) {
debug("No format fastpath: fFormatWidth!=0");
} else if(fMinSignificantDigits!=1) {
debug("No format fastpath: fMinSignificantDigits!=1");
} else if(fMultiplier!=NULL) {
debug("No format fastpath: fMultiplier!=NULL");
} else if(fScale!=0) {
debug("No format fastpath: fScale!=0");
} else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
} else if(fDecimalSeparatorAlwaysShown) {
debug("No format fastpath: fDecimalSeparatorAlwaysShown");
} else if(getMinimumFractionDigits()>0) {
debug("No format fastpath: fMinFractionDigits>0");
} else if(fCurrencySignCount != fgCurrencySignCountZero) {
debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
} else if(fRoundingIncrement!=0) {
debug("No format fastpath: fRoundingIncrement!=0");
} else if (fGroupingSize!=0 && isGroupingUsed()) {
debug("Maybe format fastpath: fGroupingSize!=0 and grouping is used");
#ifdef FMT_DEBUG
printf("groupingsize=%d\n", fGroupingSize);
#endif
if (getMinimumIntegerDigits() <= fGroupingSize) {
data.fFastFormatStatus = kFastpathMAYBE;
}
} else if(fGroupingSize2!=0 && isGroupingUsed()) {
debug("No format fastpath: fGroupingSize2!=0");
} else {
data.fFastFormatStatus = kFastpathYES;
debug("format:kFastpathYES!");
}
}
#endif
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format(int64_t number,
UnicodeString& appendTo,
FieldPosition& fieldPosition) const
{
UErrorCode status = U_ZERO_ERROR; /* ignored */
FieldPositionOnlyHandler handler(fieldPosition);
return _format(number, appendTo, handler, status);
}
UnicodeString&
DecimalFormat::format(int64_t number,
UnicodeString& appendTo,
FieldPosition& fieldPosition,
UErrorCode& status) const
{
FieldPositionOnlyHandler handler(fieldPosition);
return _format(number, appendTo, handler, status);
}
UnicodeString&
DecimalFormat::format(int64_t number,
UnicodeString& appendTo,
FieldPositionIterator* posIter,
UErrorCode& status) const
{
FieldPositionIteratorHandler handler(posIter, status);
return _format(number, appendTo, handler, status);
}
UnicodeString&
DecimalFormat::_format(int64_t number,
UnicodeString& appendTo,
FieldPositionHandler& handler,
UErrorCode &status) const
{
// Bottleneck function for formatting int64_t
if (U_FAILURE(status)) {
return appendTo;
}
#if UCONFIG_FORMAT_FASTPATHS_49
// const UnicodeString *posPrefix = fPosPrefixPattern;
// const UnicodeString *posSuffix = fPosSuffixPattern;
// const UnicodeString *negSuffix = fNegSuffixPattern;
const DecimalFormatInternal &data = internalData(fReserved);
#ifdef FMT_DEBUG
data.dump();
printf("fastpath? [%d]\n", number);
#endif
if( data.fFastFormatStatus==kFastpathYES ||
data.fFastFormatStatus==kFastpathMAYBE) {
int32_t noGroupingThreshold = 0;
#define kZero 0x0030
const int32_t MAX_IDX = MAX_DIGITS+2;
UChar outputStr[MAX_IDX];
int32_t destIdx = MAX_IDX;
outputStr[--destIdx] = 0; // term
if (data.fFastFormatStatus==kFastpathMAYBE) {
noGroupingThreshold = destIdx - fGroupingSize;
}
int64_t n = number;
if (number < 1) {
// Negative numbers are slightly larger than positive
// output the first digit (or the leading zero)
outputStr[--destIdx] = (-(n % 10) + kZero);
n /= -10;
}
// get any remaining digits
while (n > 0) {
if (destIdx == noGroupingThreshold) {
goto slowPath;
}
outputStr[--destIdx] = (n % 10) + kZero;
n /= 10;
}
// Slide the number to the start of the output str
U_ASSERT(destIdx >= 0);
int32_t length = MAX_IDX - destIdx -1;
/*int32_t prefixLen = */ appendAffix(appendTo, number, handler, number<0, TRUE);
int32_t maxIntDig = getMaximumIntegerDigits();
int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
int32_t prependZero = getMinimumIntegerDigits() - destlength;
#ifdef FMT_DEBUG
printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
#endif
int32_t intBegin = appendTo.length();
while((prependZero--)>0) {
appendTo.append((UChar)0x0030); // '0'
}
appendTo.append(outputStr+destIdx+
(length-destlength), // skip any leading digits
destlength);
handler.addAttribute(kIntegerField, intBegin, appendTo.length());
/*int32_t suffixLen =*/ appendAffix(appendTo, number, handler, number<0, FALSE);
//outputStr[length]=0;
#ifdef FMT_DEBUG
printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
#endif
#undef kZero
return appendTo;
} // end fastpath
#endif
slowPath:
// Else the slow way - via DigitList
DigitList digits;
digits.set(number);
return _format(digits, appendTo, handler, status);
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format( double number,
UnicodeString& appendTo,
FieldPosition& fieldPosition) const
{
UErrorCode status = U_ZERO_ERROR; /* ignored */
FieldPositionOnlyHandler handler(fieldPosition);
return _format(number, appendTo, handler, status);
}
UnicodeString&
DecimalFormat::format( double number,
UnicodeString& appendTo,
FieldPosition& fieldPosition,
UErrorCode& status) const
{
FieldPositionOnlyHandler handler(fieldPosition);
return _format(number, appendTo, handler, status);
}
UnicodeString&
DecimalFormat::format( double number,
UnicodeString& appendTo,
FieldPositionIterator* posIter,
UErrorCode& status) const
{
FieldPositionIteratorHandler handler(posIter, status);
return _format(number, appendTo, handler, status);
}
UnicodeString&
DecimalFormat::_format( double number,
UnicodeString& appendTo,
FieldPositionHandler& handler,
UErrorCode &status) const
{
if (U_FAILURE(status)) {
return appendTo;
}
// Special case for NaN, sets the begin and end index to be the
// the string length of localized name of NaN.
// TODO: let NaNs go through DigitList.
if (uprv_isNaN(number))
{
int begin = appendTo.length();
appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
handler.addAttribute(kIntegerField, begin, appendTo.length());
addPadding(appendTo, handler, 0, 0);
return appendTo;
}
DigitList digits;
digits.set(number);
_format(digits, appendTo, handler, status);
// No way to return status from here.
return appendTo;
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::format(const StringPiece &number,
UnicodeString &toAppendTo,
FieldPositionIterator *posIter,
UErrorCode &status) const
{
#if UCONFIG_FORMAT_FASTPATHS_49
// don't bother if the int64 path is not optimized
int32_t len = number.length();
if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
const char *data = number.data();
int64_t num = 0;
UBool neg = FALSE;
UBool ok = TRUE;
int32_t start = 0;
if(data[start]=='+') {
start++;
} else if(data[start]=='-') {
neg=TRUE;
start++;
}
int32_t place = 1; /* 1, 10, ... */
for(int32_t i=len-1;i>=start;i--) {
if(data[i]>='0'&&data[i]<='9') {
num+=place*(int64_t)(data[i]-'0');
} else {
ok=FALSE;
break;
}
place *= 10;
}
if(ok) {
if(neg) {
num = -num;// add minus bit
}
// format as int64_t
return format(num, toAppendTo, posIter, status);
}
// else fall through
}
#endif
DigitList dnum;
dnum.set(number, status);
if (U_FAILURE(status)) {
return toAppendTo;
}
FieldPositionIteratorHandler handler(posIter, status);
_format(dnum, toAppendTo, handler, status);
return toAppendTo;
}
UnicodeString&
DecimalFormat::format(const DigitList &number,
UnicodeString &appendTo,
FieldPositionIterator *posIter,
UErrorCode &status) const {
FieldPositionIteratorHandler handler(posIter, status);
_format(number, appendTo, handler, status);
return appendTo;
}
UnicodeString&
DecimalFormat::format(const DigitList &number,
UnicodeString& appendTo,
FieldPosition& pos,
UErrorCode &status) const {
FieldPositionOnlyHandler handler(pos);
_format(number, appendTo, handler, status);
return appendTo;
}
DigitList&
DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
if (U_FAILURE(status)) {
return adjustedNum;
}
// note: number and adjustedNum may refer to the same DigitList, in cases where a copy
// is not needed by the caller.
adjustedNum = number;
isNegative = false;
if (number.isNaN()) {
return adjustedNum;
}
// Do this BEFORE checking to see if value is infinite or negative! Sets the
// begin and end index to be length of the string composed of
// localized name of Infinite and the positive/negative localized
// signs.
adjustedNum.setRoundingMode(fRoundingMode);
if (fMultiplier != NULL) {
adjustedNum.mult(*fMultiplier, status);
if (U_FAILURE(status)) {
return adjustedNum;
}
}
if (fScale != 0) {
DigitList ten;
ten.set((int32_t)10);
if (fScale > 0) {
for (int32_t i = fScale ; i > 0 ; i--) {
adjustedNum.mult(ten, status);
if (U_FAILURE(status)) {
return adjustedNum;
}
}
} else {
for (int32_t i = fScale ; i < 0 ; i++) {
adjustedNum.div(ten, status);
if (U_FAILURE(status)) {
return adjustedNum;
}
}
}
}
/*
* Note: sign is important for zero as well as non-zero numbers.
* Proper detection of -0.0 is needed to deal with the
* issues raised by bugs 4106658, 4106667, and 4147706. Liu 7/6/98.
*/
isNegative = !adjustedNum.isPositive();
// Apply rounding after multiplier
adjustedNum.fContext.status &= ~DEC_Inexact;
if (fRoundingIncrement != NULL) {
adjustedNum.div(*fRoundingIncrement, status);
adjustedNum.toIntegralValue();
adjustedNum.mult(*fRoundingIncrement, status);
adjustedNum.trim();
if (U_FAILURE(status)) {
return adjustedNum;
}
}
if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
status = U_FORMAT_INEXACT_ERROR;
return adjustedNum;
}
if (adjustedNum.isInfinite()) {
return adjustedNum;
}
if (fUseExponentialNotation || areSignificantDigitsUsed()) {
int32_t sigDigits = precision();
if (sigDigits > 0) {
adjustedNum.round(sigDigits);
// Travis Keep (21/2/2014): Calling round on a digitList does not necessarily
// preserve the sign of that digit list. Preserving the sign is especially
// important when formatting -0.0 for instance. Not preserving the sign seems
// like a bug because I cannot think of any case where the sign would actually
// have to change when rounding. For now, we preserve the sign by setting the
// positive attribute directly.
adjustedNum.setPositive(!isNegative);
}
} else {
// Fixed point format. Round to a set number of fraction digits.
int32_t numFractionDigits = precision();
adjustedNum.roundFixedPoint(numFractionDigits);
}
if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
status = U_FORMAT_INEXACT_ERROR;
return adjustedNum;
}
return adjustedNum;
}
UnicodeString&
DecimalFormat::_format(const DigitList &number,
UnicodeString& appendTo,
FieldPositionHandler& handler,
UErrorCode &status) const
{
if (U_FAILURE(status)) {
return appendTo;
}
// Special case for NaN, sets the begin and end index to be the
// the string length of localized name of NaN.
if (number.isNaN())
{
int begin = appendTo.length();
appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
handler.addAttribute(kIntegerField, begin, appendTo.length());
addPadding(appendTo, handler, 0, 0);
return appendTo;
}
DigitList adjustedNum;
UBool isNegative;
_round(number, adjustedNum, isNegative, status);
if (U_FAILURE(status)) {
return appendTo;
}
// Special case for INFINITE,
if (adjustedNum.isInfinite()) {
int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
int begin = appendTo.length();
appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
handler.addAttribute(kIntegerField, begin, appendTo.length());
int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
addPadding(appendTo, handler, prefixLen, suffixLen);
return appendTo;
}
return subformat(appendTo, handler, adjustedNum, FALSE, status);
}
/**
* Return true if a grouping separator belongs at the given
* position, based on whether grouping is in use and the values of
* the primary and secondary grouping interval.
* @param pos the number of integer digits to the right of
* the current position. Zero indicates the position after the
* rightmost integer digit.
* @return true if a grouping character belongs at the current
* position.
*/
UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
UBool result = FALSE;
if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
} else {
result = pos % fGroupingSize == 0;
}
}
return result;
}
//------------------------------------------------------------------------------
/**
* Complete the formatting of a finite number. On entry, the DigitList must
* be filled in with the correct digits.
*/
UnicodeString&
DecimalFormat::subformat(UnicodeString& appendTo,
FieldPositionHandler& handler,
DigitList& digits,
UBool isInteger,
UErrorCode& status) const
{
// char zero = '0';
// DigitList returns digits as '0' thru '9', so we will need to
// always need to subtract the character 0 to get the numeric value to use for indexing.
