0ca13b73b0
X-SVN-Rev: 31792
5661 lines
214 KiB
C++
5661 lines
214 KiB
C++
/*
|
|
**************************************************************************
|
|
* Copyright (C) 2002-2012 International Business Machines Corporation *
|
|
* and others. All rights reserved. *
|
|
**************************************************************************
|
|
*/
|
|
//
|
|
// file: rematch.cpp
|
|
//
|
|
// Contains the implementation of class RegexMatcher,
|
|
// which is one of the main API classes for the ICU regular expression package.
|
|
//
|
|
|
|
#include "unicode/utypes.h"
|
|
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
|
|
|
|
#include "unicode/regex.h"
|
|
#include "unicode/uniset.h"
|
|
#include "unicode/uchar.h"
|
|
#include "unicode/ustring.h"
|
|
#include "unicode/rbbi.h"
|
|
#include "unicode/utf.h"
|
|
#include "unicode/utf16.h"
|
|
#include "uassert.h"
|
|
#include "cmemory.h"
|
|
#include "uvector.h"
|
|
#include "uvectr32.h"
|
|
#include "uvectr64.h"
|
|
#include "regeximp.h"
|
|
#include "regexst.h"
|
|
#include "regextxt.h"
|
|
#include "ucase.h"
|
|
|
|
// #include <malloc.h> // Needed for heapcheck testing
|
|
|
|
|
|
// Find progress callback
|
|
// ----------------------
|
|
// Macro to inline test & call to ReportFindProgress(). Eliminates unnecessary function call.
|
|
//
|
|
#define REGEXFINDPROGRESS_INTERRUPT(pos, status) \
|
|
(fFindProgressCallbackFn != NULL) && (ReportFindProgress(pos, status) == FALSE)
|
|
|
|
|
|
// Smart Backtracking
|
|
// ------------------
|
|
// When a failure would go back to a LOOP_C instruction,
|
|
// strings, characters, and setrefs scan backwards for a valid start
|
|
// character themselves, pop the stack, and save state, emulating the
|
|
// LOOP_C's effect but assured that the next character of input is a
|
|
// possible matching character.
|
|
//
|
|
// Good idea in theory; unfortunately it only helps out a few specific
|
|
// cases and slows the engine down a little in the rest.
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
// Default limit for the size of the back track stack, to avoid system
|
|
// failures causedby heap exhaustion. Units are in 32 bit words, not bytes.
|
|
// This value puts ICU's limits higher than most other regexp implementations,
|
|
// which use recursion rather than the heap, and take more storage per
|
|
// backtrack point.
|
|
//
|
|
static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000;
|
|
|
|
// Time limit counter constant.
|
|
// Time limits for expression evaluation are in terms of quanta of work by
|
|
// the engine, each of which is 10,000 state saves.
|
|
// This constant determines that state saves per tick number.
|
|
static const int32_t TIMER_INITIAL_VALUE = 10000;
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Constructor and Destructor
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
RegexMatcher::RegexMatcher(const RegexPattern *pat) {
|
|
fDeferredStatus = U_ZERO_ERROR;
|
|
init(fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return;
|
|
}
|
|
if (pat==NULL) {
|
|
fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
fPattern = pat;
|
|
init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus);
|
|
}
|
|
|
|
|
|
|
|
RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input,
|
|
uint32_t flags, UErrorCode &status) {
|
|
init(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
UParseError pe;
|
|
fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
|
fPattern = fPatternOwned;
|
|
|
|
UText inputText = UTEXT_INITIALIZER;
|
|
utext_openConstUnicodeString(&inputText, &input, &status);
|
|
init2(&inputText, status);
|
|
utext_close(&inputText);
|
|
|
|
fInputUniStrMaybeMutable = TRUE;
|
|
}
|
|
|
|
|
|
RegexMatcher::RegexMatcher(UText *regexp, UText *input,
|
|
uint32_t flags, UErrorCode &status) {
|
|
init(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
UParseError pe;
|
|
fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
fPattern = fPatternOwned;
|
|
init2(input, status);
|
|
}
|
|
|
|
|
|
RegexMatcher::RegexMatcher(const UnicodeString ®exp,
|
|
uint32_t flags, UErrorCode &status) {
|
|
init(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
UParseError pe;
|
|
fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
fPattern = fPatternOwned;
|
|
init2(RegexStaticSets::gStaticSets->fEmptyText, status);
|
|
}
|
|
|
|
RegexMatcher::RegexMatcher(UText *regexp,
|
|
uint32_t flags, UErrorCode &status) {
|
|
init(status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
UParseError pe;
|
|
fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
fPattern = fPatternOwned;
|
|
init2(RegexStaticSets::gStaticSets->fEmptyText, status);
|
|
}
|
|
|
|
|
|
|
|
|
|
RegexMatcher::~RegexMatcher() {
|
|
delete fStack;
|
|
if (fData != fSmallData) {
|
|
uprv_free(fData);
|
|
fData = NULL;
|
|
}
|
|
if (fPatternOwned) {
|
|
delete fPatternOwned;
|
|
fPatternOwned = NULL;
|
|
fPattern = NULL;
|
|
}
|
|
|
|
if (fInput) {
|
|
delete fInput;
|
|
}
|
|
if (fInputText) {
|
|
utext_close(fInputText);
|
|
}
|
|
if (fAltInputText) {
|
|
utext_close(fAltInputText);
|
|
}
|
|
|
|
#if UCONFIG_NO_BREAK_ITERATION==0
|
|
delete fWordBreakItr;
|
|
#endif
|
|
}
|
|
|
|
//
|
|
// init() common initialization for use by all constructors.
|
|
// Initialize all fields, get the object into a consistent state.
|
|
// This must be done even when the initial status shows an error,
|
|
// so that the object is initialized sufficiently well for the destructor
|
|
// to run safely.
|
|
//
|
|
void RegexMatcher::init(UErrorCode &status) {
|
|
fPattern = NULL;
|
|
fPatternOwned = NULL;
|
|
fFrameSize = 0;
|
|
fRegionStart = 0;
|
|
fRegionLimit = 0;
|
|
fAnchorStart = 0;
|
|
fAnchorLimit = 0;
|
|
fLookStart = 0;
|
|
fLookLimit = 0;
|
|
fActiveStart = 0;
|
|
fActiveLimit = 0;
|
|
fTransparentBounds = FALSE;
|
|
fAnchoringBounds = TRUE;
|
|
fMatch = FALSE;
|
|
fMatchStart = 0;
|
|
fMatchEnd = 0;
|
|
fLastMatchEnd = -1;
|
|
fAppendPosition = 0;
|
|
fHitEnd = FALSE;
|
|
fRequireEnd = FALSE;
|
|
fStack = NULL;
|
|
fFrame = NULL;
|
|
fTimeLimit = 0;
|
|
fTime = 0;
|
|
fTickCounter = 0;
|
|
fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY;
|
|
fCallbackFn = NULL;
|
|
fCallbackContext = NULL;
|
|
fFindProgressCallbackFn = NULL;
|
|
fFindProgressCallbackContext = NULL;
|
|
fTraceDebug = FALSE;
|
|
fDeferredStatus = status;
|
|
fData = fSmallData;
|
|
fWordBreakItr = NULL;
|
|
|
|
fStack = NULL;
|
|
fInputText = NULL;
|
|
fAltInputText = NULL;
|
|
fInput = NULL;
|
|
fInputLength = 0;
|
|
fInputUniStrMaybeMutable = FALSE;
|
|
|
|
if (U_FAILURE(status)) {
|
|
fDeferredStatus = status;
|
|
}
|
|
}
|
|
|
|
//
|
|
// init2() Common initialization for use by RegexMatcher constructors, part 2.
|
|
// This handles the common setup to be done after the Pattern is available.
|
|
//
|
|
void RegexMatcher::init2(UText *input, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
fDeferredStatus = status;
|
|
return;
|
|
}
|
|
|
|
if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(fSmallData[0]))) {
|
|
fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
|
|
if (fData == NULL) {
|
|
status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
fStack = new UVector64(status);
|
|
if (fStack == NULL) {
|
|
status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
|
|
reset(input);
|
|
setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status);
|
|
if (U_FAILURE(status)) {
|
|
fDeferredStatus = status;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
static const UChar BACKSLASH = 0x5c;
|
|
static const UChar DOLLARSIGN = 0x24;
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// appendReplacement
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
|
|
const UnicodeString &replacement,
|
|
UErrorCode &status) {
|
|
UText replacementText = UTEXT_INITIALIZER;
|
|
|
|
utext_openConstUnicodeString(&replacementText, &replacement, &status);
|
|
if (U_SUCCESS(status)) {
|
|
UText resultText = UTEXT_INITIALIZER;
|
|
utext_openUnicodeString(&resultText, &dest, &status);
|
|
|
|
if (U_SUCCESS(status)) {
|
|
appendReplacement(&resultText, &replacementText, status);
|
|
utext_close(&resultText);
|
|
}
|
|
utext_close(&replacementText);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
//
|
|
// appendReplacement, UText mode
|
|
//
|
|
RegexMatcher &RegexMatcher::appendReplacement(UText *dest,
|
|
UText *replacement,
|
|
UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return *this;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return *this;
|
|
}
|
|
if (fMatch == FALSE) {
|
|
status = U_REGEX_INVALID_STATE;
|
|
return *this;
|
|
}
|
|
|
|
// Copy input string from the end of previous match to start of current match
|
|
int64_t destLen = utext_nativeLength(dest);
|
|
if (fMatchStart > fAppendPosition) {
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
|
|
(int32_t)(fMatchStart-fAppendPosition), &status);
|
|
} else {
|
|
int32_t len16;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
len16 = (int32_t)(fMatchStart-fAppendPosition);
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus);
|
|
}
|
|
UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
|
|
if (inputChars == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return *this;
|
|
}
|
|
utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status);
|
|
destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status);
|
|
uprv_free(inputChars);
|
|
}
|
|
}
|
|
fAppendPosition = fMatchEnd;
|
|
|
|
|
|
// scan the replacement text, looking for substitutions ($n) and \escapes.
|
|
// TODO: optimize this loop by efficiently scanning for '$' or '\',
|
|
// move entire ranges not containing substitutions.
|
|
UTEXT_SETNATIVEINDEX(replacement, 0);
|
|
UChar32 c = UTEXT_NEXT32(replacement);
|
|
while (c != U_SENTINEL) {
|
|
if (c == BACKSLASH) {
|
|
// Backslash Escape. Copy the following char out without further checks.
|
|
// Note: Surrogate pairs don't need any special handling
|
|
// The second half wont be a '$' or a '\', and
|
|
// will move to the dest normally on the next
|
|
// loop iteration.