UChar32 localizedDigits[10];
localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
const UnicodeString *grouping ;
if(fCurrencySignCount == fgCurrencySignCountZero) {
grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
}else{
grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
}
const UnicodeString *decimal;
if(fCurrencySignCount == fgCurrencySignCountZero) {
decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
} else {
decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
}
UBool useSigDig = areSignificantDigitsUsed();
int32_t maxIntDig = getMaximumIntegerDigits();
int32_t minIntDig = getMinimumIntegerDigits();
// Appends the prefix.
double doubleValue = digits.getDouble();
int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
if (fUseExponentialNotation)
{
int currentLength = appendTo.length();
int intBegin = currentLength;
int intEnd = -1;
int fracBegin = -1;
int32_t minFracDig = 0;
if (useSigDig) {
maxIntDig = minIntDig = 1;
minFracDig = getMinimumSignificantDigits() - 1;
} else {
minFracDig = getMinimumFractionDigits();
if (maxIntDig > kMaxScientificIntegerDigits) {
maxIntDig = 1;
if (maxIntDig < minIntDig) {
maxIntDig = minIntDig;
}
}
if (maxIntDig > minIntDig) {
minIntDig = 1;
}
}
// Minimum integer digits are handled in exponential format by
// adjusting the exponent. For example, 0.01234 with 3 minimum
// integer digits is "123.4E-4".
// Maximum integer digits are interpreted as indicating the
// repeating range. This is useful for engineering notation, in
// which the exponent is restricted to a multiple of 3. For
// example, 0.01234 with 3 maximum integer digits is "12.34e-3".
// If maximum integer digits are defined and are larger than
// minimum integer digits, then minimum integer digits are
// ignored.
digits.reduce(); // Removes trailing zero digits.
int32_t exponent = digits.getDecimalAt();
if (maxIntDig > 1 && maxIntDig != minIntDig) {
// A exponent increment is defined; adjust to it.
exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
: (exponent / maxIntDig) - 1;
exponent *= maxIntDig;
} else {
// No exponent increment is defined; use minimum integer digits.
// If none is specified, as in "#E0", generate 1 integer digit.
exponent -= (minIntDig > 0 || minFracDig > 0)
? minIntDig : 1;
}
// We now output a minimum number of digits, and more if there
// are more digits, up to the maximum number of digits. We
// place the decimal point after the "integer" digits, which
// are the first (decimalAt - exponent) digits.
int32_t minimumDigits = minIntDig + minFracDig;
// The number of integer digits is handled specially if the number
// is zero, since then there may be no digits.
int32_t integerDigits = digits.isZero() ? minIntDig :
digits.getDecimalAt() - exponent;
int32_t totalDigits = digits.getCount();
if (minimumDigits > totalDigits)
totalDigits = minimumDigits;
if (integerDigits > totalDigits)
totalDigits = integerDigits;
// totalDigits records total number of digits needs to be processed
int32_t i;
for (i=0; i<totalDigits; ++i)
{
if (i == integerDigits)
{
intEnd = appendTo.length();
handler.addAttribute(kIntegerField, intBegin, intEnd);
appendTo += *decimal;
fracBegin = appendTo.length();
handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
}
// Restores the digit character or pads the buffer with zeros.
UChar32 c = (UChar32)((i < digits.getCount()) ?
localizedDigits[digits.getDigitValue(i)] :
localizedDigits[0]);
appendTo += c;
}
currentLength = appendTo.length();
if (intEnd < 0) {
handler.addAttribute(kIntegerField, intBegin, currentLength);
}
if (fracBegin > 0) {
handler.addAttribute(kFractionField, fracBegin, currentLength);
}
// The exponent is output using the pattern-specified minimum
// exponent digits. There is no maximum limit to the exponent
// digits, since truncating the exponent would appendTo in an
// unacceptable inaccuracy.
appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
currentLength = appendTo.length();
// For zero values, we force the exponent to zero. We
// must do this here, and not earlier, because the value
// is used to determine integer digit count above.
if (digits.isZero())
exponent = 0;
if (exponent < 0) {
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
} else if (fExponentSignAlwaysShown) {
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
}
currentLength = appendTo.length();
DigitList expDigits;
expDigits.set(exponent);
{
int expDig = fMinExponentDigits;
if (fUseExponentialNotation && expDig < 1) {
expDig = 1;
}
for (i=expDigits.getDecimalAt(); i<expDig; ++i)
appendTo += (localizedDigits[0]);
}
for (i=0; i<expDigits.getDecimalAt(); ++i)
{
UChar32 c = (UChar32)((i < expDigits.getCount()) ?
localizedDigits[expDigits.getDigitValue(i)] :
localizedDigits[0]);
appendTo += c;
}
handler.addAttribute(kExponentField, currentLength, appendTo.length());
}
else // Not using exponential notation
{
int currentLength = appendTo.length();
int intBegin = currentLength;
int32_t sigCount = 0;
int32_t minSigDig = getMinimumSignificantDigits();
int32_t maxSigDig = getMaximumSignificantDigits();
if (!useSigDig) {
minSigDig = 0;
maxSigDig = INT32_MAX;
}
// Output the integer portion. Here 'count' is the total
// number of integer digits we will display, including both
// leading zeros required to satisfy getMinimumIntegerDigits,
// and actual digits present in the number.
int32_t count = useSigDig ?
_max(1, digits.getDecimalAt()) : minIntDig;
if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
count = digits.getDecimalAt();
}
// Handle the case where getMaximumIntegerDigits() is smaller
// than the real number of integer digits. If this is so, we
// output the least significant max integer digits. For example,
// the value 1997 printed with 2 max integer digits is just "97".
int32_t digitIndex = 0; // Index into digitList.fDigits[]
if (count > maxIntDig && maxIntDig >= 0) {
count = maxIntDig;
digitIndex = digits.getDecimalAt() - count;
if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
}
int32_t sizeBeforeIntegerPart = appendTo.length();
int32_t i;
for (i=count-1; i>=0; --i)
{
if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
sigCount < maxSigDig) {
// Output a real digit
appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
++sigCount;
}
else
{
// Output a zero (leading or trailing)
appendTo += localizedDigits[0];
if (sigCount > 0) {
++sigCount;
}
}
// Output grouping separator if necessary.
if (isGroupingPosition(i)) {
currentLength = appendTo.length();
appendTo.append(*grouping);
handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
}
}
// This handles the special case of formatting 0. For zero only, we count the
// zero to the left of the decimal point as one signficant digit. Ordinarily we
// do not count any leading 0's as significant. If the number we are formatting
// is not zero, then either sigCount or digits.getCount() will be non-zero.
if (sigCount == 0 && digits.getCount() == 0) {
sigCount = 1;
}
// TODO(dlf): this looks like it was a bug, we marked the int field as ending
// before the zero was generated.
// Record field information for caller.
// if (fieldPosition.getField() == NumberFormat::kIntegerField)
// fieldPosition.setEndIndex(appendTo.length());
// Determine whether or not there are any printable fractional
// digits. If we've used up the digits we know there aren't.
UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
(useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
// If there is no fraction present, and we haven't printed any
// integer digits, then print a zero. Otherwise we won't print
// _any_ digits, and we won't be able to parse this string.
if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
appendTo += localizedDigits[0];
currentLength = appendTo.length();
handler.addAttribute(kIntegerField, intBegin, currentLength);
// Output the decimal separator if we always do so.
if (fDecimalSeparatorAlwaysShown || fractionPresent) {
appendTo += *decimal;
handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
currentLength = appendTo.length();
}
int fracBegin = currentLength;
count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
if (useSigDig && (sigCount == maxSigDig ||
(sigCount >= minSigDig && digitIndex == digits.getCount()))) {
count = 0;
}
for (i=0; i < count; ++i) {
// Here is where we escape from the loop. We escape
// if we've output the maximum fraction digits
// (specified in the for expression above). We also
// stop when we've output the minimum digits and
// either: we have an integer, so there is no
// fractional stuff to display, or we're out of
// significant digits.
if (!useSigDig && i >= getMinimumFractionDigits() &&
(isInteger || digitIndex >= digits.getCount())) {
break;
}
// Output leading fractional zeros. These are zeros
// that come after the decimal but before any
// significant digits. These are only output if
// abs(number being formatted) < 1.0.
if (-1-i > (digits.getDecimalAt()-1)) {
appendTo += localizedDigits[0];
continue;
}
// Output a digit, if we have any precision left, or a
// zero if we don't. We don't want to output noise digits.
if (!isInteger && digitIndex < digits.getCount()) {
appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
} else {
appendTo += localizedDigits[0];
}
// If we reach the maximum number of significant
// digits, or if we output all the real digits and
// reach the minimum, then we are done.
++sigCount;
if (useSigDig &&
(sigCount == maxSigDig ||
(digitIndex == digits.getCount() && sigCount >= minSigDig))) {
break;
}
}
handler.addAttribute(kFractionField, fracBegin, appendTo.length());
}
int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
addPadding(appendTo, handler, prefixLen, suffixLen);
return appendTo;
}
/**
* Inserts the character fPad as needed to expand result to fFormatWidth.
* @param result the string to be padded
*/
void DecimalFormat::addPadding(UnicodeString& appendTo,
FieldPositionHandler& handler,
int32_t prefixLen,
int32_t suffixLen) const
{
if (fFormatWidth > 0) {
int32_t len = fFormatWidth - appendTo.length();
if (len > 0) {
UnicodeString padding;
for (int32_t i=0; i<len; ++i) {
padding += fPad;
}
switch (fPadPosition) {
case kPadAfterPrefix:
appendTo.insert(prefixLen, padding);
break;
case kPadBeforePrefix:
appendTo.insert(0, padding);
break;
case kPadBeforeSuffix:
appendTo.insert(appendTo.length() - suffixLen, padding);
break;
case kPadAfterSuffix:
appendTo += padding;
break;
}
if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
handler.shiftLast(len);
}
}
}
}
//------------------------------------------------------------------------------
void
DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition) const {
parse(text, result, parsePosition, NULL);
}
CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
ParsePosition& pos) const {
Formattable parseResult;
int32_t start = pos.getIndex();
UChar curbuf[4] = {};
parse(text, parseResult, pos, curbuf);
if (pos.getIndex() != start) {
UErrorCode ec = U_ZERO_ERROR;
LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec), ec);
if (U_FAILURE(ec)) {
pos.setIndex(start); // indicate failure
} else {
return currAmt.orphan();
}
}
return NULL;
}
/**
* Parses the given text as a number, optionally providing a currency amount.
* @param text the string to parse
* @param result output parameter for the numeric result.
* @param parsePosition input-output position; on input, the
* position within text to match; must have 0 <= pos.getIndex() <
* text.length(); on output, the position after the last matched
* character. If the parse fails, the position in unchanged upon
* output.
* @param currency if non-NULL, it should point to a 4-UChar buffer.
* In this case the text is parsed as a currency format, and the
* ISO 4217 code for the parsed currency is put into the buffer.
* Otherwise the text is parsed as a non-currency format.
*/
void DecimalFormat::parse(const UnicodeString& text,
Formattable& result,
ParsePosition& parsePosition,
UChar* currency) const {
int32_t startIdx, backup;
int32_t i = startIdx = backup = parsePosition.getIndex();
// clear any old contents in the result. In particular, clears any DigitList
// that it may be holding.
result.setLong(0);
if (currency != NULL) {
for (int32_t ci=0; ci<4; ci++) {
currency[ci] = 0;
}
}
// Handle NaN as a special case:
// Skip padding characters, if around prefix
if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
fPadPosition == kPadAfterPrefix)) {
i = skipPadding(text, i);
}
if (isLenient()) {
// skip any leading whitespace
i = backup = skipUWhiteSpace(text, i);
}
// If the text is composed of the representation of NaN, returns NaN.length
const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
int32_t nanLen = (text.compare(i, nan->length(), *nan)
? 0 : nan->length());
if (nanLen) {
i += nanLen;
if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
fPadPosition == kPadAfterSuffix)) {
i = skipPadding(text, i);
}
parsePosition.setIndex(i);
result.setDouble(uprv_getNaN());
return;
}
// NaN parse failed; start over
i = backup;
parsePosition.setIndex(i);
// status is used to record whether a number is infinite.
UBool status[fgStatusLength];
DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
if (digits == NULL) {
return; // no way to report error from here.
}
if (fCurrencySignCount != fgCurrencySignCountZero) {
if (!parseForCurrency(text, parsePosition, *digits,
status, currency)) {
return;
}
} else {
if (!subparse(text,
fNegPrefixPattern, fNegSuffixPattern,
fPosPrefixPattern, fPosSuffixPattern,
FALSE, UCURR_SYMBOL_NAME,
parsePosition, *digits, status, currency)) {
debug("!subparse(...) - rewind");
parsePosition.setIndex(startIdx);
return;
}
}
// Handle infinity
if (status[fgStatusInfinite]) {
double inf = uprv_getInfinity();
result.setDouble(digits->isPositive() ? inf : -inf);
// TODO: set the dl to infinity, and let it fall into the code below.
}
else {
if (fMultiplier != NULL) {
UErrorCode ec = U_ZERO_ERROR;
digits->div(*fMultiplier, ec);
}
if (fScale != 0) {
DigitList ten;
ten.set((int32_t)10);
if (fScale > 0) {
for (int32_t i = fScale; i > 0; i--) {
UErrorCode ec = U_ZERO_ERROR;
digits->div(ten,ec);
}
} else {
for (int32_t i = fScale; i < 0; i++) {
UErrorCode ec = U_ZERO_ERROR;
digits->mult(ten,ec);
}
}
}
// Negative zero special case:
// if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
// if not parsing integerOnly, leave as -0, which a double can represent.
if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
digits->setPositive(TRUE);
}
result.adoptDigitList(digits);
}
}
UBool
DecimalFormat::parseForCurrency(const UnicodeString& text,
ParsePosition& parsePosition,
DigitList& digits,
UBool* status,
UChar* currency) const {
int origPos = parsePosition.getIndex();
int maxPosIndex = origPos;
int maxErrorPos = -1;
// First, parse against current pattern.