|
|
c = UTEXT_CURRENT32(replacement);
|
|
if (c == U_SENTINEL) {
|
|
break;
|
|
}
|
|
|
|
if (c==0x55/*U*/ || c==0x75/*u*/) {
|
|
// We have a \udddd or \Udddddddd escape sequence.
|
|
int32_t offset = 0;
|
|
struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement);
|
|
UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
|
|
if (escapedChar != (UChar32)0xFFFFFFFF) {
|
|
if (U_IS_BMP(escapedChar)) {
|
|
UChar c16 = (UChar)escapedChar;
|
|
destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
|
} else {
|
|
UChar surrogate[2];
|
|
surrogate[0] = U16_LEAD(escapedChar);
|
|
surrogate[1] = U16_TRAIL(escapedChar);
|
|
if (U_SUCCESS(status)) {
|
|
destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
|
|
}
|
|
}
|
|
// TODO: Report errors for mal-formed \u escapes?
|
|
// As this is, the original sequence is output, which may be OK.
|
|
if (context.lastOffset == offset) {
|
|
(void)UTEXT_PREVIOUS32(replacement);
|
|
} else if (context.lastOffset != offset-1) {
|
|
utext_moveIndex32(replacement, offset - context.lastOffset - 1);
|
|
}
|
|
}
|
|
} else {
|
|
(void)UTEXT_NEXT32(replacement);
|
|
// Plain backslash escape. Just put out the escaped character.
|
|
if (U_IS_BMP(c)) {
|
|
UChar c16 = (UChar)c;
|
|
destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
|
} else {
|
|
UChar surrogate[2];
|
|
surrogate[0] = U16_LEAD(c);
|
|
surrogate[1] = U16_TRAIL(c);
|
|
if (U_SUCCESS(status)) {
|
|
destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
|
|
}
|
|
}
|
|
}
|
|
} else if (c != DOLLARSIGN) {
|
|
// Normal char, not a $. Copy it out without further checks.
|
|
if (U_IS_BMP(c)) {
|
|
UChar c16 = (UChar)c;
|
|
destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
|
} else {
|
|
UChar surrogate[2];
|
|
surrogate[0] = U16_LEAD(c);
|
|
surrogate[1] = U16_TRAIL(c);
|
|
if (U_SUCCESS(status)) {
|
|
destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
|
|
}
|
|
}
|
|
} else {
|
|
// We've got a $. Pick up a capture group number if one follows.
|
|
// Consume at most the number of digits necessary for the largest capture
|
|
// number that is valid for this pattern.
|
|
|
|
int32_t numDigits = 0;
|
|
int32_t groupNum = 0;
|
|
UChar32 digitC;
|
|
for (;;) {
|
|
digitC = UTEXT_CURRENT32(replacement);
|
|
if (digitC == U_SENTINEL) {
|
|
break;
|
|
}
|
|
if (u_isdigit(digitC) == FALSE) {
|
|
break;
|
|
}
|
|
(void)UTEXT_NEXT32(replacement);
|
|
groupNum=groupNum*10 + u_charDigitValue(digitC);
|
|
numDigits++;
|
|
if (numDigits >= fPattern->fMaxCaptureDigits) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
if (numDigits == 0) {
|
|
// The $ didn't introduce a group number at all.
|
|
// Treat it as just part of the substitution text.
|
|
UChar c16 = DOLLARSIGN;
|
|
destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
|
} else {
|
|
// Finally, append the capture group data to the destination.
|
|
destLen += appendGroup(groupNum, dest, status);
|
|
if (U_FAILURE(status)) {
|
|
// Can fail if group number is out of range.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
break;
|
|
} else {
|
|
c = UTEXT_NEXT32(replacement);
|
|
}
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// appendTail Intended to be used in conjunction with appendReplacement()
|
|
// To the destination string, append everything following
|
|
// the last match position from the input string.
|
|
//
|
|
// Note: Match ranges do not affect appendTail or appendReplacement
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText resultText = UTEXT_INITIALIZER;
|
|
utext_openUnicodeString(&resultText, &dest, &status);
|
|
|
|
if (U_SUCCESS(status)) {
|
|
appendTail(&resultText, status);
|
|
utext_close(&resultText);
|
|
}
|
|
|
|
return dest;
|
|
}
|
|
|
|
//
|
|
// appendTail, UText mode
|
|
//
|
|
UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) {
|
|
UBool bailOut = FALSE;
|
|
if (U_FAILURE(status)) {
|
|
bailOut = TRUE;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
bailOut = TRUE;
|
|
}
|
|
|
|
if (bailOut) {
|
|
// dest must not be NULL
|
|
if (dest) {
|
|
utext_replace(dest, utext_nativeLength(dest), utext_nativeLength(dest), NULL, 0, &status);
|
|
return dest;
|
|
}
|
|
}
|
|
|
|
if (fInputLength > fAppendPosition) {
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
int64_t destLen = utext_nativeLength(dest);
|
|
utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
|
|
(int32_t)(fInputLength-fAppendPosition), &status);
|
|
} else {
|
|
int32_t len16;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
len16 = (int32_t)(fInputLength-fAppendPosition);
|
|
} else {
|
|
len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status);
|
|
status = U_ZERO_ERROR; // buffer overflow
|
|
}
|
|
|
|
UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16));
|
|
if (inputChars == NULL) {
|
|
fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
|
|
} else {
|
|
utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated
|
|
int64_t destLen = utext_nativeLength(dest);
|
|
utext_replace(dest, destLen, destLen, inputChars, len16, &status);
|
|
uprv_free(inputChars);
|
|
}
|
|
}
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// end
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::end(UErrorCode &err) const {
|
|
return end(0, err);
|
|
}
|
|
|
|
int64_t RegexMatcher::end64(UErrorCode &err) const {
|
|
return end64(0, err);
|
|
}
|
|
|
|
int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const {
|
|
if (U_FAILURE(err)) {
|
|
return -1;
|
|
}
|
|
if (fMatch == FALSE) {
|
|
err = U_REGEX_INVALID_STATE;
|
|
return -1;
|
|
}
|
|
if (group < 0 || group > fPattern->fGroupMap->size()) {
|
|
err = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return -1;
|
|
}
|
|
int64_t e = -1;
|
|
if (group == 0) {
|
|
e = fMatchEnd;
|
|
} else {
|
|
// Get the position within the stack frame of the variables for
|
|
// this capture group.
|
|
int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
|
|
U_ASSERT(groupOffset < fPattern->fFrameSize);
|
|
U_ASSERT(groupOffset >= 0);
|
|
e = fFrame->fExtra[groupOffset + 1];
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
|
|
return (int32_t)end64(group, err);
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// find()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::find() {
|
|
// Start at the position of the last match end. (Will be zero if the
|
|
// matcher has been reset.)
|
|
//
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
return findUsingChunk();
|
|
}
|
|
|
|
int64_t startPos = fMatchEnd;
|
|
if (startPos==0) {
|
|
startPos = fActiveStart;
|
|
}
|
|
|
|
if (fMatch) {
|
|
// Save the position of any previous successful match.
|
|
fLastMatchEnd = fMatchEnd;
|
|
|
|
if (fMatchStart == fMatchEnd) {
|
|
// Previous match had zero length. Move start position up one position
|
|
// to avoid sending find() into a loop on zero-length matches.
|
|
if (startPos >= fActiveLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
(void)UTEXT_NEXT32(fInputText);
|
|
startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
} else {
|
|
if (fLastMatchEnd >= 0) {
|
|
// A previous find() failed to match. Don't try again.
|
|
// (without this test, a pattern with a zero-length match
|
|
// could match again at the end of an input string.)
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
// Compute the position in the input string beyond which a match can not begin, because
|
|
// the minimum length match would extend past the end of the input.
|
|
// Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
|
|
// Be aware of possible overflows if making changes here.
|
|
int64_t testStartLimit;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
testStartLimit = fActiveLimit - fPattern->fMinMatchLen;
|
|
if (startPos > testStartLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
// For now, let the matcher discover that it can't match on its own
|
|
// We don't know how long the match len is in native characters
|
|
testStartLimit = fActiveLimit;
|
|
}
|
|
|
|
UChar32 c;
|
|
U_ASSERT(startPos >= 0);
|
|
|
|
switch (fPattern->fStartType) {
|
|
case START_NO_INFO:
|
|
// No optimization was found.
|
|
// Try a match at each input position.
|
|
for (;;) {
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
if (startPos >= testStartLimit) {
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
(void)UTEXT_NEXT32(fInputText);
|
|
startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
// Note that it's perfectly OK for a pattern to have a zero-length
|
|
// match at the end of a string, so we must make sure that the loop
|
|
// runs with startPos == testStartLimit the last time through.
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
U_ASSERT(FALSE);
|
|
|
|
case START_START:
|
|
// Matches are only possible at the start of the input string
|
|
// (pattern begins with ^ or \A)
|
|
if (startPos > fActiveStart) {
|
|
fMatch = FALSE;
|
|
return FALSE;
|
|
}
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
return fMatch;
|
|
|
|
|
|
case START_SET:
|
|
{
|
|
// Match may start on any char from a pre-computed set.
|
|
U_ASSERT(fPattern->fMinMatchLen > 0);
|
|
int64_t pos;
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
for (;;) {
|
|
c = UTEXT_NEXT32(fInputText);
|
|
pos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
// c will be -1 (U_SENTINEL) at end of text, in which case we
|
|
// skip this next block (so we don't have a negative array index)
|
|
// and handle end of text in the following block.
|
|
if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
|
|
(c>=256 && fPattern->fInitialChars->contains(c)))) {
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, pos);
|
|
}
|
|
if (startPos >= testStartLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
startPos = pos;
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
}
|
|
U_ASSERT(FALSE);
|
|
|
|
case START_STRING:
|
|
case START_CHAR:
|
|
{
|
|
// Match starts on exactly one char.
|
|
U_ASSERT(fPattern->fMinMatchLen > 0);
|
|
UChar32 theChar = fPattern->fInitialChar;
|
|
int64_t pos;
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
for (;;) {
|
|
c = UTEXT_NEXT32(fInputText);
|
|
pos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
if (c == theChar) {
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, pos);
|
|
}
|
|
if (startPos >= testStartLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
startPos = pos;
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
}
|
|
U_ASSERT(FALSE);
|
|
|
|
case START_LINE:
|
|
{
|
|
UChar32 c;
|
|
if (startPos == fAnchorStart) {
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
c = UTEXT_NEXT32(fInputText);
|
|
startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
c = UTEXT_PREVIOUS32(fInputText);
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
}
|
|
|
|
if (fPattern->fFlags & UREGEX_UNIX_LINES) {
|
|
for (;;) {
|
|
if (c == 0x0a) {
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
}
|
|
if (startPos >= testStartLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
c = UTEXT_NEXT32(fInputText);
|
|
startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
// Note that it's perfectly OK for a pattern to have a zero-length
|
|
// match at the end of a string, so we must make sure that the loop
|
|
// runs with startPos == testStartLimit the last time through.