// Since current pattern could be set by applyPattern(),
// it could be an arbitrary pattern, and it may not be the one
// defined in current locale.
UBool tmpStatus[fgStatusLength];
ParsePosition tmpPos(origPos);
DigitList tmpDigitList;
UBool found;
if (fStyle == UNUM_CURRENCY_PLURAL) {
found = subparse(text,
fNegPrefixPattern, fNegSuffixPattern,
fPosPrefixPattern, fPosSuffixPattern,
TRUE, UCURR_LONG_NAME,
tmpPos, tmpDigitList, tmpStatus, currency);
} else {
found = subparse(text,
fNegPrefixPattern, fNegSuffixPattern,
fPosPrefixPattern, fPosSuffixPattern,
TRUE, UCURR_SYMBOL_NAME,
tmpPos, tmpDigitList, tmpStatus, currency);
}
if (found) {
if (tmpPos.getIndex() > maxPosIndex) {
maxPosIndex = tmpPos.getIndex();
for (int32_t i = 0; i < fgStatusLength; ++i) {
status[i] = tmpStatus[i];
}
digits = tmpDigitList;
}
} else {
maxErrorPos = tmpPos.getErrorIndex();
}
// Then, parse against affix patterns.
// Those are currency patterns and currency plural patterns.
int32_t pos = UHASH_FIRST;
const UHashElement* element = NULL;
while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
const UHashTok valueTok = element->value;
const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
UBool tmpStatus[fgStatusLength];
ParsePosition tmpPos(origPos);
DigitList tmpDigitList;
#ifdef FMT_DEBUG
debug("trying affix for currency..");
affixPtn->dump();
#endif
UBool result = subparse(text,
&affixPtn->negPrefixPatternForCurrency,
&affixPtn->negSuffixPatternForCurrency,
&affixPtn->posPrefixPatternForCurrency,
&affixPtn->posSuffixPatternForCurrency,
TRUE, affixPtn->patternType,
tmpPos, tmpDigitList, tmpStatus, currency);
if (result) {
found = true;
if (tmpPos.getIndex() > maxPosIndex) {
maxPosIndex = tmpPos.getIndex();
for (int32_t i = 0; i < fgStatusLength; ++i) {
status[i] = tmpStatus[i];
}
digits = tmpDigitList;
}
} else {
maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
tmpPos.getErrorIndex() : maxErrorPos;
}
}
// Finally, parse against simple affix to find the match.
// For example, in TestMonster suite,
// if the to-be-parsed text is "-\u00A40,00".
// complexAffixCompare will not find match,
// since there is no ISO code matches "\u00A4",
// and the parse stops at "\u00A4".
// We will just use simple affix comparison (look for exact match)
// to pass it.
//
// TODO: We should parse against simple affix first when
// output currency is not requested. After the complex currency
// parsing implementation was introduced, the default currency
// instance parsing slowed down because of the new code flow.
// I filed #10312 - Yoshito
UBool tmpStatus_2[fgStatusLength];
ParsePosition tmpPos_2(origPos);
DigitList tmpDigitList_2;
// Disable complex currency parsing and try it again.
UBool result = subparse(text,
&fNegativePrefix, &fNegativeSuffix,
&fPositivePrefix, &fPositiveSuffix,
FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
tmpPos_2, tmpDigitList_2, tmpStatus_2,
currency);
if (result) {
if (tmpPos_2.getIndex() > maxPosIndex) {
maxPosIndex = tmpPos_2.getIndex();
for (int32_t i = 0; i < fgStatusLength; ++i) {
status[i] = tmpStatus_2[i];
}
digits = tmpDigitList_2;
}
found = true;
} else {
maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
tmpPos_2.getErrorIndex() : maxErrorPos;
}
if (!found) {
//parsePosition.setIndex(origPos);
parsePosition.setErrorIndex(maxErrorPos);
} else {
parsePosition.setIndex(maxPosIndex);
parsePosition.setErrorIndex(-1);
}
return found;
}
/**
* Parse the given text into a number. The text is parsed beginning at
* parsePosition, until an unparseable character is seen.
* @param text the string to parse.
* @param negPrefix negative prefix.
* @param negSuffix negative suffix.
* @param posPrefix positive prefix.
* @param posSuffix positive suffix.
* @param complexCurrencyParsing whether it is complex currency parsing or not.
* @param type the currency type to parse against, LONG_NAME only or not.
* @param parsePosition The position at which to being parsing. Upon
* return, the first unparsed character.
* @param digits the DigitList to set to the parsed value.
* @param status output param containing boolean status flags indicating
* whether the value was infinite and whether it was positive.
* @param currency return value for parsed currency, for generic
* currency parsing mode, or NULL for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
*/
UBool DecimalFormat::subparse(const UnicodeString& text,
const UnicodeString* negPrefix,
const UnicodeString* negSuffix,
const UnicodeString* posPrefix,
const UnicodeString* posSuffix,
UBool complexCurrencyParsing,
int8_t type,
ParsePosition& parsePosition,
DigitList& digits, UBool* status,
UChar* currency) const
{
// The parsing process builds up the number as char string, in the neutral format that
// will be acceptable to the decNumber library, then at the end passes that string
// off for conversion to a decNumber.
UErrorCode err = U_ZERO_ERROR;
CharString parsedNum;
digits.setToZero();
int32_t position = parsePosition.getIndex();
int32_t oldStart = position;
int32_t textLength = text.length(); // One less pointer to follow
UBool strictParse = !isLenient();
UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
UChar32 groupingChar = groupingString->char32At(0);
int32_t groupingStringLength = groupingString->length();
int32_t groupingCharLength = U16_LENGTH(groupingChar);
UBool groupingUsed = isGroupingUsed();
#ifdef FMT_DEBUG
UChar dbgbuf[300];
UnicodeString s(dbgbuf,0,300);;
s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
#define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "=")); if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
DBGAPPD(negPrefix);
DBGAPPD(negSuffix);
DBGAPPD(posPrefix);
DBGAPPD(posSuffix);
debugout(s);
printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(), negPrefix!=NULL?negPrefix->length():-1);
#endif
UBool fastParseOk = false; /* TRUE iff fast parse is OK */
// UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
const DecimalFormatInternal &data = internalData(fReserved);
if((data.fFastParseStatus==kFastpathYES) &&
fCurrencySignCount == fgCurrencySignCountZero &&
// (negPrefix!=NULL&&negPrefix->isEmpty()) ||
text.length()>0 &&
text.length()<32 &&
(posPrefix==NULL||posPrefix->isEmpty()) &&
(posSuffix==NULL||posSuffix->isEmpty()) &&
// (negPrefix==NULL||negPrefix->isEmpty()) &&
// (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
TRUE) { // optimized path
int j=position;
int l=text.length();
int digitCount=0;
UChar32 ch = text.char32At(j);
const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
UChar32 decimalChar = 0;
UBool intOnly = FALSE;
UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
int32_t decimalCount = decimalString->countChar32(0,3);
if(isParseIntegerOnly()) {
decimalChar = 0; // not allowed
intOnly = TRUE; // Don't look for decimals.
} else if(decimalCount==1) {
decimalChar = decimalString->char32At(0); // Look for this decimal
} else if(decimalCount==0) {
decimalChar=0; // NO decimal set
} else {
j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
}
#ifdef FMT_DEBUG
printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
decimalChar, groupingChar, ch,
(intOnly)?'y':'n',
(strictParse)?'y':'n');
#endif
if(ch==0x002D) { // '-'
j=l+1;//=break - negative number.
/*
parsedNum.append('-',err);
j+=U16_LENGTH(ch);
if(j<l) ch = text.char32At(j);
*/
} else {
parsedNum.append('+',err);
}
while(j<l) {
int32_t digit = ch - zero;
if(digit >=0 && digit <= 9) {
parsedNum.append((char)(digit + '0'), err);
if((digitCount>0) || digit!=0 || j==(l-1)) {
digitCount++;
}
} else if(ch == 0) { // break out
digitCount=-1;
break;
} else if(ch == decimalChar) {
parsedNum.append((char)('.'), err);
decimalChar=0; // no more decimals.
// fastParseHadDecimal=TRUE;
} else if(ch == lookForGroup) {
// ignore grouping char. No decimals, so it has to be an ignorable grouping sep
} else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
// parsing integer only and can fall through
} else {
digitCount=-1; // fail - fall through to slow parse
break;
}
j+=U16_LENGTH(ch);
ch = text.char32At(j); // for next
}
if(
((j==l)||intOnly) // end OR only parsing integer
&& (digitCount>0)) { // and have at least one digit
#ifdef FMT_DEBUG
printf("PP -> %d, good = [%s] digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
#endif
fastParseOk=true; // Fast parse OK!
#ifdef SKIP_OPT
debug("SKIP_OPT");
/* for testing, try it the slow way. also */
fastParseOk=false;
parsedNum.clear();
#else
parsePosition.setIndex(position=j);
status[fgStatusInfinite]=false;
#endif
} else {
// was not OK. reset, retry
#ifdef FMT_DEBUG
printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
#endif
parsedNum.clear();
}
} else {
#ifdef FMT_DEBUG
printf("Could not fastpath parse. ");
printf("fFormatWidth=%d ", fFormatWidth);
printf("text.length()=%d ", text.length());
printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
printf("\n");
#endif
}
if(!fastParseOk
#if UCONFIG_HAVE_PARSEALLINPUT
&& fParseAllInput!=UNUM_YES
#endif
)
{
// Match padding before prefix
if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
position = skipPadding(text, position);
}
// Match positive and negative prefixes; prefer longest match.
int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
int32_t negMatch = compareAffix(text, position, TRUE, TRUE, negPrefix, complexCurrencyParsing, type, currency);
if (posMatch >= 0 && negMatch >= 0) {
if (posMatch > negMatch) {
negMatch = -1;
} else if (negMatch > posMatch) {
posMatch = -1;
}
}
if (posMatch >= 0) {
position += posMatch;
parsedNum.append('+', err);
} else if (negMatch >= 0) {
position += negMatch;
parsedNum.append('-', err);
} else if (strictParse){
parsePosition.setErrorIndex(position);
return FALSE;
} else {
// Temporary set positive. This might be changed after checking suffix
parsedNum.append('+', err);
}
// Match padding before prefix
if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
position = skipPadding(text, position);
}
if (! strictParse) {
position = skipUWhiteSpace(text, position);
}
// process digits or Inf, find decimal position
const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
int32_t infLen = (text.compare(position, inf->length(), *inf)
? 0 : inf->length());
position += infLen; // infLen is non-zero when it does equal to infinity
status[fgStatusInfinite] = infLen != 0;
if (infLen != 0) {
parsedNum.append("Infinity", err);
} else {
// We now have a string of digits, possibly with grouping symbols,
// and decimal points. We want to process these into a DigitList.
// We don't want to put a bunch of leading zeros into the DigitList
// though, so we keep track of the location of the decimal point,
// put only significant digits into the DigitList, and adjust the
// exponent as needed.
UBool strictFail = FALSE; // did we exit with a strict parse failure?
int32_t lastGroup = -1; // where did we last see a grouping separator?
int32_t digitStart = position;
int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
const UnicodeString *decimalString;
if (fCurrencySignCount != fgCurrencySignCountZero) {
decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
} else {
decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
}
UChar32 decimalChar = decimalString->char32At(0);
int32_t decimalStringLength = decimalString->length();
int32_t decimalCharLength = U16_LENGTH(decimalChar);
UBool sawDecimal = FALSE;
UChar32 sawDecimalChar = 0xFFFF;
UBool sawGrouping = FALSE;
UChar32 sawGroupingChar = 0xFFFF;
UBool sawDigit = FALSE;
int32_t backup = -1;
int32_t digit;
// equivalent grouping and decimal support
const UnicodeSet *decimalSet = NULL;
const UnicodeSet *groupingSet = NULL;
if (decimalCharLength == decimalStringLength) {
decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
}
if (groupingCharLength == groupingStringLength) {
if (strictParse) {
groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
} else {
groupingSet = fStaticSets->fDefaultGroupingSeparators;
}
}
// We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
// If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
// If a character matches decimalSet, don't consider it to be a member of the groupingSet.
// We have to track digitCount ourselves, because digits.fCount will
// pin when the maximum allowable digits is reached.
int32_t digitCount = 0;
int32_t integerDigitCount = 0;
for (; position < textLength; )
{
UChar32 ch = text.char32At(position);
/* We recognize all digit ranges, not only the Latin digit range
* '0'..'9'. We do so by using the Character.digit() method,
* which converts a valid Unicode digit to the range 0..9.
*
* The character 'ch' may be a digit. If so, place its value
* from 0 to 9 in 'digit'. First try using the locale digit,
* which may or MAY NOT be a standard Unicode digit range. If
* this fails, try using the standard Unicode digit ranges by
* calling Character.digit(). If this also fails, digit will
* have a value outside the range 0..9.