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
for (;;) {
|
|
if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
|
((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
|
|
if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
|
|
(void)UTEXT_NEXT32(fInputText);
|
|
startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
MatchAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
|
}
|
|
if (startPos >= testStartLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
c = UTEXT_NEXT32(fInputText);
|
|
startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
|
// Note that it's perfectly OK for a pattern to have a zero-length
|
|
// match at the end of a string, so we must make sure that the loop
|
|
// runs with startPos == testStartLimit the last time through.
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
default:
|
|
U_ASSERT(FALSE);
|
|
}
|
|
|
|
U_ASSERT(FALSE);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
UBool RegexMatcher::find(int64_t start, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return FALSE;
|
|
}
|
|
this->reset(); // Note: Reset() is specified by Java Matcher documentation.
|
|
// This will reset the region to be the full input length.
|
|
if (start < 0) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return FALSE;
|
|
}
|
|
|
|
int64_t nativeStart = start;
|
|
if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return FALSE;
|
|
}
|
|
fMatchEnd = nativeStart;
|
|
return find();
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// findUsingChunk() -- like find(), but with the advance knowledge that the
|
|
// entire string is available in the UText's chunk buffer.
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::findUsingChunk() {
|
|
// Start at the position of the last match end. (Will be zero if the
|
|
// matcher has been reset.
|
|
//
|
|
|
|
int32_t startPos = (int32_t)fMatchEnd;
|
|
if (startPos==0) {
|
|
startPos = (int32_t)fActiveStart;
|
|
}
|
|
|
|
const UChar *inputBuf = fInputText->chunkContents;
|
|
|
|
if (fMatch) {
|
|
// Save the position of any previous successful match.
|
|
fLastMatchEnd = fMatchEnd;
|
|
|
|
if (fMatchStart == fMatchEnd) {
|
|
// Previous match had zero length. Move start position up one position
|
|
// to avoid sending find() into a loop on zero-length matches.
|
|
if (startPos >= fActiveLimit) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
U16_FWD_1(inputBuf, startPos, fInputLength);
|
|
}
|
|
} else {
|
|
if (fLastMatchEnd >= 0) {
|
|
// A previous find() failed to match. Don't try again.
|
|
// (without this test, a pattern with a zero-length match
|
|
// could match again at the end of an input string.)
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
// Compute the position in the input string beyond which a match can not begin, because
|
|
// the minimum length match would extend past the end of the input.
|
|
// Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
|
|
// Be aware of possible overflows if making changes here.
|
|
int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
|
|
if (startPos > testLen) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
|
|
UChar32 c;
|
|
U_ASSERT(startPos >= 0);
|
|
|
|
switch (fPattern->fStartType) {
|
|
case START_NO_INFO:
|
|
// No optimization was found.
|
|
// Try a match at each input position.
|
|
for (;;) {
|
|
MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
if (startPos >= testLen) {
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
|
// Note that it's perfectly OK for a pattern to have a zero-length
|
|
// match at the end of a string, so we must make sure that the loop
|
|
// runs with startPos == testLen the last time through.
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
U_ASSERT(FALSE);
|
|
|
|
case START_START:
|
|
// Matches are only possible at the start of the input string
|
|
// (pattern begins with ^ or \A)
|
|
if (startPos > fActiveStart) {
|
|
fMatch = FALSE;
|
|
return FALSE;
|
|
}
|
|
MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
return fMatch;
|
|
|
|
|
|
case START_SET:
|
|
{
|
|
// Match may start on any char from a pre-computed set.
|
|
U_ASSERT(fPattern->fMinMatchLen > 0);
|
|
for (;;) {
|
|
int32_t pos = startPos;
|
|
U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
|
|
if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
|
|
(c>=256 && fPattern->fInitialChars->contains(c))) {
|
|
MatchChunkAt(pos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
if (pos >= testLen) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
}
|
|
U_ASSERT(FALSE);
|
|
|
|
case START_STRING:
|
|
case START_CHAR:
|
|
{
|
|
// Match starts on exactly one char.
|
|
U_ASSERT(fPattern->fMinMatchLen > 0);
|
|
UChar32 theChar = fPattern->fInitialChar;
|
|
for (;;) {
|
|
int32_t pos = startPos;
|
|
U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
|
|
if (c == theChar) {
|
|
MatchChunkAt(pos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
if (pos >= testLen) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
}
|
|
U_ASSERT(FALSE);
|
|
|
|
case START_LINE:
|
|
{
|
|
UChar32 c;
|
|
if (startPos == fAnchorStart) {
|
|
MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
|
}
|
|
|
|
if (fPattern->fFlags & UREGEX_UNIX_LINES) {
|
|
for (;;) {
|
|
c = inputBuf[startPos-1];
|
|
if (c == 0x0a) {
|
|
MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
if (startPos >= testLen) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
|
// Note that it's perfectly OK for a pattern to have a zero-length
|
|
// match at the end of a string, so we must make sure that the loop
|
|
// runs with startPos == testLen the last time through.
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
} else {
|
|
for (;;) {
|
|
c = inputBuf[startPos-1];
|
|
if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
|
((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
|
|
if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
|
|
startPos++;
|
|
}
|
|
MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
if (fMatch) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
if (startPos >= testLen) {
|
|
fMatch = FALSE;
|
|
fHitEnd = TRUE;
|
|
return FALSE;
|
|
}
|
|
U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
|
// Note that it's perfectly OK for a pattern to have a zero-length
|
|
// match at the end of a string, so we must make sure that the loop
|
|
// runs with startPos == testLen the last time through.
|
|
if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
|
|
default:
|
|
U_ASSERT(FALSE);
|
|
}
|
|
|
|
U_ASSERT(FALSE);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// group()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UnicodeString RegexMatcher::group(UErrorCode &status) const {
|
|
return group(0, status);
|
|
}
|
|
|
|
// Return immutable shallow clone
|
|
UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const {
|
|
return group(0, dest, group_len, status);
|
|
}
|
|
|
|
// Return immutable shallow clone
|
|
UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const {
|
|
group_len = 0;
|
|
UBool bailOut = FALSE;
|
|
if (U_FAILURE(status)) {
|
|
return dest;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
bailOut = TRUE;
|
|
}
|
|
if (fMatch == FALSE) {
|
|
status = U_REGEX_INVALID_STATE;
|
|
bailOut = TRUE;
|
|
}
|
|
if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
bailOut = TRUE;
|
|
}
|
|
|
|
if (bailOut) {
|
|
return (dest) ? dest : utext_openUChars(NULL, NULL, 0, &status);
|
|
}
|
|
|
|
int64_t s, e;
|
|
if (groupNum == 0) {
|
|
s = fMatchStart;
|
|
e = fMatchEnd;
|
|
} else {
|
|
int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
|
|
U_ASSERT(groupOffset < fPattern->fFrameSize);
|
|
U_ASSERT(groupOffset >= 0);
|
|
s = fFrame->fExtra[groupOffset];
|
|
e = fFrame->fExtra[groupOffset+1];
|
|
}
|
|
|
|
if (s < 0) {
|
|
// A capture group wasn't part of the match
|
|
return utext_clone(dest, fInputText, FALSE, TRUE, &status);
|
|
}
|
|
U_ASSERT(s <= e);
|
|
group_len = e - s;
|
|
|
|
dest = utext_clone(dest, fInputText, FALSE, TRUE, &status);
|
|
if (dest)
|
|
UTEXT_SETNATIVEINDEX(dest, s);
|
|
return dest;
|
|
}
|
|
|
|
UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
|
|
UnicodeString result;
|
|
if (U_FAILURE(status)) {
|
|
return result;
|
|
}
|
|
UText resultText = UTEXT_INITIALIZER;
|
|
utext_openUnicodeString(&resultText, &result, &status);
|
|
group(groupNum, &resultText, status);
|
|
utext_close(&resultText);
|
|
return result;
|
|
}
|
|
|
|
|
|
// Return deep (mutable) clone
|
|
// Technology Preview (as an API), but note that the UnicodeString API is implemented
|
|
// using this function.
|
|
UText *RegexMatcher::group(int32_t groupNum, UText *dest, UErrorCode &status) const {
|
|
UBool bailOut = FALSE;
|
|
if (U_FAILURE(status)) {
|
|
return dest;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
bailOut = TRUE;
|
|
}
|
|
|
|
if (fMatch == FALSE) {
|
|
status = U_REGEX_INVALID_STATE;
|
|
bailOut = TRUE;
|
|
}
|
|
if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
bailOut = TRUE;
|
|
}
|
|
|
|
if (bailOut) {
|
|
if (dest) {
|
|
utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
|
|
return dest;
|
|
} else {
|
|
return utext_openUChars(NULL, NULL, 0, &status);
|
|
}
|
|
}
|
|
|
|
int64_t s, e;
|
|
if (groupNum == 0) {
|
|
s = fMatchStart;
|
|
e = fMatchEnd;
|
|
} else {
|
|
int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
|
|
U_ASSERT(groupOffset < fPattern->fFrameSize);
|
|
U_ASSERT(groupOffset >= 0);
|
|
s = fFrame->fExtra[groupOffset];
|
|
e = fFrame->fExtra[groupOffset+1];
|
|
}
|
|
|
|
if (s < 0) {
|
|
// A capture group wasn't part of the match
|
|
if (dest) {
|
|
utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
|
|
return dest;
|
|
} else {
|
|
return utext_openUChars(NULL, NULL, 0, &status);
|
|
}
|
|
}
|
|
U_ASSERT(s <= e);
|
|
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
U_ASSERT(e <= fInputLength);
|
|
if (dest) {
|
|
utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents+s, (int32_t)(e-s), &status);
|
|
} else {
|
|
UText groupText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&groupText, fInputText->chunkContents+s, e-s, &status);
|
|
dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
|
|
utext_close(&groupText);
|
|
}
|
|
} else {
|
|
int32_t len16;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
len16 = (int32_t)(e-s);
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
|
|
}
|
|
UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
|
|
if (groupChars == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return dest;
|
|
}
|
|
utext_extract(fInputText, s, e, groupChars, len16+1, &status);
|
|
|
|
if (dest) {
|
|
utext_replace(dest, 0, utext_nativeLength(dest), groupChars, len16, &status);
|
|
} else {
|
|
UText groupText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&groupText, groupChars, len16, &status);
|
|
dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
|
|
utext_close(&groupText);
|
|
}
|
|
|
|
uprv_free(groupChars);
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// appendGroup() -- currently internal only, appends a group to a UText rather
|
|
// than replacing its contents
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
|
|
int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const {
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return 0;
|
|
}
|
|
int64_t destLen = utext_nativeLength(dest);
|
|
|
|
if (fMatch == FALSE) {
|
|
status = U_REGEX_INVALID_STATE;
|
|
return utext_replace(dest, destLen, destLen, NULL, 0, &status);
|
|
}
|
|
if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return utext_replace(dest, destLen, destLen, NULL, 0, &status);
|
|
}
|
|
|
|
int64_t s, e;
|
|
if (groupNum == 0) {
|
|
s = fMatchStart;
|
|
e = fMatchEnd;
|
|
} else {
|
|
int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
|
|
U_ASSERT(groupOffset < fPattern->fFrameSize);
|
|
U_ASSERT(groupOffset >= 0);
|
|
s = fFrame->fExtra[groupOffset];
|
|
e = fFrame->fExtra[groupOffset+1];
|
|
}
|
|
|
|
if (s < 0) {
|
|
// A capture group wasn't part of the match
|
|
return utext_replace(dest, destLen, destLen, NULL, 0, &status);
|
|
}
|
|
U_ASSERT(s <= e);
|
|
|
|
int64_t deltaLen;
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
U_ASSERT(e <= fInputLength);
|
|
deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status);
|
|
} else {
|
|
int32_t len16;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
len16 = (int32_t)(e-s);
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
|
|
}
|
|
UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
|
|
if (groupChars == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return 0;
|
|
}
|
|
utext_extract(fInputText, s, e, groupChars, len16+1, &status);
|
|
|
|
deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status);
|
|
uprv_free(groupChars);
|
|
}
|
|
return deltaLen;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// groupCount()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::groupCount() const {
|
|
return fPattern->fGroupMap->size();
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// hasAnchoringBounds()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::hasAnchoringBounds() const {
|
|
return fAnchoringBounds;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// hasTransparentBounds()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::hasTransparentBounds() const {
|
|
return fTransparentBounds;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// hitEnd()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::hitEnd() const {
|
|
return fHitEnd;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// input()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
const UnicodeString &RegexMatcher::input() const {
|
|
if (!fInput) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
int32_t len16;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
len16 = (int32_t)fInputLength;
|
|
} else {
|
|
len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status);
|
|
status = U_ZERO_ERROR; // overflow, length status
|
|
}
|
|
UnicodeString *result = new UnicodeString(len16, 0, 0);
|
|
|
|
UChar *inputChars = result->getBuffer(len16);
|
|
utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning
|
|
result->releaseBuffer(len16);
|
|
|
|
(*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator=
|
|
}
|
|
|
|
return *fInput;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// inputText()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UText *RegexMatcher::inputText() const {
|
|
return fInputText;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// getInput() -- like inputText(), but makes a clone or copies into another UText
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const {
|
|
UBool bailOut = FALSE;
|
|
if (U_FAILURE(status)) {
|
|
return dest;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
bailOut = TRUE;
|
|
}
|
|
|
|
if (bailOut) {
|
|
if (dest) {
|
|
utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
|
|
return dest;
|
|
} else {
|
|
return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
|
|
}
|
|
}
|
|
|
|
if (dest) {
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status);
|
|
} else {
|
|
int32_t input16Len;
|
|
if (UTEXT_USES_U16(fInputText)) {
|
|
input16Len = (int32_t)fInputLength;
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error
|
|
}
|
|
UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len));
|
|
if (inputChars == NULL) {
|
|
return dest;
|
|
}
|
|
|
|
status = U_ZERO_ERROR;
|
|
utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning
|
|
status = U_ZERO_ERROR;
|
|
utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status);
|
|
|
|
uprv_free(inputChars);
|
|
}
|
|
return dest;
|
|
} else {
|
|
return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
|
|
}
|
|
}
|
|
|
|
|
|
static UBool compat_SyncMutableUTextContents(UText *ut);
|
|
static UBool compat_SyncMutableUTextContents(UText *ut) {
|
|
UBool retVal = FALSE;
|
|
|
|
// In the following test, we're really only interested in whether the UText should switch
|
|
// between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents
|
|
// will still point to the correct data.
|
|
if (utext_nativeLength(ut) != ut->nativeIndexingLimit) {
|
|
UnicodeString *us=(UnicodeString *)ut->context;
|
|
|
|
// Update to the latest length.
|
|
// For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit).
|
|
int32_t newLength = us->length();
|
|
|
|
// Update the chunk description.
|
|
// The buffer may have switched between stack- and heap-based.
|
|
ut->chunkContents = us->getBuffer();
|
|
ut->chunkLength = newLength;
|
|
ut->chunkNativeLimit = newLength;
|
|
ut->nativeIndexingLimit = newLength;
|
|
retVal = TRUE;
|
|
}
|
|
|
|
return retVal;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// lookingAt()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::lookingAt(UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return FALSE;
|
|
}
|
|
|
|
if (fInputUniStrMaybeMutable) {
|
|
if (compat_SyncMutableUTextContents(fInputText)) {
|
|
fInputLength = utext_nativeLength(fInputText);
|
|
reset();
|
|
}
|
|
}
|
|
else {
|
|
resetPreserveRegion();
|
|
}
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
MatchChunkAt((int32_t)fActiveStart, FALSE, status);
|
|
} else {
|
|
MatchAt(fActiveStart, FALSE, status);
|
|
}
|
|
return fMatch;
|
|
}
|
|
|
|
|
|
UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return FALSE;
|
|
}
|
|
reset();
|
|
|
|
if (start < 0) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return FALSE;
|
|
}
|
|
|
|
if (fInputUniStrMaybeMutable) {
|
|
if (compat_SyncMutableUTextContents(fInputText)) {
|
|
fInputLength = utext_nativeLength(fInputText);
|
|
reset();
|
|
}
|
|
}
|
|
|
|
int64_t nativeStart;
|
|
nativeStart = start;
|
|
if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return FALSE;
|
|
}
|
|
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
MatchChunkAt((int32_t)nativeStart, FALSE, status);
|
|
} else {
|
|
MatchAt(nativeStart, FALSE, status);
|
|
}
|
|
return fMatch;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// matches()
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::matches(UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return FALSE;
|
|
}
|
|
|
|
if (fInputUniStrMaybeMutable) {
|
|
if (compat_SyncMutableUTextContents(fInputText)) {
|
|
fInputLength = utext_nativeLength(fInputText);
|
|
reset();
|
|
}
|
|
}
|
|
else {
|
|
resetPreserveRegion();
|
|
}
|
|
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
MatchChunkAt((int32_t)fActiveStart, TRUE, status);
|
|
} else {
|
|
MatchAt(fActiveStart, TRUE, status);
|
|
}
|
|
return fMatch;
|
|
}
|
|
|
|
|
|
UBool RegexMatcher::matches(int64_t start, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return FALSE;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return FALSE;
|
|
}
|
|
reset();
|
|
|
|
if (start < 0) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return FALSE;
|
|
}
|
|
|
|
if (fInputUniStrMaybeMutable) {
|
|
if (compat_SyncMutableUTextContents(fInputText)) {
|
|
fInputLength = utext_nativeLength(fInputText);
|
|
reset();
|
|
}
|
|
}
|
|
|
|
int64_t nativeStart;
|
|
nativeStart = start;
|
|
if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return FALSE;
|
|
}
|
|
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
|
MatchChunkAt((int32_t)nativeStart, TRUE, status);
|
|
} else {
|
|
MatchAt(nativeStart, TRUE, status);
|
|
}
|
|
return fMatch;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// pattern
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
const RegexPattern &RegexMatcher::pattern() const {
|
|
return *fPattern;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// region
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return *this;
|
|
}
|
|
|
|
if (regionStart>regionLimit || regionStart<0 || regionLimit<0) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
|
|
int64_t nativeStart = regionStart;
|
|
int64_t nativeLimit = regionLimit;
|
|
if (nativeStart > fInputLength || nativeLimit > fInputLength) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
}
|
|
|
|
if (startIndex == -1)
|
|
this->reset();
|
|
else
|
|
resetPreserveRegion();
|
|
|
|
fRegionStart = nativeStart;
|
|
fRegionLimit = nativeLimit;
|
|
fActiveStart = nativeStart;
|
|
fActiveLimit = nativeLimit;
|
|
|
|
if (startIndex != -1) {
|
|
if (startIndex < fActiveStart || startIndex > fActiveLimit) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
}
|
|
fMatchEnd = startIndex;
|
|
}
|
|
|
|
if (!fTransparentBounds) {
|
|
fLookStart = nativeStart;
|
|
fLookLimit = nativeLimit;
|
|
}
|
|
if (fAnchoringBounds) {
|
|
fAnchorStart = nativeStart;
|
|
fAnchorLimit = nativeLimit;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) {
|
|
return region(start, limit, -1, status);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// regionEnd
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::regionEnd() const {
|
|
return (int32_t)fRegionLimit;
|
|
}
|
|
|
|
int64_t RegexMatcher::regionEnd64() const {
|
|
return fRegionLimit;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// regionStart
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::regionStart() const {
|
|
return (int32_t)fRegionStart;
|
|
}
|
|
|
|
int64_t RegexMatcher::regionStart64() const {
|
|
return fRegionStart;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// replaceAll
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
|
|
UText replacementText = UTEXT_INITIALIZER;
|
|
UText resultText = UTEXT_INITIALIZER;
|
|
UnicodeString resultString;
|
|
if (U_FAILURE(status)) {
|
|
return resultString;
|
|
}
|
|
|
|
utext_openConstUnicodeString(&replacementText, &replacement, &status);
|
|
utext_openUnicodeString(&resultText, &resultString, &status);
|
|
|
|
replaceAll(&replacementText, &resultText, status);
|
|
|
|
utext_close(&resultText);
|
|
utext_close(&replacementText);
|
|
|
|
return resultString;
|
|
}
|
|
|
|
|
|
//
|
|
// replaceAll, UText mode
|
|
//
|
|
UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return dest;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return dest;
|
|
}
|
|
|
|
if (dest == NULL) {
|
|
UnicodeString emptyString;
|
|
UText empty = UTEXT_INITIALIZER;
|
|
|
|
utext_openUnicodeString(&empty, &emptyString, &status);
|
|
dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
|
|
utext_close(&empty);
|
|
}
|
|
|
|
if (U_SUCCESS(status)) {
|
|
reset();
|
|
while (find()) {
|
|
appendReplacement(dest, replacement, status);
|
|
if (U_FAILURE(status)) {
|
|
break;
|
|
}
|
|
}
|
|
appendTail(dest, status);
|
|
}
|
|
|
|
return dest;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// replaceFirst
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
|
|
UText replacementText = UTEXT_INITIALIZER;
|
|
UText resultText = UTEXT_INITIALIZER;
|
|
UnicodeString resultString;
|
|
|
|
utext_openConstUnicodeString(&replacementText, &replacement, &status);
|
|
utext_openUnicodeString(&resultText, &resultString, &status);
|
|
|
|
replaceFirst(&replacementText, &resultText, status);
|
|
|
|
utext_close(&resultText);
|
|
utext_close(&replacementText);
|
|
|
|
return resultString;
|
|
}
|
|
|
|
//
|
|
// replaceFirst, UText mode
|
|
//
|
|
UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return dest;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return dest;
|
|
}
|
|
|
|
reset();
|
|
if (!find()) {
|
|
return getInput(dest, status);
|
|
}
|
|
|
|
if (dest == NULL) {
|
|
UnicodeString emptyString;
|
|
UText empty = UTEXT_INITIALIZER;
|
|
|
|
utext_openUnicodeString(&empty, &emptyString, &status);
|
|
dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
|
|
utext_close(&empty);
|
|
}
|
|
|
|
appendReplacement(dest, replacement, status);
|
|
appendTail(dest, status);
|
|
|
|
return dest;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// requireEnd
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::requireEnd() const {
|
|
return fRequireEnd;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// reset
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
RegexMatcher &RegexMatcher::reset() {
|
|
fRegionStart = 0;
|
|
fRegionLimit = fInputLength;
|
|
fActiveStart = 0;
|
|
fActiveLimit = fInputLength;
|
|
fAnchorStart = 0;
|
|
fAnchorLimit = fInputLength;
|
|
fLookStart = 0;
|
|
fLookLimit = fInputLength;
|
|
resetPreserveRegion();
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
void RegexMatcher::resetPreserveRegion() {
|
|
fMatchStart = 0;
|
|
fMatchEnd = 0;
|
|
fLastMatchEnd = -1;
|
|
fAppendPosition = 0;
|
|
fMatch = FALSE;
|
|
fHitEnd = FALSE;
|
|
fRequireEnd = FALSE;
|
|
fTime = 0;
|
|
fTickCounter = TIMER_INITIAL_VALUE;
|
|
//resetStack(); // more expensive than it looks...