*/
digit = ch - zero;
if (digit < 0 || digit > 9)
{
digit = u_charDigitValue(ch);
}
// As a last resort, look through the localized digits if the zero digit
// is not a "standard" Unicode digit.
if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
digit = 0;
if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
break;
}
for (digit = 1 ; digit < 10 ; digit++ ) {
if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
break;
}
}
}
if (digit >= 0 && digit <= 9)
{
if (strictParse && backup != -1) {
// comma followed by digit, so group before comma is a
// secondary group. If there was a group separator
// before that, the group must == the secondary group
// length, else it can be <= the the secondary group
// length.
if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
(lastGroup == -1 && position - digitStart - 1 > gs2)) {
strictFail = TRUE;
break;
}
lastGroup = backup;
}
// Cancel out backup setting (see grouping handler below)
backup = -1;
sawDigit = TRUE;
// Note: this will append leading zeros
parsedNum.append((char)(digit + '0'), err);
// count any digit that's not a leading zero
if (digit > 0 || digitCount > 0 || sawDecimal) {
digitCount += 1;
// count any integer digit that's not a leading zero
if (! sawDecimal) {
integerDigitCount += 1;
}
}
position += U16_LENGTH(ch);
}
else if (groupingStringLength > 0 &&
matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet,
decimalChar, decimalSet,
ch) && groupingUsed)
{
if (sawDecimal) {
break;
}
if (strictParse) {
if ((!sawDigit || backup != -1)) {
// leading group, or two group separators in a row
strictFail = TRUE;
break;
}
}
// Ignore grouping characters, if we are using them, but require
// that they be followed by a digit. Otherwise we backup and
// reprocess them.
backup = position;
position += groupingStringLength;
sawGrouping=TRUE;
// Once we see a grouping character, we only accept that grouping character from then on.
sawGroupingChar=ch;
}
else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
{
if (strictParse) {
if (backup != -1 ||
(lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
strictFail = TRUE;
break;
}
}
// If we're only parsing integers, or if we ALREADY saw the
// decimal, then don't parse this one.
if (isParseIntegerOnly() || sawDecimal) {
break;
}
parsedNum.append('.', err);
position += decimalStringLength;
sawDecimal = TRUE;
// Once we see a decimal character, we only accept that decimal character from then on.
sawDecimalChar=ch;
// decimalSet is considered to consist of (ch,ch)
}
else {
if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
const UnicodeString *tmp;
tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
// TODO: CASE
if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT)) // error code is set below if !sawDigit
{
// Parse sign, if present
int32_t pos = position + tmp->length();
char exponentSign = '+';
if (pos < textLength)
{
tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
if (!text.compare(pos, tmp->length(), *tmp))
{
pos += tmp->length();
}
else {
tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
if (!text.compare(pos, tmp->length(), *tmp))
{
exponentSign = '-';
pos += tmp->length();
}
}
}
UBool sawExponentDigit = FALSE;
while (pos < textLength) {
ch = text[(int32_t)pos];
digit = ch - zero;
if (digit < 0 || digit > 9) {
digit = u_charDigitValue(ch);
}
if (0 <= digit && digit <= 9) {
if (!sawExponentDigit) {
parsedNum.append('E', err);
parsedNum.append(exponentSign, err);
sawExponentDigit = TRUE;
}
++pos;
parsedNum.append((char)(digit + '0'), err);
} else {
break;
}
}
if (sawExponentDigit) {
position = pos; // Advance past the exponent
}
break; // Whether we fail or succeed, we exit this loop
} else {
break;
}
} else { // not parsing exponent
break;
}
}
}
// if we didn't see a decimal and it is required, check to see if the pattern had one
if(!sawDecimal && isDecimalPatternMatchRequired())
{
if(fFormatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
{
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(position);
debug("decimal point match required fail!");
return FALSE;
}
}
if (backup != -1)
{
position = backup;
}
if (strictParse && !sawDecimal) {
if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
strictFail = TRUE;
}
}
if (strictFail) {
// only set with strictParse and a grouping separator error
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(position);
debug("strictFail!");
return FALSE;
}
// If there was no decimal point we have an integer
// If none of the text string was recognized. For example, parse
// "x" with pattern "#0.00" (return index and error index both 0)
// parse "$" with pattern "$#0.00". (return index 0 and error index
// 1).
if (!sawDigit && digitCount == 0) {
#ifdef FMT_DEBUG
debug("none of text rec");
printf("position=%d\n",position);
#endif
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(oldStart);
return FALSE;
}
}
// Match padding before suffix
if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
position = skipPadding(text, position);
}
int32_t posSuffixMatch = -1, negSuffixMatch = -1;
// Match positive and negative suffixes; prefer longest match.
if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
}
if (negMatch >= 0) {
negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
}
if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
if (posSuffixMatch > negSuffixMatch) {
negSuffixMatch = -1;
} else if (negSuffixMatch > posSuffixMatch) {
posSuffixMatch = -1;
}
}
// Fail if neither or both
if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
parsePosition.setErrorIndex(position);
debug("neither or both");
return FALSE;
}
position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
// Match padding before suffix
if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
position = skipPadding(text, position);
}
parsePosition.setIndex(position);
parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
#ifdef FMT_DEBUG
printf("PP -> %d, SLOW = [%s]! pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
#endif
} /* end SLOW parse */
if(parsePosition.getIndex() == oldStart)
{
#ifdef FMT_DEBUG
printf(" PP didnt move, err\n");
#endif
parsePosition.setErrorIndex(position);
return FALSE;
}
#if UCONFIG_HAVE_PARSEALLINPUT
else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
{
#ifdef FMT_DEBUG
printf(" PP didnt consume all (UNUM_YES), err\n");
#endif
parsePosition.setErrorIndex(position);
return FALSE;
}
#endif
// uint32_t bits = (fastParseOk?kFastpathOk:0) |
// (fastParseHadDecimal?0:kNoDecimal);
//printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
digits.set(parsedNum.toStringPiece(),
err,
0//bits
);
if (U_FAILURE(err)) {
#ifdef FMT_DEBUG
printf(" err setting %s\n", u_errorName(err));
#endif
parsePosition.setErrorIndex(position);
return FALSE;
}
// check if we missed a required decimal point
if(fastParseOk && isDecimalPatternMatchRequired())
{
if(fFormatPattern.indexOf(DecimalFormatSymbols::kDecimalSeparatorSymbol) != 0)
{
parsePosition.setIndex(oldStart);
parsePosition.setErrorIndex(position);
debug("decimal point match required fail!");
return FALSE;
}
}
return TRUE;
}
/**
* Starting at position, advance past a run of pad characters, if any.
* Return the index of the first character after position that is not a pad
* character. Result is >= position.
*/
int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
int32_t padLen = U16_LENGTH(fPad);
while (position < text.length() &&
text.char32At(position) == fPad) {
position += padLen;
}
return position;
}
/**
* Return the length matched by the given affix, or -1 if none.
* Runs of white space in the affix, match runs of white space in
* the input. Pattern white space and input white space are
* determined differently; see code.
* @param text input text
* @param pos offset into input at which to begin matching
* @param isNegative
* @param isPrefix
* @param affixPat affix pattern used for currency affix comparison.
* @param complexCurrencyParsing whether it is currency parsing or not
* @param type the currency type to parse against, LONG_NAME only or not.
* @param currency return value for parsed currency, for generic
* currency parsing mode, or null for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
* @return length of input that matches, or -1 if match failure
*/
int32_t DecimalFormat::compareAffix(const UnicodeString& text,
int32_t pos,
UBool isNegative,
UBool isPrefix,
const UnicodeString* affixPat,
UBool complexCurrencyParsing,
int8_t type,
UChar* currency) const
{
const UnicodeString *patternToCompare;
if (fCurrencyChoice != NULL || currency != NULL ||
(fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
if (affixPat != NULL) {
return compareComplexAffix(*affixPat, text, pos, type, currency);
}
}
if (isNegative) {
if (isPrefix) {
patternToCompare = &fNegativePrefix;
}
else {
patternToCompare = &fNegativeSuffix;
}
}
else {
if (isPrefix) {
patternToCompare = &fPositivePrefix;
}
else {
patternToCompare = &fPositiveSuffix;
}
}
return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
}
UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
if (lhs == rhs) {
return TRUE;
}
U_ASSERT(fStaticSets != NULL); // should already be loaded
const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
(plusSigns->contains(lhs) && plusSigns->contains(rhs));
}
// check for LRM 0x200E, RLM 0x200F, ALM 0x061C
#define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
#define TRIM_BUFLEN 32
UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
UChar trimBuf[TRIM_BUFLEN];
int32_t affixLen = affix.length();
int32_t affixPos, trimLen = 0;
for (affixPos = 0; affixPos < affixLen; affixPos++) {
UChar c = affix.charAt(affixPos);
if (!IS_BIDI_MARK(c)) {
if (trimLen < TRIM_BUFLEN) {
trimBuf[trimLen++] = c;
} else {
trimLen = 0;
break;
}
}
}
return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
}
/**
* Return the length matched by the given affix, or -1 if none.
* Runs of white space in the affix, match runs of white space in
* the input. Pattern white space and input white space are
* determined differently; see code.
* @param affix pattern string, taken as a literal
* @param input input text
* @param pos offset into input at which to begin matching
* @return length of input that matches, or -1 if match failure
*/
int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
const UnicodeString& input,
int32_t pos,
UBool lenient) const {
int32_t start = pos;
UnicodeString trimmedAffix;
// For more efficiency we should keep lazily-created trimmed affixes around in
// instance variables instead of trimming each time they are used (the next step)
trimMarksFromAffix(affix, trimmedAffix);
UChar32 affixChar = trimmedAffix.char32At(0);
int32_t affixLength = trimmedAffix.length();
int32_t inputLength = input.length();
int32_t affixCharLength = U16_LENGTH(affixChar);
UnicodeSet *affixSet;
UErrorCode status = U_ZERO_ERROR;
U_ASSERT(fStaticSets != NULL); // should already be loaded
if (U_FAILURE(status)) {
return -1;
}
if (!lenient) {
affixSet = fStaticSets->fStrictDashEquivalents;
// If the trimmedAffix is exactly one character long and that character
// is in the dash set and the very next input character is also
// in the dash set, return a match.
if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
UChar32 ic = input.char32At(pos);
if (affixSet->contains(ic)) {
pos += U16_LENGTH(ic);
pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
return pos - start;
}
}
for (int32_t i = 0; i < affixLength; ) {
UChar32 c = trimmedAffix.char32At(i);
int32_t len = U16_LENGTH(c);
if (PatternProps::isWhiteSpace(c)) {
// We may have a pattern like: \u200F \u0020
// and input text like: \u200F \u0020
// Note that U+200F and U+0020 are Pattern_White_Space but only
// U+0020 is UWhiteSpace. So we have to first do a direct
// match of the run of Pattern_White_Space in the pattern,
// then match any extra characters.
UBool literalMatch = FALSE;
while (pos < inputLength) {
UChar32 ic = input.char32At(pos);
if (ic == c) {
literalMatch = TRUE;
i += len;
pos += len;
if (i == affixLength) {
break;
}
c = trimmedAffix.char32At(i);
len = U16_LENGTH(c);
if (!PatternProps::isWhiteSpace(c)) {
break;
}
} else if (IS_BIDI_MARK(ic)) {
pos ++; // just skip over this input text
} else {
break;
}
}
// Advance over run in pattern
i = skipPatternWhiteSpace(trimmedAffix, i);
// Advance over run in input text
// Must see at least one white space char in input,
// unless we've already matched some characters literally.
int32_t s = pos;
pos = skipUWhiteSpace(input, pos);
if (pos == s && !literalMatch) {
return -1;
}
// If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
// Otherwise, the previous lines may have skipped over text (such as U+00A0) that
// is also in the trimmedAffix.
i = skipUWhiteSpace(trimmedAffix, i);
} else {
UBool match = FALSE;
while (pos < inputLength) {
UChar32 ic = input.char32At(pos);
if (!match && ic == c) {
i += len;
pos += len;
match = TRUE;
} else if (IS_BIDI_MARK(ic)) {
pos++; // just skip over this input text
} else {
break;
}
}
if (!match) {
return -1;
}
}
}
} else {
UBool match = FALSE;
affixSet = fStaticSets->fDashEquivalents;
if (affixCharLength == affixLength && affixSet->contains(affixChar)) {
pos = skipUWhiteSpaceAndMarks(input, pos);
UChar32 ic = input.char32At(pos);
if (affixSet->contains(ic)) {
pos += U16_LENGTH(ic);
pos = skipBidiMarks(input, pos);
return pos - start;
}
}
for (int32_t i = 0; i < affixLength; )
{
//i = skipRuleWhiteSpace(trimmedAffix, i);
i = skipUWhiteSpace(trimmedAffix, i);
pos = skipUWhiteSpaceAndMarks(input, pos);
if (i >= affixLength || pos >= inputLength) {
break;
}
UChar32 c = trimmedAffix.char32At(i);
UChar32 ic = input.char32At(pos);
if (!equalWithSignCompatibility(ic, c)) {
return -1;
}
match = TRUE;
i += U16_LENGTH(c);
pos += U16_LENGTH(ic);
pos = skipBidiMarks(input, pos);
}
if (affixLength > 0 && ! match) {
return -1;
}
}
return pos - start;
}
/**
* Skip over a run of zero or more Pattern_White_Space characters at
* pos in text.