|
|
}
|
|
|
|
|
|
RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
|
|
fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus);
|
|
if (fPattern->fNeedsAltInput) {
|
|
fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
|
|
}
|
|
fInputLength = utext_nativeLength(fInputText);
|
|
|
|
reset();
|
|
delete fInput;
|
|
fInput = NULL;
|
|
|
|
// Do the following for any UnicodeString.
|
|
// This is for compatibility for those clients who modify the input string "live" during regex operations.
|
|
fInputUniStrMaybeMutable = TRUE;
|
|
|
|
if (fWordBreakItr != NULL) {
|
|
#if UCONFIG_NO_BREAK_ITERATION==0
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
fWordBreakItr->setText(fInputText, status);
|
|
#endif
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
RegexMatcher &RegexMatcher::reset(UText *input) {
|
|
if (fInputText != input) {
|
|
fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus);
|
|
if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
|
|
fInputLength = utext_nativeLength(fInputText);
|
|
|
|
delete fInput;
|
|
fInput = NULL;
|
|
|
|
if (fWordBreakItr != NULL) {
|
|
#if UCONFIG_NO_BREAK_ITERATION==0
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
fWordBreakItr->setText(input, status);
|
|
#endif
|
|
}
|
|
}
|
|
reset();
|
|
fInputUniStrMaybeMutable = FALSE;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/*RegexMatcher &RegexMatcher::reset(const UChar *) {
|
|
fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
|
|
return *this;
|
|
}*/
|
|
|
|
RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return *this;
|
|
}
|
|
reset(); // Reset also resets the region to be the entire string.
|
|
|
|
if (position < 0 || position > fActiveLimit) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return *this;
|
|
}
|
|
fMatchEnd = position;
|
|
return *this;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// refresh
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return *this;
|
|
}
|
|
if (input == NULL) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return *this;
|
|
}
|
|
if (utext_nativeLength(fInputText) != utext_nativeLength(input)) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return *this;
|
|
}
|
|
int64_t pos = utext_getNativeIndex(fInputText);
|
|
// Shallow read-only clone of the new UText into the existing input UText
|
|
fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status);
|
|
if (U_FAILURE(status)) {
|
|
return *this;
|
|
}
|
|
utext_setNativeIndex(fInputText, pos);
|
|
|
|
if (fAltInputText != NULL) {
|
|
pos = utext_getNativeIndex(fAltInputText);
|
|
fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status);
|
|
if (U_FAILURE(status)) {
|
|
return *this;
|
|
}
|
|
utext_setNativeIndex(fAltInputText, pos);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// setTrace
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::setTrace(UBool state) {
|
|
fTraceDebug = state;
|
|
}
|
|
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
//
|
|
// split
|
|
//
|
|
//---------------------------------------------------------------------
|
|
int32_t RegexMatcher::split(const UnicodeString &input,
|
|
UnicodeString dest[],
|
|
int32_t destCapacity,
|
|
UErrorCode &status)
|
|
{
|
|
UText inputText = UTEXT_INITIALIZER;
|
|
utext_openConstUnicodeString(&inputText, &input, &status);
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
}
|
|
|
|
UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity);
|
|
if (destText == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return 0;
|
|
}
|
|
int32_t i;
|
|
for (i = 0; i < destCapacity; i++) {
|
|
destText[i] = utext_openUnicodeString(NULL, &dest[i], &status);
|
|
}
|
|
|
|
int32_t fieldCount = split(&inputText, destText, destCapacity, status);
|
|
|
|
for (i = 0; i < destCapacity; i++) {
|
|
utext_close(destText[i]);
|
|
}
|
|
|
|
uprv_free(destText);
|
|
utext_close(&inputText);
|
|
return fieldCount;
|
|
}
|
|
|
|
//
|
|
// split, UText mode
|
|
//
|
|
int32_t RegexMatcher::split(UText *input,
|
|
UText *dest[],
|
|
int32_t destCapacity,
|
|
UErrorCode &status)
|
|
{
|
|
//
|
|
// Check arguements for validity
|
|
//
|
|
if (U_FAILURE(status)) {
|
|
return 0;
|
|
};
|
|
|
|
if (destCapacity < 1) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Reset for the input text
|
|
//
|
|
reset(input);
|
|
int64_t nextOutputStringStart = 0;
|
|
if (fActiveLimit == 0) {
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Loop through the input text, searching for the delimiter pattern
|
|
//
|
|
int32_t i;
|
|
int32_t numCaptureGroups = fPattern->fGroupMap->size();
|
|
for (i=0; ; i++) {
|
|
if (i>=destCapacity-1) {
|
|
// There is one or zero output string left.
|
|
// Fill the last output string with whatever is left from the input, then exit the loop.
|
|
// ( i will be == destCapacity if we filled the output array while processing
|
|
// capture groups of the delimiter expression, in which case we will discard the
|
|
// last capture group saved in favor of the unprocessed remainder of the
|
|
// input string.)
|
|
i = destCapacity-1;
|
|
if (fActiveLimit > nextOutputStringStart) {
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
|
|
if (dest[i]) {
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
|
|
input->chunkContents+nextOutputStringStart,
|
|
(int32_t)(fActiveLimit-nextOutputStringStart), &status);
|
|
} else {
|
|
UText remainingText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
|
|
fActiveLimit-nextOutputStringStart, &status);
|
|
dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
|
utext_close(&remainingText);
|
|
}
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
int32_t remaining16Length =
|
|
utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
|
|
UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
|
|
if (remainingChars == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
break;
|
|
}
|
|
|
|
utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
|
|
if (dest[i]) {
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
|
|
} else {
|
|
UText remainingText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
|
|
dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
|
utext_close(&remainingText);
|
|
}
|
|
|
|
uprv_free(remainingChars);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (find()) {
|
|
// We found another delimiter. Move everything from where we started looking
|
|
// up until the start of the delimiter into the next output string.
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
|
|
if (dest[i]) {
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
|
|
input->chunkContents+nextOutputStringStart,
|
|
(int32_t)(fMatchStart-nextOutputStringStart), &status);
|
|
} else {
|
|
UText remainingText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
|
|
fMatchStart-nextOutputStringStart, &status);
|
|
dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
|
utext_close(&remainingText);
|
|
}
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus);
|
|
UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
|
|
if (remainingChars == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
break;
|
|
}
|
|
utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status);
|
|
if (dest[i]) {
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
|
|
} else {
|
|
UText remainingText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
|
|
dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
|
utext_close(&remainingText);
|
|
}
|
|
|
|
uprv_free(remainingChars);
|
|
}
|
|
nextOutputStringStart = fMatchEnd;
|
|
|
|
// If the delimiter pattern has capturing parentheses, the captured
|
|
// text goes out into the next n destination strings.
|
|
int32_t groupNum;
|
|
for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
|
|
if (i >= destCapacity-2) {
|
|
// Never fill the last available output string with capture group text.
|
|
// It will filled with the last field, the remainder of the
|
|
// unsplit input text.
|
|
break;
|
|
}
|
|
i++;
|
|
dest[i] = group(groupNum, dest[i], status);
|
|
}
|
|
|
|
if (nextOutputStringStart == fActiveLimit) {
|
|
// The delimiter was at the end of the string. We're done, but first
|
|
// we output one last empty string, for the empty field following
|
|
// the delimiter at the end of input.
|
|
if (i+1 < destCapacity) {
|
|
++i;
|
|
if (dest[i] == NULL) {
|
|
dest[i] = utext_openUChars(NULL, NULL, 0, &status);
|
|
} else {
|
|
static UChar emptyString[] = {(UChar)0};
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status);
|
|
}
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We ran off the end of the input while looking for the next delimiter.
|
|
// All the remaining text goes into the current output string.