*/
int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
const UChar* s = text.getBuffer();
return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
}
/**
* Skip over a run of zero or more isUWhiteSpace() characters at pos
* in text.
*/
int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
UChar32 c = text.char32At(pos);
if (!u_isUWhiteSpace(c)) {
break;
}
pos += U16_LENGTH(c);
}
return pos;
}
/**
* Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
* in text.
*/
int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
UChar32 c = text.char32At(pos);
if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
break;
}
pos += U16_LENGTH(c);
}
return pos;
}
/**
* Skip over a run of zero or more bidi marks at pos in text.
*/
int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
while (pos < text.length()) {
UChar c = text.charAt(pos);
if (!IS_BIDI_MARK(c)) {
break;
}
pos++;
}
return pos;
}
/**
* Return the length matched by the given affix, or -1 if none.
* @param affixPat pattern string
* @param input input text
* @param pos offset into input at which to begin matching
* @param type the currency type to parse against, LONG_NAME only or not.
* @param currency return value for parsed currency, for generic
* currency parsing mode, or null for normal parsing. In generic
* currency parsing mode, any currency is parsed, not just the
* currency that this formatter is set to.
* @return length of input that matches, or -1 if match failure
*/
int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
const UnicodeString& text,
int32_t pos,
int8_t type,
UChar* currency) const
{
int32_t start = pos;
U_ASSERT(currency != NULL ||
(fCurrencyChoice != NULL && *getCurrency() != 0) ||
fCurrencySignCount != fgCurrencySignCountZero);
for (int32_t i=0;
i<affixPat.length() && pos >= 0; ) {
UChar32 c = affixPat.char32At(i);
i += U16_LENGTH(c);
if (c == kQuote) {
U_ASSERT(i <= affixPat.length());
c = affixPat.char32At(i);
i += U16_LENGTH(c);
const UnicodeString* affix = NULL;
switch (c) {
case kCurrencySign: {
// since the currency names in choice format is saved
// the same way as other currency names,
// do not need to do currency choice parsing here.
// the general currency parsing parse against all names,
// including names in choice format.
UBool intl = i<affixPat.length() &&
affixPat.char32At(i) == kCurrencySign;
if (intl) {
++i;
}
UBool plural = i<affixPat.length() &&
affixPat.char32At(i) == kCurrencySign;
if (plural) {
++i;
intl = FALSE;
}
// Parse generic currency -- anything for which we
// have a display name, or any 3-letter ISO code.
// Try to parse display name for our locale; first
// determine our locale.
const char* loc = fCurrencyPluralInfo->getLocale().getName();
ParsePosition ppos(pos);
UChar curr[4];
UErrorCode ec = U_ZERO_ERROR;
// Delegate parse of display name => ISO code to Currency
uprv_parseCurrency(loc, text, ppos, type, curr, ec);
// If parse succeeds, populate currency[0]
if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
if (currency) {
u_strcpy(currency, curr);
} else {
// The formatter is currency-style but the client has not requested
// the value of the parsed currency. In this case, if that value does
// not match the formatter's current value, then the parse fails.
UChar effectiveCurr[4];
getEffectiveCurrency(effectiveCurr, ec);
if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
pos = -1;
continue;
}
}
pos = ppos.getIndex();
} else if (!isLenient()){
pos = -1;
}
continue;
}
case kPatternPercent:
affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
break;
case kPatternPerMill:
affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
break;
case kPatternPlus:
affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
break;
case kPatternMinus:
affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
break;
default:
// fall through to affix!=0 test, which will fail
break;
}
if (affix != NULL) {
pos = match(text, pos, *affix);
continue;
}
}
pos = match(text, pos, c);
if (PatternProps::isWhiteSpace(c)) {
i = skipPatternWhiteSpace(affixPat, i);
}
}
return pos - start;
}
/**
* Match a single character at text[pos] and return the index of the
* next character upon success. Return -1 on failure. If
* ch is a Pattern_White_Space then match a run of white space in text.
*/
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
if (PatternProps::isWhiteSpace(ch)) {
// Advance over run of white space in input text
// Must see at least one white space char in input
int32_t s = pos;
pos = skipPatternWhiteSpace(text, pos);
if (pos == s) {
return -1;
}
return pos;
}
return (pos >= 0 && text.char32At(pos) == ch) ?
(pos + U16_LENGTH(ch)) : -1;
}
/**
* Match a string at text[pos] and return the index of the next
* character upon success. Return -1 on failure. Match a run of
* white space in str with a run of white space in text.
*/
int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
for (int32_t i=0; i<str.length() && pos >= 0; ) {
UChar32 ch = str.char32At(i);
i += U16_LENGTH(ch);
if (PatternProps::isWhiteSpace(ch)) {
i = skipPatternWhiteSpace(str, i);
}
pos = match(text, pos, ch);
}
return pos;
}
UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
UnicodeSet *sset, UChar32 schar)
{
if (sset != NULL) {
return sset->contains(schar);
}
return text.compare(position, length, symbol) == 0;
}
UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
UBool sawDecimal, UChar32 sawDecimalChar,
const UnicodeSet *sset, UChar32 schar) {
if(sawDecimal) {
return schar==sawDecimalChar;
} else if(schar==symbolChar) {
return TRUE;
} else if(sset!=NULL) {
return sset->contains(schar);
} else {
return FALSE;
}
}
UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
UBool sawGrouping, UChar32 sawGroupingChar,
const UnicodeSet *sset,
UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
UChar32 schar) {
if(sawGrouping) {
return schar==sawGroupingChar; // previously found
} else if(schar==groupingChar) {
return TRUE; // char from symbols
} else if(sset!=NULL) {
return sset->contains(schar) && // in groupingSet but...
((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
} else {
return FALSE;
}
}
//------------------------------------------------------------------------------
// Gets the pointer to the localized decimal format symbols
const DecimalFormatSymbols*
DecimalFormat::getDecimalFormatSymbols() const
{
return fSymbols;
}
//------------------------------------------------------------------------------
// De-owning the current localized symbols and adopt the new symbols.
void
DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
{
if (symbolsToAdopt == NULL) {
return; // do not allow caller to set fSymbols to NULL
}
UBool sameSymbols = FALSE;
if (fSymbols != NULL) {
sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
delete fSymbols;
}
fSymbols = symbolsToAdopt;
if (!sameSymbols) {
// If the currency symbols are the same, there is no need to recalculate.
setCurrencyForSymbols();
}
expandAffixes(NULL);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Setting the symbols is equlivalent to adopting a newly created localized
// symbols.
void
DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
{
adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
const CurrencyPluralInfo*
DecimalFormat::getCurrencyPluralInfo(void) const
{
return fCurrencyPluralInfo;
}
void
DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
{
if (toAdopt != NULL) {
delete fCurrencyPluralInfo;
fCurrencyPluralInfo = toAdopt;
// re-set currency affix patterns and currency affixes.
if (fCurrencySignCount != fgCurrencySignCountZero) {
UErrorCode status = U_ZERO_ERROR;
if (fAffixPatternsForCurrency) {
deleteHashForAffixPattern();
}
setupCurrencyAffixPatterns(status);
if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
// only setup the affixes of the plural pattern.
setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
}
}
}
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void
DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
{
adoptCurrencyPluralInfo(info.clone());
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Update the currency object to match the symbols. This method
* is used only when the caller has passed in a symbols object
* that may not be the default object for its locale.
*/
void
DecimalFormat::setCurrencyForSymbols() {
/*Bug 4212072
Update the affix strings accroding to symbols in order to keep
the affix strings up to date.
[Richard/GCL]
*/
// With the introduction of the Currency object, the currency
// symbols in the DFS object are ignored. For backward
// compatibility, we check any explicitly set DFS object. If it
// is a default symbols object for its locale, we change the
// currency object to one for that locale. If it is custom,
// we set the currency to null.
UErrorCode ec = U_ZERO_ERROR;
const UChar* c = NULL;
const char* loc = fSymbols->getLocale().getName();
UChar intlCurrencySymbol[4];
ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
UnicodeString currencySymbol;
uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
if (U_SUCCESS(ec)
&& getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
&& getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
{
// Trap an error in mapping locale to currency. If we can't
// map, then don't fail and set the currency to "".
c = intlCurrencySymbol;
}
ec = U_ZERO_ERROR; // reset local error code!
setCurrencyInternally(c, ec);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Gets the positive prefix of the number pattern.
UnicodeString&
DecimalFormat::getPositivePrefix(UnicodeString& result) const
{
result = fPositivePrefix;
return result;
}
//------------------------------------------------------------------------------
// Sets the positive prefix of the number pattern.
void
DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
{
fPositivePrefix = newValue;
delete fPosPrefixPattern;
fPosPrefixPattern = 0;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Gets the negative prefix of the number pattern.
UnicodeString&
DecimalFormat::getNegativePrefix(UnicodeString& result) const
{
result = fNegativePrefix;
return result;
}
//------------------------------------------------------------------------------
// Gets the negative prefix of the number pattern.
void
DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
{
fNegativePrefix = newValue;
delete fNegPrefixPattern;
fNegPrefixPattern = 0;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Gets the positive suffix of the number pattern.
UnicodeString&
DecimalFormat::getPositiveSuffix(UnicodeString& result) const
{
result = fPositiveSuffix;
return result;
}
//------------------------------------------------------------------------------
// Sets the positive suffix of the number pattern.
void
DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
{
fPositiveSuffix = newValue;
delete fPosSuffixPattern;
fPosSuffixPattern = 0;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Gets the negative suffix of the number pattern.
UnicodeString&
DecimalFormat::getNegativeSuffix(UnicodeString& result) const
{
result = fNegativeSuffix;
return result;
}
//------------------------------------------------------------------------------
// Sets the negative suffix of the number pattern.
void
DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
{
fNegativeSuffix = newValue;
delete fNegSuffixPattern;
fNegSuffixPattern = 0;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Gets the multiplier of the number pattern.
// Multipliers are stored as decimal numbers (DigitLists) because that
// is the most convenient for muliplying or dividing the numbers to be formatted.
// A NULL multiplier implies one, and the scaling operations are skipped.
int32_t
DecimalFormat::getMultiplier() const
{
if (fMultiplier == NULL) {
return 1;
} else {
return fMultiplier->getLong();
}
}
//------------------------------------------------------------------------------
// Sets the multiplier of the number pattern.
void
DecimalFormat::setMultiplier(int32_t newValue)
{
// if (newValue == 0) {
// throw new IllegalArgumentException("Bad multiplier: " + newValue);
// }
if (newValue == 0) {
newValue = 1; // one being the benign default value for a multiplier.
}
if (newValue == 1) {
delete fMultiplier;
fMultiplier = NULL;
} else {
if (fMultiplier == NULL) {
fMultiplier = new DigitList;
}
if (fMultiplier != NULL) {
fMultiplier->set(newValue);
}
}
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Get the rounding increment.
* @return A positive rounding increment, or 0.0 if rounding
* is not in effect.
* @see #setRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
*/
double DecimalFormat::getRoundingIncrement() const {
if (fRoundingIncrement == NULL) {
return 0.0;
} else {
return fRoundingIncrement->getDouble();
}
}
/**
* Set the rounding increment. This method also controls whether
* rounding is enabled.
* @param newValue A positive rounding increment, or 0.0 to disable rounding.
* Negative increments are equivalent to 0.0.
* @see #getRoundingIncrement
* @see #getRoundingMode
* @see #setRoundingMode
*/
void DecimalFormat::setRoundingIncrement(double newValue) {
if (newValue > 0.0) {
if (fRoundingIncrement == NULL) {
fRoundingIncrement = new DigitList();
}
if (fRoundingIncrement != NULL) {
fRoundingIncrement->set(newValue);
return;
}
}
// These statements are executed if newValue is less than 0.0
// or fRoundingIncrement could not be created.
delete fRoundingIncrement;
fRoundingIncrement = NULL;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Get the rounding mode.
* @return A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #setRoundingMode
*/
DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
return fRoundingMode;
}
/**
* Set the rounding mode. This has no effect unless the rounding
* increment is greater than zero.
* @param roundingMode A rounding mode
* @see #setRoundingIncrement
* @see #getRoundingIncrement
* @see #getRoundingMode
*/
void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
fRoundingMode = roundingMode;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Get the width to which the output of <code>format()</code> is padded.
* @return the format width, or zero if no padding is in effect
* @see #setFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
int32_t DecimalFormat::getFormatWidth() const {
return fFormatWidth;
}
/**
* Set the width to which the output of <code>format()</code> is padded.
* This method also controls whether padding is enabled.
* @param width the width to which to pad the result of
* <code>format()</code>, or zero to disable padding. A negative
* width is equivalent to 0.
* @see #getFormatWidth
* @see #getPadCharacter
* @see #setPadCharacter
* @see #getPadPosition
* @see #setPadPosition
*/
void DecimalFormat::setFormatWidth(int32_t width) {
fFormatWidth = (width > 0) ? width : 0;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
UnicodeString DecimalFormat::getPadCharacterString() const {
return UnicodeString(fPad);
}
void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
if (padChar.length() > 0) {
fPad = padChar.char32At(0);
}
else {
fPad = kDefaultPad;
}
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Get the position at which padding will take place. This is the location
* at which padding will be inserted if the result of <code>format()</code>
* is shorter than the format width.
* @return the pad position, one of <code>kPadBeforePrefix</code>,
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
* <code>kPadAfterSuffix</code>.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #setPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
*/
DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
return fPadPosition;
}
/**
* <strong><font face=helvetica color=red>NEW</font></strong>
* Set the position at which padding will take place. This is the location
* at which padding will be inserted if the result of <code>format()</code>
* is shorter than the format width. This has no effect unless padding is
* enabled.
* @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
* <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
* <code>kPadAfterSuffix</code>.
* @see #setFormatWidth
* @see #getFormatWidth
* @see #setPadCharacter
* @see #getPadCharacter
* @see #getPadPosition
* @see #kPadBeforePrefix
* @see #kPadAfterPrefix
* @see #kPadBeforeSuffix
* @see #kPadAfterSuffix
*/
void DecimalFormat::setPadPosition(EPadPosition padPos) {
fPadPosition = padPos;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Return whether or not scientific notation is used.
* @return TRUE if this object formats and parses scientific notation
* @see #setScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
UBool DecimalFormat::isScientificNotation() const {
return fUseExponentialNotation;
}
/**
* Set whether or not scientific notation is used.
* @param useScientific TRUE if this object formats and parses scientific
* notation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
void DecimalFormat::setScientificNotation(UBool useScientific) {
fUseExponentialNotation = useScientific;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Return the minimum exponent digits that will be shown.
* @return the minimum exponent digits that will be shown
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
int8_t DecimalFormat::getMinimumExponentDigits() const {
return fMinExponentDigits;
}
/**
* Set the minimum exponent digits that will be shown. This has no
* effect unless scientific notation is in use.
* @param minExpDig a value >= 1 indicating the fewest exponent digits
* that will be shown. Values less than 1 will be treated as 1.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
* @see #setExponentSignAlwaysShown
*/
void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Return whether the exponent sign is always shown.
* @return TRUE if the exponent is always prefixed with either the
* localized minus sign or the localized plus sign, false if only negative
* exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #setExponentSignAlwaysShown
*/
UBool DecimalFormat::isExponentSignAlwaysShown() const {
return fExponentSignAlwaysShown;
}
/**
* Set whether the exponent sign is always shown. This has no effect
* unless scientific notation is in use.
* @param expSignAlways TRUE if the exponent is always prefixed with either
* the localized minus sign or the localized plus sign, false if only
* negative exponents are prefixed with the localized minus sign.
* @see #setScientificNotation
* @see #isScientificNotation
* @see #setMinimumExponentDigits
* @see #getMinimumExponentDigits
* @see #isExponentSignAlwaysShown
*/
void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
fExponentSignAlwaysShown = expSignAlways;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern. For example, thousand or 10
// thousand groupings.
int32_t
DecimalFormat::getGroupingSize() const
{
return isGroupingUsed() ? fGroupingSize : 0;
}
//------------------------------------------------------------------------------
// Gets the grouping size of the number pattern.
void
DecimalFormat::setGroupingSize(int32_t newValue)
{
fGroupingSize = newValue;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
int32_t
DecimalFormat::getSecondaryGroupingSize() const
{
return fGroupingSize2;
}
//------------------------------------------------------------------------------
void
DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
{
fGroupingSize2 = newValue;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Checks if to show the decimal separator.
UBool
DecimalFormat::isDecimalSeparatorAlwaysShown() const
{
return fDecimalSeparatorAlwaysShown;
}
//------------------------------------------------------------------------------
// Sets to always show the decimal separator.
void
DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
{
fDecimalSeparatorAlwaysShown = newValue;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
//------------------------------------------------------------------------------
// Checks if decimal point pattern match is required
UBool
DecimalFormat::isDecimalPatternMatchRequired(void) const
{
return fBoolFlags.contains(UNUM_PARSE_DECIMAL_MARK_REQUIRED);
}
//------------------------------------------------------------------------------
// Checks if decimal point pattern match is required
void
DecimalFormat::setDecimalPatternMatchRequired(UBool newValue)
{
fBoolFlags.set(UNUM_PARSE_DECIMAL_MARK_REQUIRED, newValue);
}
//------------------------------------------------------------------------------
// Emits the pattern of this DecimalFormat instance.
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result) const
{
return toPattern(result, FALSE);
}
//------------------------------------------------------------------------------
// Emits the localized pattern this DecimalFormat instance.
UnicodeString&
DecimalFormat::toLocalizedPattern(UnicodeString& result) const
{
return toPattern(result, TRUE);
}
//------------------------------------------------------------------------------
/**
* Expand the affix pattern strings into the expanded affix strings. If any
* affix pattern string is null, do not expand it. This method should be
* called any time the symbols or the affix patterns change in order to keep
* the expanded affix strings up to date.
* This method also will be called before formatting if format currency
* plural names, since the plural name is not a static one, it is
* based on the currency plural count, the affix will be known only
* after the currency plural count is know.
* In which case, the parameter
* 'pluralCount' will be a non-null currency plural count.
* In all other cases, the 'pluralCount' is null, which means it is not needed.
*/
void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
FieldPositionHandler none;
if (fPosPrefixPattern != 0) {
expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
}
if (fPosSuffixPattern != 0) {
expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
}
if (fNegPrefixPattern != 0) {
expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
}
if (fNegSuffixPattern != 0) {
expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
}
#ifdef FMT_DEBUG
UnicodeString s;
s.append(UnicodeString("["))
.append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
.append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
.append((UnicodeString)"]->[")
.append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
.append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
.append((UnicodeString)"]\n");
debugout(s);
#endif
}
/**
* Expand an affix pattern into an affix string. All characters in the
* pattern are literal unless prefixed by kQuote. The following characters
* after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
* PATTERN_MINUS, and kCurrencySign. If kCurrencySign is doubled (kQuote +
* kCurrencySign + kCurrencySign), it is interpreted as an international
* currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
* currency plural long names, such as "US Dollars".
* Any other character after a kQuote represents itself.
* kQuote must be followed by another character; kQuote may not occur by
* itself at the end of the pattern.
*
* This method is used in two distinct ways. First, it is used to expand
* the stored affix patterns into actual affixes. For this usage, doFormat
* must be false. Second, it is used to expand the stored affix patterns
* given a specific number (doFormat == true), for those rare cases in
* which a currency format references a ChoiceFormat (e.g., en_IN display
* name for INR). The number itself is taken from digitList.
*
* When used in the first way, this method has a side effect: It sets
* currencyChoice to a ChoiceFormat object, if the currency's display name
* in this locale is a ChoiceFormat pattern (very rare). It only does this
* if currencyChoice is null to start with.
*
* @param pattern the non-null, fPossibly empty pattern
* @param affix string to receive the expanded equivalent of pattern.
* Previous contents are deleted.
* @param doFormat if false, then the pattern will be expanded, and if a
* currency symbol is encountered that expands to a ChoiceFormat, the
* currencyChoice member variable will be initialized if it is null. If
* doFormat is true, then it is assumed that the currencyChoice has been
* created, and it will be used to format the value in digitList.
* @param pluralCount the plural count. It is only used for currency
* plural format. In which case, it is the plural
* count of the currency amount. For example,
* in en_US, it is the singular "one", or the plural
* "other". For all other cases, it is null, and
* is not being used.
*/
void DecimalFormat::expandAffix(const UnicodeString& pattern,
UnicodeString& affix,
double number,
FieldPositionHandler& handler,
UBool doFormat,
const UnicodeString* pluralCount) const {
affix.remove();
for (int i=0; i<pattern.length(); ) {
UChar32 c = pattern.char32At(i);
i += U16_LENGTH(c);
if (c == kQuote) {
c = pattern.char32At(i);
i += U16_LENGTH(c);
int beginIdx = affix.length();
switch (c) {
case kCurrencySign: {
// As of ICU 2.2 we use the currency object, and
// ignore the currency symbols in the DFS, unless
// we have a null currency object. This occurs if
// resurrecting a pre-2.2 object or if the user
// sets a custom DFS.
UBool intl = i<pattern.length() &&
pattern.char32At(i) == kCurrencySign;
UBool plural = FALSE;
if (intl) {
++i;
plural = i<pattern.length() &&
pattern.char32At(i) == kCurrencySign;
if (plural) {
intl = FALSE;
++i;
}
}
const UChar* currencyUChars = getCurrency();
if (currencyUChars[0] != 0) {
UErrorCode ec = U_ZERO_ERROR;
if (plural && pluralCount != NULL) {
// plural name is only needed when pluralCount != null,
// which means when formatting currency plural names.
// For other cases, pluralCount == null,
// and plural names are not needed.
int32_t len;
CharString pluralCountChar;
pluralCountChar.appendInvariantChars(*pluralCount, ec);
UBool isChoiceFormat;
const UChar* s = ucurr_getPluralName(currencyUChars,
fSymbols != NULL ? fSymbols->getLocale().getName() :
Locale::getDefault().getName(), &isChoiceFormat,
pluralCountChar.data(), &len, &ec);
affix += UnicodeString(s, len);
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
} else if(intl) {
affix.append(currencyUChars, -1);
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
} else {
int32_t len;
UBool isChoiceFormat;
// If fSymbols is NULL, use default locale
const UChar* s = ucurr_getName(currencyUChars,
fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
if (isChoiceFormat) {
// Two modes here: If doFormat is false, we set up
// currencyChoice. If doFormat is true, we use the
// previously created currencyChoice to format the
// value in digitList.
if (!doFormat) {
// If the currency is handled by a ChoiceFormat,
// then we're not going to use the expanded
// patterns. Instantiate the ChoiceFormat and
// return.
if (fCurrencyChoice == NULL) {
// TODO Replace double-check with proper thread-safe code
ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
if (U_SUCCESS(ec)) {
umtx_lock(NULL);
if (fCurrencyChoice == NULL) {
// Cast away const
((DecimalFormat*)this)->fCurrencyChoice = fmt;
fmt = NULL;
}
umtx_unlock(NULL);
delete fmt;
}
}
// We could almost return null or "" here, since the
// expanded affixes are almost not used at all
// in this situation. However, one method --
// toPattern() -- still does use the expanded
// affixes, in order to set up a padding
// pattern. We use the CURRENCY_SIGN as a
// placeholder.
affix.append(kCurrencySign);
} else {
if (fCurrencyChoice != NULL) {
FieldPosition pos(0); // ignored
if (number < 0) {
number = -number;
}
fCurrencyChoice->format(number, affix, pos);
} else {
// We only arrive here if the currency choice
// format in the locale data is INVALID.
affix.append(currencyUChars, -1);
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
}
}
continue;
}
affix += UnicodeString(s, len);
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
}
} else {
if(intl) {
affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
} else {
affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
}
handler.addAttribute(kCurrencyField, beginIdx, affix.length());
}
break;
}
case kPatternPercent:
affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
handler.addAttribute(kPercentField, beginIdx, affix.length());
break;
case kPatternPerMill:
affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
handler.addAttribute(kPermillField, beginIdx, affix.length());
break;
case kPatternPlus:
affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
handler.addAttribute(kSignField, beginIdx, affix.length());
break;
case kPatternMinus:
affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
handler.addAttribute(kSignField, beginIdx, affix.length());
break;
default:
affix.append(c);
break;
}
}
else {
affix.append(c);
}
}
}
/**
* Append an affix to the given StringBuffer.
* @param buf buffer to append to
* @param isNegative
* @param isPrefix
*/
int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
FieldPositionHandler& handler,
UBool isNegative, UBool isPrefix) const {
// plural format precedes choice format
if (fCurrencyChoice != 0 &&
fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
const UnicodeString* affixPat;
if (isPrefix) {
affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
} else {
affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
}
if (affixPat) {
UnicodeString affixBuf;
expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
buf.append(affixBuf);
return affixBuf.length();
}
// else someone called a function that reset the pattern.
}
const UnicodeString* affix;
if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
// TODO: get an accurate count of visible fraction digits.
UnicodeString pluralCount;
int32_t minFractionDigits = this->getMinimumFractionDigits();
if (minFractionDigits > 0) {
FixedDecimal ni(number, this->getMinimumFractionDigits());
pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
} else {
pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
}
AffixesForCurrency* oneSet;
if (fStyle == UNUM_CURRENCY_PLURAL) {
oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
} else {
oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
}
if (isPrefix) {
affix = isNegative ? &oneSet->negPrefixForCurrency :
&oneSet->posPrefixForCurrency;
} else {
affix = isNegative ? &oneSet->negSuffixForCurrency :
&oneSet->posSuffixForCurrency;
}
} else {
if (isPrefix) {
affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
} else {
affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
}
}
int32_t begin = (int) buf.length();
buf.append(*affix);
if (handler.isRecording()) {
int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
if (offset > -1) {
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
}
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
if (offset > -1) {
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
}
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
if (offset > -1) {
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
}
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
if (offset > -1) {
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
}
offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
if (offset > -1) {
UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
}
}
return affix->length();
}
/**
* Appends an affix pattern to the given StringBuffer, quoting special
* characters as needed. Uses the internal affix pattern, if that exists,
* or the literal affix, if the internal affix pattern is null. The
* appended string will generate the same affix pattern (or literal affix)
* when passed to toPattern().