|
|
if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
|
|
if (dest[i]) {
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
|
|
input->chunkContents+nextOutputStringStart,
|
|
(int32_t)(fActiveLimit-nextOutputStringStart), &status);
|
|
} else {
|
|
UText remainingText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
|
|
fActiveLimit-nextOutputStringStart, &status);
|
|
dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
|
utext_close(&remainingText);
|
|
}
|
|
} else {
|
|
UErrorCode lengthStatus = U_ZERO_ERROR;
|
|
int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
|
|
UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
|
|
if (remainingChars == NULL) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
break;
|
|
}
|
|
|
|
utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
|
|
if (dest[i]) {
|
|
utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
|
|
} else {
|
|
UText remainingText = UTEXT_INITIALIZER;
|
|
utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
|
|
dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
|
utext_close(&remainingText);
|
|
}
|
|
|
|
uprv_free(remainingChars);
|
|
}
|
|
break;
|
|
}
|
|
if (U_FAILURE(status)) {
|
|
break;
|
|
}
|
|
} // end of for loop
|
|
return i+1;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// start
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::start(UErrorCode &status) const {
|
|
return start(0, status);
|
|
}
|
|
|
|
int64_t RegexMatcher::start64(UErrorCode &status) const {
|
|
return start64(0, status);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// start(int32_t group, UErrorCode &status)
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
|
|
int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const {
|
|
if (U_FAILURE(status)) {
|
|
return -1;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return -1;
|
|
}
|
|
if (fMatch == FALSE) {
|
|
status = U_REGEX_INVALID_STATE;
|
|
return -1;
|
|
}
|
|
if (group < 0 || group > fPattern->fGroupMap->size()) {
|
|
status = U_INDEX_OUTOFBOUNDS_ERROR;
|
|
return -1;
|
|
}
|
|
int64_t s;
|
|
if (group == 0) {
|
|
s = fMatchStart;
|
|
} else {
|
|
int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
|
|
U_ASSERT(groupOffset < fPattern->fFrameSize);
|
|
U_ASSERT(groupOffset >= 0);
|
|
s = fFrame->fExtra[groupOffset];
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
|
|
return (int32_t)start64(group, status);
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// useAnchoringBounds
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) {
|
|
fAnchoringBounds = b;
|
|
fAnchorStart = (fAnchoringBounds ? fRegionStart : 0);
|
|
fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength);
|
|
return *this;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// useTransparentBounds
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) {
|
|
fTransparentBounds = b;
|
|
fLookStart = (fTransparentBounds ? 0 : fRegionStart);
|
|
fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit);
|
|
return *this;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// setTimeLimit
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return;
|
|
}
|
|
if (limit < 0) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
fTimeLimit = limit;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// getTimeLimit
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::getTimeLimit() const {
|
|
return fTimeLimit;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// setStackLimit
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
status = fDeferredStatus;
|
|
return;
|
|
}
|
|
if (limit < 0) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
|
|
// Reset the matcher. This is needed here in case there is a current match
|
|
// whose final stack frame (containing the match results, pointed to by fFrame)
|
|
// would be lost by resizing to a smaller stack size.
|
|
reset();
|
|
|
|
if (limit == 0) {
|
|
// Unlimited stack expansion
|
|
fStack->setMaxCapacity(0);
|
|
} else {
|
|
// Change the units of the limit from bytes to ints, and bump the size up
|
|
// to be big enough to hold at least one stack frame for the pattern,
|
|
// if it isn't there already.
|
|
int32_t adjustedLimit = limit / sizeof(int32_t);
|
|
if (adjustedLimit < fPattern->fFrameSize) {
|
|
adjustedLimit = fPattern->fFrameSize;
|
|
}
|
|
fStack->setMaxCapacity(adjustedLimit);
|
|
}
|
|
fStackLimit = limit;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// getStackLimit
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
int32_t RegexMatcher::getStackLimit() const {
|
|
return fStackLimit;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// setMatchCallback
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::setMatchCallback(URegexMatchCallback *callback,
|
|
const void *context,
|
|
UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
fCallbackFn = callback;
|
|
fCallbackContext = context;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// getMatchCallback
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback,
|
|
const void *&context,
|
|
UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
callback = fCallbackFn;
|
|
context = fCallbackContext;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// setMatchCallback
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback,
|
|
const void *context,
|
|
UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
fFindProgressCallbackFn = callback;
|
|
fFindProgressCallbackContext = context;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// getMatchCallback
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback,
|
|
const void *&context,
|
|
UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
callback = fFindProgressCallbackFn;
|
|
context = fFindProgressCallbackContext;
|
|
}
|
|
|
|
|
|
//================================================================================
|
|
//
|
|
// Code following this point in this file is the internal
|
|
// Match Engine Implementation.
|
|
//
|
|
//================================================================================
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// resetStack
|
|
// Discard any previous contents of the state save stack, and initialize a
|
|
// new stack frame to all -1. The -1s are needed for capture group limits,
|
|
// where they indicate that a group has not yet matched anything.
|
|
//--------------------------------------------------------------------------------
|
|
REStackFrame *RegexMatcher::resetStack() {
|
|
// Discard any previous contents of the state save stack, and initialize a
|
|
// new stack frame with all -1 data. The -1s are needed for capture group limits,
|
|
// where they indicate that a group has not yet matched anything.
|
|
fStack->removeAllElements();
|
|
|
|
REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
|
|
int32_t i;
|
|
for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
|
|
iFrame->fExtra[i] = -1;
|
|
}
|
|
return iFrame;
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// isWordBoundary
|
|
// in perl, "xab..cd..", \b is true at positions 0,3,5,7
|
|
// For us,
|
|
// If the current char is a combining mark,
|
|
// \b is FALSE.
|
|
// Else Scan backwards to the first non-combining char.
|
|
// We are at a boundary if the this char and the original chars are
|
|
// opposite in membership in \w set
|
|
//
|
|
// parameters: pos - the current position in the input buffer
|
|
//
|
|
// TODO: double-check edge cases at region boundaries.
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::isWordBoundary(int64_t pos) {
|
|
UBool isBoundary = FALSE;
|
|
UBool cIsWord = FALSE;
|
|
|
|
if (pos >= fLookLimit) {
|
|
fHitEnd = TRUE;
|
|
} else {
|
|
// Determine whether char c at current position is a member of the word set of chars.
|
|
// If we're off the end of the string, behave as though we're not at a word char.
|
|
UTEXT_SETNATIVEINDEX(fInputText, pos);
|
|
UChar32 c = UTEXT_CURRENT32(fInputText);
|
|
if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
|
|
// Current char is a combining one. Not a boundary.
|
|
return FALSE;
|
|
}
|
|
cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
|
|
}
|
|
|
|
// Back up until we come to a non-combining char, determine whether
|
|
// that char is a word char.
|
|
UBool prevCIsWord = FALSE;
|
|
for (;;) {
|
|
if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) {
|
|
break;
|
|
}
|
|
UChar32 prevChar = UTEXT_PREVIOUS32(fInputText);
|
|
if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
|
|
|| u_charType(prevChar) == U_FORMAT_CHAR)) {
|
|
prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
|
|
break;
|
|
}
|
|
}
|
|
isBoundary = cIsWord ^ prevCIsWord;
|
|
return isBoundary;
|
|
}
|
|
|
|
UBool RegexMatcher::isChunkWordBoundary(int32_t pos) {
|
|
UBool isBoundary = FALSE;
|
|
UBool cIsWord = FALSE;
|
|
|
|
const UChar *inputBuf = fInputText->chunkContents;
|
|
|
|
if (pos >= fLookLimit) {
|
|
fHitEnd = TRUE;
|
|
} else {
|
|
// Determine whether char c at current position is a member of the word set of chars.
|
|
// If we're off the end of the string, behave as though we're not at a word char.
|
|
UChar32 c;
|
|
U16_GET(inputBuf, fLookStart, pos, fLookLimit, c);
|
|
if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
|
|
// Current char is a combining one. Not a boundary.
|
|
return FALSE;
|
|
}
|
|
cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
|
|
}
|
|
|
|
// Back up until we come to a non-combining char, determine whether
|
|
// that char is a word char.
|
|
UBool prevCIsWord = FALSE;
|
|
for (;;) {
|
|
if (pos <= fLookStart) {
|
|
break;
|
|
}
|
|
UChar32 prevChar;
|
|
U16_PREV(inputBuf, fLookStart, pos, prevChar);
|
|
if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
|
|
|| u_charType(prevChar) == U_FORMAT_CHAR)) {
|
|
prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
|
|
break;
|
|
}
|
|
}
|
|
isBoundary = cIsWord ^ prevCIsWord;
|
|
return isBoundary;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// isUWordBoundary
|
|
//
|
|
// Test for a word boundary using RBBI word break.
|
|
//
|
|
// parameters: pos - the current position in the input buffer
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::isUWordBoundary(int64_t pos) {
|
|
UBool returnVal = FALSE;
|
|
#if UCONFIG_NO_BREAK_ITERATION==0
|
|
|
|
// If we haven't yet created a break iterator for this matcher, do it now.
|
|
if (fWordBreakItr == NULL) {
|
|
fWordBreakItr =
|
|
(RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus);
|
|
if (U_FAILURE(fDeferredStatus)) {
|
|
return FALSE;
|
|
}
|
|
fWordBreakItr->setText(fInputText, fDeferredStatus);
|
|
}
|
|
|
|
if (pos >= fLookLimit) {
|
|
fHitEnd = TRUE;
|
|
returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real"
|
|
// words are not boundaries. All non-word chars stand by themselves,
|
|
// with word boundaries on both sides.
|
|
} else {
|
|
if (!UTEXT_USES_U16(fInputText)) {
|
|
// !!!: Would like a better way to do this!
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
pos = utext_extract(fInputText, 0, pos, NULL, 0, &status);
|
|
}
|
|
returnVal = fWordBreakItr->isBoundary((int32_t)pos);
|
|
}
|
|
#endif
|
|
return returnVal;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// IncrementTime This function is called once each TIMER_INITIAL_VALUE state
|
|
// saves. Increment the "time" counter, and call the
|
|
// user callback function if there is one installed.
|
|
//
|
|
// If the match operation needs to be aborted, either for a time-out
|
|
// or because the user callback asked for it, just set an error status.
|
|
// The engine will pick that up and stop in its outer loop.
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::IncrementTime(UErrorCode &status) {
|
|
fTickCounter = TIMER_INITIAL_VALUE;
|
|
fTime++;
|
|
if (fCallbackFn != NULL) {
|
|
if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) {
|
|
status = U_REGEX_STOPPED_BY_CALLER;
|
|
return;
|
|
}
|
|
}
|
|
if (fTimeLimit > 0 && fTime >= fTimeLimit) {
|
|
status = U_REGEX_TIME_OUT;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// ReportFindProgress This function is called once for each advance in the target
|
|
// string from the find() function, and calls the user progress callback
|
|
// function if there is one installed.
|
|
//
|
|
// NOTE:
|
|
//
|
|
// If the match operation needs to be aborted because the user
|
|
// callback asked for it, just set an error status.
|
|
// The engine will pick that up and stop in its outer loop.
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
UBool RegexMatcher::ReportFindProgress(int64_t matchIndex, UErrorCode &status) {
|
|
if (fFindProgressCallbackFn != NULL) {
|
|
if ((*fFindProgressCallbackFn)(fFindProgressCallbackContext, matchIndex) == FALSE) {
|
|
status = U_ZERO_ERROR /*U_REGEX_STOPPED_BY_CALLER*/;
|
|
return FALSE;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// StateSave
|
|
// Make a new stack frame, initialized as a copy of the current stack frame.
|
|
// Set the pattern index in the original stack frame from the operand value
|
|
// in the opcode. Execution of the engine continues with the state in
|
|
// the newly created stack frame
|
|
//
|
|
// Note that reserveBlock() may grow the stack, resulting in the
|
|
// whole thing being relocated in memory.
|
|
//
|
|
// Parameters:
|
|
// fp The top frame pointer when called. At return, a new
|
|
// fame will be present
|
|
// savePatIdx An index into the compiled pattern. Goes into the original
|
|
// (not new) frame. If execution ever back-tracks out of the
|
|
// new frame, this will be where we continue from in the pattern.
|
|
// Return
|
|
// The new frame pointer.
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
|
|
// push storage for a new frame.
|
|
int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
|
|
if (newFP == NULL) {
|
|
// Failure on attempted stack expansion.
|
|
// Stack function set some other error code, change it to a more
|
|
// specific one for regular expressions.
|
|
status = U_REGEX_STACK_OVERFLOW;
|
|
// We need to return a writable stack frame, so just return the
|
|
// previous frame. The match operation will stop quickly
|
|
// because of the error status, after which the frame will never
|
|
// be looked at again.
|
|
return fp;
|
|
}
|
|
fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack.
|
|
|
|
// New stack frame = copy of old top frame.
|
|
int64_t *source = (int64_t *)fp;
|
|
int64_t *dest = newFP;
|
|
for (;;) {
|
|
*dest++ = *source++;
|
|
if (source == newFP) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
fTickCounter--;
|
|
if (fTickCounter <= 0) {
|
|
IncrementTime(status); // Re-initializes fTickCounter
|
|
}
|
|
fp->fPatIdx = savePatIdx;
|
|
return (REStackFrame *)newFP;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// MatchAt This is the actual matching engine.
|
|
//
|
|
// startIdx: begin matching a this index.
|
|
// toEnd: if true, match must extend to end of the input region
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) {
|
|
UBool isMatch = FALSE; // True if the we have a match.
|
|
|
|
int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards
|
|
|
|
int32_t op; // Operation from the compiled pattern, split into
|
|
int32_t opType; // the opcode
|
|
int32_t opValue; // and the operand value.
|
|
|
|
#ifdef REGEX_RUN_DEBUG
|
|
if (fTraceDebug)
|
|
{
|
|
printf("MatchAt(startIdx=%ld)\n", startIdx);
|
|
printf("Original Pattern: ");
|
|
UChar32 c = utext_next32From(fPattern->fPattern, 0);
|
|
while (c != U_SENTINEL) {
|
|
if (c<32 || c>256) {
|
|
c = '.';
|
|
}
|
|
REGEX_DUMP_DEBUG_PRINTF(("%c", c));
|
|
|
|
c = UTEXT_NEXT32(fPattern->fPattern);
|
|
}
|
|
printf("\n");
|
|
printf("Input String: ");
|
|
c = utext_next32From(fInputText, 0);
|
|
while (c != U_SENTINEL) {
|
|
if (c<32 || c>256) {
|
|
c = '.';
|
|
}
|
|
printf("%c", c);
|
|
|
|
c = UTEXT_NEXT32(fInputText);
|
|
}
|
|
printf("\n");
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Cache frequently referenced items from the compiled pattern
|
|
//
|
|
int64_t *pat = fPattern->fCompiledPat->getBuffer();
|
|
|
|
const UChar *litText = fPattern->fLiteralText.getBuffer();
|
|
UVector *sets = fPattern->fSets;
|
|
|
|
fFrameSize = fPattern->fFrameSize;
|
|
REStackFrame *fp = resetStack();
|
|
|
|
fp->fPatIdx = 0;
|
|
fp->fInputIdx = startIdx;
|
|
|
|
// Zero out the pattern's static data
|
|
int32_t i;
|
|
for (i = 0; i<fPattern->fDataSize; i++) {
|
|
fData[i] = 0;
|
|
}
|
|
|
|
//
|
|
// Main loop for interpreting the compiled pattern.
|
|
// One iteration of the loop per pattern operation performed.
|
|
//
|
|
for (;;) {
|
|
#if 0
|
|
if (_heapchk() != _HEAPOK) {
|
|
fprintf(stderr, "Heap Trouble\n");
|
|
}
|
|
#endif
|
|
|
|
op = (int32_t)pat[fp->fPatIdx];
|
|
opType = URX_TYPE(op);
|
|
opValue = URX_VAL(op);
|
|
#ifdef REGEX_RUN_DEBUG
|
|
if (fTraceDebug) {
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
printf("inputIdx=%d inputChar=%x sp=%3d activeLimit=%d ", fp->fInputIdx,
|
|
UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
|
|
fPattern->dumpOp(fp->fPatIdx);
|
|
}
|
|
#endif
|
|
fp->fPatIdx++;
|
|
|
|
switch (opType) {
|
|
|
|
|
|
case URX_NOP:
|
|
break;
|
|
|
|
|
|
case URX_BACKTRACK:
|
|
// Force a backtrack. In some circumstances, the pattern compiler
|
|
// will notice that the pattern can't possibly match anything, and will
|
|
// emit one of these at that point.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
|
|
case URX_ONECHAR:
|
|
if (fp->fInputIdx < fActiveLimit) {
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (c == opValue) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
break;
|
|
}
|
|
} else {
|
|
fHitEnd = TRUE;
|
|
}
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
|
|
case URX_STRING:
|
|
{
|
|
// Test input against a literal string.
|
|
// Strings require two slots in the compiled pattern, one for the
|
|
// offset to the string text, and one for the length.
|
|
|
|
int32_t stringStartIdx = opValue;
|
|
op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
|
|
fp->fPatIdx++;
|
|
opType = URX_TYPE(op);
|
|
int32_t stringLen = URX_VAL(op);
|
|
U_ASSERT(opType == URX_STRING_LEN);
|
|
U_ASSERT(stringLen >= 2);
|
|
|
|
const UChar *patternString = litText+stringStartIdx;
|
|
int32_t patternStringIndex = 0;
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 inputChar;
|
|
UChar32 patternChar;
|
|
UBool success = TRUE;
|
|
while (patternStringIndex < stringLen) {
|
|
if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
|
|
success = FALSE;
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
inputChar = UTEXT_NEXT32(fInputText);
|
|
U16_NEXT(patternString, patternStringIndex, stringLen, patternChar);
|
|
if (patternChar != inputChar) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_STATE_SAVE:
|
|
fp = StateSave(fp, opValue, status);
|
|
break;
|
|
|
|
|
|
case URX_END:
|
|
// The match loop will exit via this path on a successful match,
|
|
// when we reach the end of the pattern.
|
|
if (toEnd && fp->fInputIdx != fActiveLimit) {
|
|
// The pattern matched, but not to the end of input. Try some more.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
isMatch = TRUE;
|
|
goto breakFromLoop;
|
|
|
|
// Start and End Capture stack frame variables are laid out out like this:
|
|
// fp->fExtra[opValue] - The start of a completed capture group
|
|
// opValue+1 - The end of a completed capture group
|
|
// opValue+2 - the start of a capture group whose end
|
|
// has not yet been reached (and might not ever be).
|
|
case URX_START_CAPTURE:
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
|
fp->fExtra[opValue+2] = fp->fInputIdx;
|
|
break;
|
|
|
|
|
|
case URX_END_CAPTURE:
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
|
U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
|
|
fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
|
|
fp->fExtra[opValue+1] = fp->fInputIdx; // End position
|
|
U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR: // $, test for End of line
|
|
// or for position before new line at end of input
|
|
{
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// We really are at the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// If we are positioned just before a new-line that is located at the
|
|
// end of input, succeed.
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
|
|
if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
|
|
// If not in the middle of a CR/LF sequence
|
|
if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
|
|
// At new-line at end of input. Success
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
UChar32 nextC = UTEXT_NEXT32(fInputText);
|
|
if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break; // At CR/LF at end of input. Success
|
|
}
|
|
}
|
|
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// Off the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
} else {
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
// Either at the last character of input, or off the end.
|
|
if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) {
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Not at end of input. Back-track out.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR_M: // $, test for End of line in multi-line mode
|
|
{
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// We really are at the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
// If we are positioned just before a new-line, succeed.
|
|
// It makes no difference where the new-line is within the input.
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 c = UTEXT_CURRENT32(fInputText);
|
|
if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
|
|
// At a line end, except for the odd chance of being in the middle of a CR/LF sequence
|
|
// In multi-line mode, hitting a new-line just before the end of input does not
|
|
// set the hitEnd or requireEnd flags
|
|
if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) {
|
|
break;
|
|
}
|
|
}
|
|
// not at a new line. Fail.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
|
|
{
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// We really are at the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE; // Java set requireEnd in this case, even though
|
|
break; // adding a new-line would not lose the match.
|
|
}
|
|
// If we are not positioned just before a new-line, the test fails; backtrack out.
|
|
// It makes no difference where the new-line is within the input.