*
* @param appendTo the affix string is appended to this
* @param affixPattern a pattern such as fPosPrefixPattern; may be null
* @param expAffix a corresponding expanded affix, such as fPositivePrefix.
* Ignored unless affixPattern is null. If affixPattern is null, then
* expAffix is appended as a literal affix.
* @param localized true if the appended pattern should contain localized
* pattern characters; otherwise, non-localized pattern chars are appended
*/
void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
const UnicodeString* affixPattern,
const UnicodeString& expAffix,
UBool localized) const {
if (affixPattern == 0) {
appendAffixPattern(appendTo, expAffix, localized);
} else {
int i;
for (int pos=0; pos<affixPattern->length(); pos=i) {
i = affixPattern->indexOf(kQuote, pos);
if (i < 0) {
UnicodeString s;
affixPattern->extractBetween(pos, affixPattern->length(), s);
appendAffixPattern(appendTo, s, localized);
break;
}
if (i > pos) {
UnicodeString s;
affixPattern->extractBetween(pos, i, s);
appendAffixPattern(appendTo, s, localized);
}
UChar32 c = affixPattern->char32At(++i);
++i;
if (c == kQuote) {
appendTo.append(c).append(c);
// Fall through and append another kQuote below
} else if (c == kCurrencySign &&
i<affixPattern->length() &&
affixPattern->char32At(i) == kCurrencySign) {
++i;
appendTo.append(c).append(c);
} else if (localized) {
switch (c) {
case kPatternPercent:
appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
break;
case kPatternPerMill:
appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
break;
case kPatternPlus:
appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
break;
case kPatternMinus:
appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
break;
default:
appendTo.append(c);
}
} else {
appendTo.append(c);
}
}
}
}
/**
* Append an affix to the given StringBuffer, using quotes if
* there are special characters. Single quotes themselves must be
* escaped in either case.
*/
void
DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
const UnicodeString& affix,
UBool localized) const {
UBool needQuote;
if(localized) {
needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
|| affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
|| affix.indexOf(kCurrencySign) >= 0;
}
else {
needQuote = affix.indexOf(kPatternZeroDigit) >= 0
|| affix.indexOf(kPatternGroupingSeparator) >= 0
|| affix.indexOf(kPatternDecimalSeparator) >= 0
|| affix.indexOf(kPatternPercent) >= 0
|| affix.indexOf(kPatternPerMill) >= 0
|| affix.indexOf(kPatternDigit) >= 0
|| affix.indexOf(kPatternSeparator) >= 0
|| affix.indexOf(kPatternExponent) >= 0
|| affix.indexOf(kPatternPlus) >= 0
|| affix.indexOf(kPatternMinus) >= 0
|| affix.indexOf(kCurrencySign) >= 0;
}
if (needQuote)
appendTo += (UChar)0x0027 /*'\''*/;
if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
appendTo += affix;
else {
for (int32_t j = 0; j < affix.length(); ) {
UChar32 c = affix.char32At(j);
j += U16_LENGTH(c);
appendTo += c;
if (c == 0x0027 /*'\''*/)
appendTo += c;
}
}
if (needQuote)
appendTo += (UChar)0x0027 /*'\''*/;
}
//------------------------------------------------------------------------------
UnicodeString&
DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
{
if (fStyle == UNUM_CURRENCY_PLURAL) {
// the prefix or suffix pattern might not be defined yet,
// so they can not be synthesized,
// instead, get them directly.
// but it might not be the actual pattern used in formatting.
// the actual pattern used in formatting depends on the
// formatted number's plural count.
result = fFormatPattern;
return result;
}
result.remove();
UChar32 zero, sigDigit = kPatternSignificantDigit;
UnicodeString digit, group;
int32_t i;
int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
UnicodeString roundingDigits;
int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
UnicodeString padSpec;
UBool useSigDig = areSignificantDigitsUsed();
if (localized) {
digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
if (useSigDig) {
sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
}
}
else {
digit.append((UChar)kPatternDigit);
group.append((UChar)kPatternGroupingSeparator);
zero = (UChar32)kPatternZeroDigit;
}
if (fFormatWidth > 0) {
if (localized) {
padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
}
else {
padSpec.append((UChar)kPatternPadEscape);
}
padSpec.append(fPad);
}
if (fRoundingIncrement != NULL) {
for(i=0; i<fRoundingIncrement->getCount(); ++i) {
roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
}
roundingDecimalPos = fRoundingIncrement->getDecimalAt();
}
for (int32_t part=0; part<2; ++part) {
if (padPos == kPadBeforePrefix) {
result.append(padSpec);
}
appendAffixPattern(result,
(part==0 ? fPosPrefixPattern : fNegPrefixPattern),
(part==0 ? fPositivePrefix : fNegativePrefix),
localized);
if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
int32_t sub0Start = result.length();
int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
g += fGroupingSize2;
}
int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
if (useSigDig) {
minDig = getMinimumSignificantDigits();
maxDig = maxSigDig = getMaximumSignificantDigits();
} else {
minDig = getMinimumIntegerDigits();
maxDig = getMaximumIntegerDigits();
}
if (fUseExponentialNotation) {
if (maxDig > kMaxScientificIntegerDigits) {
maxDig = 1;
}
} else if (useSigDig) {
maxDig = _max(maxDig, g+1);
} else {
maxDig = _max(_max(g, getMinimumIntegerDigits()),
roundingDecimalPos) + 1;
}
for (i = maxDig; i > 0; --i) {
if (!fUseExponentialNotation && i<maxDig &&
isGroupingPosition(i)) {
result.append(group);
}
if (useSigDig) {
// #@,@### (maxSigDig == 5, minSigDig == 2)
// 65 4321 (1-based pos, count from the right)
// Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
// Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
if (maxSigDig >= i && i > (maxSigDig - minDig)) {
result.append(sigDigit);
} else {
result.append(digit);
}
} else {
if (! roundingDigits.isEmpty()) {
int32_t pos = roundingDecimalPos - i;
if (pos >= 0 && pos < roundingDigits.length()) {
result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
continue;
}
}
if (i<=minDig) {
result.append(zero);
} else {
result.append(digit);
}
}
}
if (!useSigDig) {
if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
}
else {
result.append((UChar)kPatternDecimalSeparator);
}
}
int32_t pos = roundingDecimalPos;
for (i = 0; i < getMaximumFractionDigits(); ++i) {
if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
if (pos < 0) {
result.append(zero);
}
else {
result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
}
++pos;
continue;
}
if (i<getMinimumFractionDigits()) {
result.append(zero);
}
else {
result.append(digit);
}
}
}
if (fUseExponentialNotation) {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
}
else {
result.append((UChar)kPatternExponent);
}
if (fExponentSignAlwaysShown) {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
}
else {
result.append((UChar)kPatternPlus);
}
}
for (i=0; i<fMinExponentDigits; ++i) {
result.append(zero);
}
}
if (! padSpec.isEmpty() && !fUseExponentialNotation) {
int32_t add = fFormatWidth - result.length() + sub0Start
- ((part == 0)
? fPositivePrefix.length() + fPositiveSuffix.length()
: fNegativePrefix.length() + fNegativeSuffix.length());
while (add > 0) {
result.insert(sub0Start, digit);
++maxDig;
--add;
// Only add a grouping separator if we have at least
// 2 additional characters to be added, so we don't
// end up with ",###".
if (add>1 && isGroupingPosition(maxDig)) {
result.insert(sub0Start, group);
--add;
}
}
}
if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
if (part == 0) {
appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
UBool isDefault = FALSE;
if ((fNegSuffixPattern == fPosSuffixPattern && // both null
fNegativeSuffix == fPositiveSuffix)
|| (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
*fNegSuffixPattern == *fPosSuffixPattern))
{
if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
{
int32_t length = fPosPrefixPattern->length();
isDefault = fNegPrefixPattern->length() == (length+2) &&
(*fNegPrefixPattern)[(int32_t)0] == kQuote &&
(*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
}
if (!isDefault &&
fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
{
int32_t length = fPositivePrefix.length();
isDefault = fNegativePrefix.length() == (length+1) &&
fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
}
}
if (isDefault) {
break; // Don't output default negative subpattern
} else {
if (localized) {
result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
}
else {
result.append((UChar)kPatternSeparator);
}
}
} else {
appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
result.append(padSpec);
}
}
}
return result;
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
{
UParseError parseError;
applyPattern(pattern, FALSE, parseError, status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPattern(const UnicodeString& pattern,
UParseError& parseError,
UErrorCode& status)
{
applyPattern(pattern, FALSE, parseError, status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
{
UParseError parseError;
applyPattern(pattern, TRUE,parseError,status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
UParseError& parseError,
UErrorCode& status)
{
applyPattern(pattern, TRUE,parseError,status);
}
//------------------------------------------------------------------------------
void
DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
UBool localized,
UParseError& parseError,
UErrorCode& status)
{
if (U_FAILURE(status))
{
return;
}
DecimalFormatPatternParser patternParser;
if (localized) {
patternParser.useSymbols(*fSymbols);
}
fFormatPattern = pattern;
DecimalFormatPattern out;
patternParser.applyPatternWithoutExpandAffix(
pattern,
out,
parseError,
status);
if (U_FAILURE(status)) {
return;
}
setMinimumIntegerDigits(out.fMinimumIntegerDigits);
setMaximumIntegerDigits(out.fMaximumIntegerDigits);
setMinimumFractionDigits(out.fMinimumFractionDigits);
setMaximumFractionDigits(out.fMaximumFractionDigits);
setSignificantDigitsUsed(out.fUseSignificantDigits);
if (out.fUseSignificantDigits) {
setMinimumSignificantDigits(out.fMinimumSignificantDigits);
setMaximumSignificantDigits(out.fMaximumSignificantDigits);
}
fUseExponentialNotation = out.fUseExponentialNotation;
if (out.fUseExponentialNotation) {
fMinExponentDigits = out.fMinExponentDigits;
}
fExponentSignAlwaysShown = out.fExponentSignAlwaysShown;
fCurrencySignCount = out.fCurrencySignCount;
setGroupingUsed(out.fGroupingUsed);
if (out.fGroupingUsed) {
fGroupingSize = out.fGroupingSize;
fGroupingSize2 = out.fGroupingSize2;
}
setMultiplier(out.fMultiplier);
fDecimalSeparatorAlwaysShown = out.fDecimalSeparatorAlwaysShown;
fFormatWidth = out.fFormatWidth;
if (out.fRoundingIncrementUsed) {
if (fRoundingIncrement != NULL) {
*fRoundingIncrement = out.fRoundingIncrement;
} else {
fRoundingIncrement = new DigitList(out.fRoundingIncrement);
/* test for NULL */
if (fRoundingIncrement == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
} else {
setRoundingIncrement(0.0);
}
fPad = out.fPad;
switch (out.fPadPosition) {
case DecimalFormatPattern::kPadBeforePrefix:
fPadPosition = kPadBeforePrefix;
break;
case DecimalFormatPattern::kPadAfterPrefix:
fPadPosition = kPadAfterPrefix;
break;
case DecimalFormatPattern::kPadBeforeSuffix:
fPadPosition = kPadBeforeSuffix;
break;
case DecimalFormatPattern::kPadAfterSuffix:
fPadPosition = kPadAfterSuffix;
break;
}
copyString(out.fNegPrefixPattern, out.fNegPatternsBogus, fNegPrefixPattern, status);
copyString(out.fNegSuffixPattern, out.fNegPatternsBogus, fNegSuffixPattern, status);
copyString(out.fPosPrefixPattern, out.fPosPatternsBogus, fPosPrefixPattern, status);
copyString(out.fPosSuffixPattern, out.fPosPatternsBogus, fPosSuffixPattern, status);
}
void
DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
expandAffixes(pluralCount);
if (fFormatWidth > 0) {
// Finish computing format width (see above)
// TODO: how to handle fFormatWidth,
// need to save in f(Plural)AffixesForCurrecy?
fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
}
}
void
DecimalFormat::applyPattern(const UnicodeString& pattern,
UBool localized,
UParseError& parseError,
UErrorCode& status)
{
// do the following re-set first. since they change private data by
// apply pattern again.
if (pattern.indexOf(kCurrencySign) != -1) {
if (fCurrencyPluralInfo == NULL) {
// initialize currencyPluralInfo if needed
fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
}
if (fAffixPatternsForCurrency == NULL) {
setupCurrencyAffixPatterns(status);
}
if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
// only setup the affixes of the current pattern.
setupCurrencyAffixes(pattern, TRUE, FALSE, status);
}
}
applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
expandAffixAdjustWidth(NULL);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void
DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
const UnicodeString& pattern,
UBool localized,
UParseError& parseError,
UErrorCode& status) {
applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
expandAffixAdjustWidth(&pluralCount);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Sets the maximum number of digits allowed in the integer portion of a
* number.
* @see NumberFormat#setMaximumIntegerDigits
*/
void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Sets the minimum number of digits allowed in the integer portion of a
* number. This override limits the integer digit count to 309.
* @see NumberFormat#setMinimumIntegerDigits
*/
void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Sets the maximum number of digits allowed in the fraction portion of a
* number. This override limits the fraction digit count to 340.
* @see NumberFormat#setMaximumFractionDigits
*/
void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
/**
* Sets the minimum number of digits allowed in the fraction portion of a
* number. This override limits the fraction digit count to 340.
* @see NumberFormat#setMinimumFractionDigits
*/
void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
int32_t DecimalFormat::getMinimumSignificantDigits() const {
return fMinSignificantDigits;
}
int32_t DecimalFormat::getMaximumSignificantDigits() const {
return fMaxSignificantDigits;
}
void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
if (min < 1) {
min = 1;
}
// pin max sig dig to >= min
int32_t max = _max(fMaxSignificantDigits, min);
fMinSignificantDigits = min;
fMaxSignificantDigits = max;
fUseSignificantDigits = TRUE;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
if (max < 1) {
max = 1;
}
// pin min sig dig to 1..max
U_ASSERT(fMinSignificantDigits >= 1);
int32_t min = _min(fMinSignificantDigits, max);
fMinSignificantDigits = min;
fMaxSignificantDigits = max;
fUseSignificantDigits = TRUE;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
UBool DecimalFormat::areSignificantDigitsUsed() const {
return fUseSignificantDigits;
}
void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
fUseSignificantDigits = useSignificantDigits;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
UErrorCode& ec) {
// If we are a currency format, then modify our affixes to
// encode the currency symbol for the given currency in our
// locale, and adjust the decimal digits and rounding for the
// given currency.
// Note: The code is ordered so that this object is *not changed*
// until we are sure we are going to succeed.
// NULL or empty currency is *legal* and indicates no currency.
UBool isCurr = (theCurrency && *theCurrency);
double rounding = 0.0;
int32_t frac = 0;
if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
rounding = ucurr_getRoundingIncrementForUsage(theCurrency, fCurrencyUsage, &ec);
frac = ucurr_getDefaultFractionDigitsForUsage(theCurrency, fCurrencyUsage, &ec);
}
NumberFormat::setCurrency(theCurrency, ec);
if (U_FAILURE(ec)) return;
if (fCurrencySignCount != fgCurrencySignCountZero) {
// NULL or empty currency is *legal* and indicates no currency.
if (isCurr) {
setRoundingIncrement(rounding);
setMinimumFractionDigits(frac);
setMaximumFractionDigits(frac);
}
expandAffixes(NULL);
}
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
// set the currency before compute affixes to get the right currency names
NumberFormat::setCurrency(theCurrency, ec);
if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
UnicodeString savedPtn = fFormatPattern;
setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
UParseError parseErr;
applyPattern(savedPtn, FALSE, parseErr, ec);
}
// set the currency after apply pattern to get the correct rounding/fraction
setCurrencyInternally(theCurrency, ec);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void DecimalFormat::setCurrencyUsage(UCurrencyUsage newContext, UErrorCode* ec){
fCurrencyUsage = newContext;
const UChar* theCurrency = getCurrency();
// We set rounding/digit based on currency context
if(theCurrency){
double rounding = ucurr_getRoundingIncrementForUsage(theCurrency, fCurrencyUsage, ec);
int32_t frac = ucurr_getDefaultFractionDigitsForUsage(theCurrency, fCurrencyUsage, ec);
if (U_SUCCESS(*ec)) {
setRoundingIncrement(rounding);
setMinimumFractionDigits(frac);
setMaximumFractionDigits(frac);
}
}
}
UCurrencyUsage DecimalFormat::getCurrencyUsage() const {
return fCurrencyUsage;
}
// Deprecated variant with no UErrorCode parameter
void DecimalFormat::setCurrency(const UChar* theCurrency) {
UErrorCode ec = U_ZERO_ERROR;
setCurrency(theCurrency, ec);
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
if (fSymbols == NULL) {
ec = U_MEMORY_ALLOCATION_ERROR;
return;
}
ec = U_ZERO_ERROR;
const UChar* c = getCurrency();
if (*c == 0) {
const UnicodeString &intl =
fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
c = intl.getBuffer(); // ok for intl to go out of scope
}
u_strncpy(result, c, 3);
result[3] = 0;
}
/**
* Return the number of fraction digits to display, or the total
* number of digits for significant digit formats and exponential
* formats.
*/
int32_t
DecimalFormat::precision() const {
if (areSignificantDigitsUsed()) {
return getMaximumSignificantDigits();
} else if (fUseExponentialNotation) {
return getMinimumIntegerDigits() + getMaximumFractionDigits();
} else {
return getMaximumFractionDigits();
}
}
// TODO: template algorithm
Hashtable*
DecimalFormat::initHashForAffix(UErrorCode& status) {
if ( U_FAILURE(status) ) {
return NULL;
}
Hashtable* hTable;
if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
if ( U_FAILURE(status) ) {
delete hTable;
return NULL;
}
hTable->setValueComparator(decimfmtAffixValueComparator);
return hTable;
}
Hashtable*
DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
if ( U_FAILURE(status) ) {
return NULL;
}
Hashtable* hTable;
if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
if ( U_FAILURE(status) ) {
delete hTable;
return NULL;
}
hTable->setValueComparator(decimfmtAffixPatternValueComparator);
return hTable;
}
void
DecimalFormat::deleteHashForAffix(Hashtable*& table)
{
if ( table == NULL ) {
return;
}
int32_t pos = UHASH_FIRST;
const UHashElement* element = NULL;
while ( (element = table->nextElement(pos)) != NULL ) {
const UHashTok valueTok = element->value;
const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
delete value;
}
delete table;
table = NULL;
}
void
DecimalFormat::deleteHashForAffixPattern()
{
if ( fAffixPatternsForCurrency == NULL ) {
return;
}
int32_t pos = UHASH_FIRST;
const UHashElement* element = NULL;
while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
const UHashTok valueTok = element->value;
const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
delete value;
}
delete fAffixPatternsForCurrency;
fAffixPatternsForCurrency = NULL;
}
void
DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
Hashtable* target,
UErrorCode& status) {
if ( U_FAILURE(status) ) {
return;
}
int32_t pos = UHASH_FIRST;
const UHashElement* element = NULL;
if ( source ) {
while ( (element = source->nextElement(pos)) != NULL ) {
const UHashTok keyTok = element->key;
const UnicodeString* key = (UnicodeString*)keyTok.pointer;
const UHashTok valueTok = element->value;
const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
value->negPrefixPatternForCurrency,
value->negSuffixPatternForCurrency,
value->posPrefixPatternForCurrency,
value->posSuffixPatternForCurrency,
value->patternType);
target->put(UnicodeString(*key), copy, status);
if ( U_FAILURE(status) ) {
return;
}
}
}
}
// this is only overridden to call handleChanged() for fastpath purposes.
void
DecimalFormat::setGroupingUsed(UBool newValue) {
NumberFormat::setGroupingUsed(newValue);
handleChanged();
}
// this is only overridden to call handleChanged() for fastpath purposes.
void
DecimalFormat::setParseIntegerOnly(UBool newValue) {
NumberFormat::setParseIntegerOnly(newValue);
handleChanged();
}
// this is only overridden to call handleChanged() for fastpath purposes.
// setContext doesn't affect the fastPath right now, but this is called for completeness
void
DecimalFormat::setContext(UDisplayContext value, UErrorCode& status) {
NumberFormat::setContext(value, status);
handleChanged();
}
DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
int32_t newValue,
UErrorCode &status) {
if(U_FAILURE(status)) return *this;
switch(attr) {
case UNUM_LENIENT_PARSE:
setLenient(newValue!=0);
break;
case UNUM_PARSE_INT_ONLY:
setParseIntegerOnly(newValue!=0);
break;
case UNUM_GROUPING_USED:
setGroupingUsed(newValue!=0);
break;
case UNUM_DECIMAL_ALWAYS_SHOWN:
setDecimalSeparatorAlwaysShown(newValue!=0);
break;
case UNUM_MAX_INTEGER_DIGITS:
setMaximumIntegerDigits(newValue);
break;
case UNUM_MIN_INTEGER_DIGITS:
setMinimumIntegerDigits(newValue);
break;
case UNUM_INTEGER_DIGITS:
setMinimumIntegerDigits(newValue);
setMaximumIntegerDigits(newValue);
break;
case UNUM_MAX_FRACTION_DIGITS:
setMaximumFractionDigits(newValue);
break;
case UNUM_MIN_FRACTION_DIGITS:
setMinimumFractionDigits(newValue);
break;
case UNUM_FRACTION_DIGITS:
setMinimumFractionDigits(newValue);
setMaximumFractionDigits(newValue);
break;
case UNUM_SIGNIFICANT_DIGITS_USED:
setSignificantDigitsUsed(newValue!=0);
break;
case UNUM_MAX_SIGNIFICANT_DIGITS:
setMaximumSignificantDigits(newValue);
break;
case UNUM_MIN_SIGNIFICANT_DIGITS:
setMinimumSignificantDigits(newValue);
break;
case UNUM_MULTIPLIER:
setMultiplier(newValue);
break;
case UNUM_GROUPING_SIZE:
setGroupingSize(newValue);
break;
case UNUM_ROUNDING_MODE:
setRoundingMode((DecimalFormat::ERoundingMode)newValue);
break;
case UNUM_FORMAT_WIDTH:
setFormatWidth(newValue);
break;
case UNUM_PADDING_POSITION:
/** The position at which padding will take place. */
setPadPosition((DecimalFormat::EPadPosition)newValue);
break;
case UNUM_SECONDARY_GROUPING_SIZE:
setSecondaryGroupingSize(newValue);
break;
#if UCONFIG_HAVE_PARSEALLINPUT
case UNUM_PARSE_ALL_INPUT:
setParseAllInput((UNumberFormatAttributeValue)newValue);
break;
#endif
/* These are stored in fBoolFlags */
case UNUM_PARSE_NO_EXPONENT:
case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
if(!fBoolFlags.isValidValue(newValue)) {
status = U_ILLEGAL_ARGUMENT_ERROR;
} else {
fBoolFlags.set(attr, newValue);
}
break;
case UNUM_SCALE:
fScale = newValue;
break;
case UNUM_CURRENCY_USAGE:
setCurrencyUsage((UCurrencyUsage)newValue, &status);
default:
status = U_UNSUPPORTED_ERROR;
break;
}
return *this;
}
int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr,
UErrorCode &status ) const {
if(U_FAILURE(status)) return -1;
switch(attr) {
case UNUM_LENIENT_PARSE:
return isLenient();
case UNUM_PARSE_INT_ONLY:
return isParseIntegerOnly();
case UNUM_GROUPING_USED:
return isGroupingUsed();
case UNUM_DECIMAL_ALWAYS_SHOWN:
return isDecimalSeparatorAlwaysShown();
case UNUM_MAX_INTEGER_DIGITS:
return getMaximumIntegerDigits();
case UNUM_MIN_INTEGER_DIGITS:
return getMinimumIntegerDigits();
case UNUM_INTEGER_DIGITS:
// TBD: what should this return?
return getMinimumIntegerDigits();
case UNUM_MAX_FRACTION_DIGITS:
return getMaximumFractionDigits();
case UNUM_MIN_FRACTION_DIGITS:
return getMinimumFractionDigits();
case UNUM_FRACTION_DIGITS:
// TBD: what should this return?
return getMinimumFractionDigits();
case UNUM_SIGNIFICANT_DIGITS_USED:
return areSignificantDigitsUsed();
case UNUM_MAX_SIGNIFICANT_DIGITS:
return getMaximumSignificantDigits();
case UNUM_MIN_SIGNIFICANT_DIGITS:
return getMinimumSignificantDigits();
case UNUM_MULTIPLIER:
return getMultiplier();
case UNUM_GROUPING_SIZE:
return getGroupingSize();
case UNUM_ROUNDING_MODE:
return getRoundingMode();
case UNUM_FORMAT_WIDTH:
return getFormatWidth();
case UNUM_PADDING_POSITION:
return getPadPosition();
case UNUM_SECONDARY_GROUPING_SIZE:
return getSecondaryGroupingSize();
/* These are stored in fBoolFlags */
case UNUM_PARSE_NO_EXPONENT:
case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
case UNUM_PARSE_DECIMAL_MARK_REQUIRED:
return fBoolFlags.get(attr);
case UNUM_SCALE:
return fScale;
case UNUM_CURRENCY_USAGE:
return fCurrencyUsage;
default:
status = U_UNSUPPORTED_ERROR;
break;
}
return -1; /* undefined */
}
#if UCONFIG_HAVE_PARSEALLINPUT
void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
fParseAllInput = value;
#if UCONFIG_FORMAT_FASTPATHS_49
handleChanged();
#endif
}
#endif
void
DecimalFormat::copyHashForAffix(const Hashtable* source,
Hashtable* target,
UErrorCode& status) {
if ( U_FAILURE(status) ) {
return;
}
int32_t pos = UHASH_FIRST;
const UHashElement* element = NULL;
if ( source ) {
while ( (element = source->nextElement(pos)) != NULL ) {
const UHashTok keyTok = element->key;
const UnicodeString* key = (UnicodeString*)keyTok.pointer;
const UHashTok valueTok = element->value;
const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
AffixesForCurrency* copy = new AffixesForCurrency(
value->negPrefixForCurrency,
value->negSuffixForCurrency,
value->posPrefixForCurrency,
value->posSuffixForCurrency);
target->put(UnicodeString(*key), copy, status);
if ( U_FAILURE(status) ) {
return;
}
}
}
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
//eof