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
if (UTEXT_CURRENT32(fInputText) != 0x0a) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_CARET: // ^, test for start of line
|
|
if (fp->fInputIdx != fAnchorStart) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_CARET_M: // ^, test for start of line in mulit-line mode
|
|
{
|
|
if (fp->fInputIdx == fAnchorStart) {
|
|
// We are at the start input. Success.
|
|
break;
|
|
}
|
|
// Check whether character just before the current pos is a new-line
|
|
// unless we are at the end of input
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 c = UTEXT_PREVIOUS32(fInputText);
|
|
if ((fp->fInputIdx < fAnchorLimit) &&
|
|
((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
|
// It's a new-line. ^ is true. Success.
|
|
// TODO: what should be done with positions between a CR and LF?
|
|
break;
|
|
}
|
|
// Not at the start of a line. Fail.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
|
|
{
|
|
U_ASSERT(fp->fInputIdx >= fAnchorStart);
|
|
if (fp->fInputIdx <= fAnchorStart) {
|
|
// We are at the start input. Success.
|
|
break;
|
|
}
|
|
// Check whether character just before the current pos is a new-line
|
|
U_ASSERT(fp->fInputIdx <= fAnchorLimit);
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 c = UTEXT_PREVIOUS32(fInputText);
|
|
if (c != 0x0a) {
|
|
// Not at the start of a line. Back-track out.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_BACKSLASH_B: // Test for word boundaries
|
|
{
|
|
UBool success = isWordBoundary(fp->fInputIdx);
|
|
success ^= (UBool)(opValue != 0); // flip sense for \B
|
|
if (!success) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
|
|
{
|
|
UBool success = isUWordBoundary(fp->fInputIdx);
|
|
success ^= (UBool)(opValue != 0); // flip sense for \B
|
|
if (!success) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_D: // Test for decimal digit
|
|
{
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
|
|
UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
|
|
success ^= (UBool)(opValue != 0); // flip sense for \D
|
|
if (success) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_G: // Test for position at end of previous match
|
|
if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_X:
|
|
// Match a Grapheme, as defined by Unicode TR 29.
|
|
// Differs slightly from Perl, which consumes combining marks independently
|
|
// of context.
|
|
{
|
|
|
|
// Fail if at end of input
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// Examine (and consume) the current char.
|
|
// Dispatch into a little state machine, based on the char.
|
|
UChar32 c;
|
|
c = UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
UnicodeSet **sets = fPattern->fStaticSets;
|
|
if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
|
|
if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
|
|
if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
|
if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
|
if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
|
goto GC_Extend;
|
|
|
|
|
|
|
|
GC_L:
|
|
if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
|
c = UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
|
if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
|
if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
|
(void)UTEXT_PREVIOUS32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
goto GC_Extend;
|
|
|
|
GC_V:
|
|
if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
|
c = UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
|
(void)UTEXT_PREVIOUS32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
goto GC_Extend;
|
|
|
|
GC_T:
|
|
if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
|
c = UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
|
(void)UTEXT_PREVIOUS32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
goto GC_Extend;
|
|
|
|
GC_Extend:
|
|
// Combining characters are consumed here
|
|
for (;;) {
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
break;
|
|
}
|
|
c = UTEXT_CURRENT32(fInputText);
|
|
if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
|
|
break;
|
|
}
|
|
(void)UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
goto GC_Done;
|
|
|
|
GC_Control:
|
|
// Most control chars stand alone (don't combine with combining chars),
|
|
// except for that CR/LF sequence is a single grapheme cluster.
|
|
if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
|
|
c = UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
|
|
GC_Done:
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
|
|
|
|
case URX_BACKSLASH_Z: // Test for end of Input
|
|
if (fp->fInputIdx < fAnchorLimit) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
} else {
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
}
|
|
break;
|
|
|
|
|
|
|
|
case URX_STATIC_SETREF:
|
|
{
|
|
// Test input character against one of the predefined sets
|
|
// (Word Characters, for example)
|
|
// The high bit of the op value is a flag for the match polarity.
|
|
// 0: success if input char is in set.
|
|
// 1: success if input char is not in set.
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
|
|
opValue &= ~URX_NEG_SET;
|
|
U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (c < 256) {
|
|
Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
|
if (s8->contains(c)) {
|
|
success = !success;
|
|
}
|
|
} else {
|
|
const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
|
if (s->contains(c)) {
|
|
success = !success;
|
|
}
|
|
}
|
|
if (success) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
// the character wasn't in the set.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_STAT_SETREF_N:
|
|
{
|
|
// Test input character for NOT being a member of one of
|
|
// the predefined sets (Word Characters, for example)
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (c < 256) {
|
|
Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
|
if (s8->contains(c) == FALSE) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
break;
|
|
}
|
|
} else {
|
|
const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
|
if (s->contains(c) == FALSE) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
break;
|
|
}
|
|
}
|
|
// the character wasn't in the set.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_SETREF:
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
} else {
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// There is input left. Pick up one char and test it for set membership.
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
U_ASSERT(opValue > 0 && opValue < sets->size());
|
|
if (c<256) {
|
|
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
|
if (s8->contains(c)) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
break;
|
|
}
|
|
} else {
|
|
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
|
if (s->contains(c)) {
|
|
// The character is in the set. A Match.
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// the character wasn't in the set.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOTANY:
|
|
{
|
|
// . matches anything, but stops at end-of-line.
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
// At end of input. Match failed. Backtrack out.
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// There is input left. Advance over one char, unless we've hit end-of-line
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
|
((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
|
// End of line in normal mode. . does not match.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOTANY_ALL:
|
|
{
|
|
// ., in dot-matches-all (including new lines) mode
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
// At end of input. Match failed. Backtrack out.
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// There is input left. Advance over one char, except if we are
|
|
// at a cr/lf, advance over both of them.
|
|
UChar32 c;
|
|
c = UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
if (c==0x0d && fp->fInputIdx < fActiveLimit) {
|
|
// In the case of a CR/LF, we need to advance over both.
|
|
UChar32 nextc = UTEXT_CURRENT32(fInputText);
|
|
if (nextc == 0x0a) {
|
|
(void)UTEXT_NEXT32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOTANY_UNIX:
|
|
{
|
|
// '.' operator, matches all, but stops at end-of-line.
|
|
// UNIX_LINES mode, so 0x0a is the only recognized line ending.
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
// At end of input. Match failed. Backtrack out.
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// There is input left. Advance over one char, unless we've hit end-of-line
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (c == 0x0a) {
|
|
// End of line in normal mode. '.' does not match the \n
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
} else {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_JMP:
|
|
fp->fPatIdx = opValue;
|
|
break;
|
|
|
|
case URX_FAIL:
|
|
isMatch = FALSE;
|
|
goto breakFromLoop;
|
|
|
|
case URX_JMP_SAV:
|
|
U_ASSERT(opValue < fPattern->fCompiledPat->size());
|
|
fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
|
fp->fPatIdx = opValue; // Then JMP.
|
|
break;
|
|
|
|
case URX_JMP_SAV_X:
|
|
// This opcode is used with (x)+, when x can match a zero length string.
|
|
// Same as JMP_SAV, except conditional on the match having made forward progress.
|
|
// Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
|
|
// data address of the input position at the start of the loop.
|
|
{
|
|
U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
|
|
int32_t stoOp = (int32_t)pat[opValue-1];
|
|
U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
|
|
int32_t frameLoc = URX_VAL(stoOp);
|
|
U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
|
|
int64_t prevInputIdx = fp->fExtra[frameLoc];
|
|
U_ASSERT(prevInputIdx <= fp->fInputIdx);
|
|
if (prevInputIdx < fp->fInputIdx) {
|
|
// The match did make progress. Repeat the loop.
|
|
fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
|
fp->fPatIdx = opValue;
|
|
fp->fExtra[frameLoc] = fp->fInputIdx;
|
|
}
|
|
// If the input position did not advance, we do nothing here,
|
|
// execution will fall out of the loop.
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_INIT:
|
|
{
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
|
fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
|
|
|
// Pick up the three extra operands that CTR_INIT has, and
|
|
// skip the pattern location counter past
|
|
int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
|
fp->fPatIdx += 3;
|
|
int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
|
int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
|
int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
|
U_ASSERT(minCount>=0);
|
|
U_ASSERT(maxCount>=minCount || maxCount==-1);
|
|
U_ASSERT(loopLoc>fp->fPatIdx);
|
|
|
|
if (minCount == 0) {
|
|
fp = StateSave(fp, loopLoc+1, status);
|
|
}
|
|
if (maxCount == 0) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_LOOP:
|
|
{
|
|
U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
|
int32_t initOp = (int32_t)pat[opValue];
|
|
U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
|
|
int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
|
int32_t minCount = (int32_t)pat[opValue+2];
|
|
int32_t maxCount = (int32_t)pat[opValue+3];
|
|
// Increment the counter. Note: we DIDN'T worry about counter
|
|
// overflow, since the data comes from UnicodeStrings, which
|
|
// stores its length in an int32_t. Do we have to think about
|
|
// this now that we're using UText? Probably not, since the length
|
|
// in UChar32s is still an int32_t.
|
|
(*pCounter)++;
|
|
U_ASSERT(*pCounter > 0);
|
|
if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
|
U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
|
break;
|
|
}
|
|
if (*pCounter >= minCount) {
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
}
|
|
fp->fPatIdx = opValue + 4; // Loop back.
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_INIT_NG:
|
|
{
|
|
// Initialize a non-greedy loop
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
|
fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
|
|
|
// Pick up the three extra operands that CTR_INIT has, and
|
|
// skip the pattern location counter past
|
|
int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
|
fp->fPatIdx += 3;
|
|
int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
|
int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
|
int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
|
U_ASSERT(minCount>=0);
|
|
U_ASSERT(maxCount>=minCount || maxCount==-1);
|
|
U_ASSERT(loopLoc>fp->fPatIdx);
|
|
|
|
if (minCount == 0) {
|
|
if (maxCount != 0) {
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
}
|
|
fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_LOOP_NG:
|
|
{
|
|
// Non-greedy {min, max} loops
|
|
U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
|
int32_t initOp = (int32_t)pat[opValue];
|
|
U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
|
|
int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
|
int32_t minCount = (int32_t)pat[opValue+2];
|
|
int32_t maxCount = (int32_t)pat[opValue+3];
|
|
// Increment the counter. Note: we DIDN'T worry about counter
|
|
// overflow, since the data comes from UnicodeStrings, which
|
|
// stores its length in an int32_t. Do we have to think about
|
|
// this now that we're using UText? Probably not, since the length
|
|
// in UChar32s is still an int32_t.
|
|
(*pCounter)++;
|
|
U_ASSERT(*pCounter > 0);
|
|
|
|
if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
|
// The loop has matched the maximum permitted number of times.
|
|
// Break out of here with no action. Matching will
|
|
// continue with the following pattern.
|
|
U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
|
break;
|
|
}
|
|
|
|
if (*pCounter < minCount) {
|
|
// We haven't met the minimum number of matches yet.
|
|
// Loop back for another one.
|
|
fp->fPatIdx = opValue + 4; // Loop back.
|
|
} else {
|
|
// We do have the minimum number of matches.
|
|
// Fall into the following pattern, but first do
|
|
// a state save to the top of the loop, so that a failure
|
|
// in the following pattern will try another iteration of the loop.
|
|
fp = StateSave(fp, opValue + 4, status);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_STO_SP:
|
|
U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
|
fData[opValue] = fStack->size();
|
|
break;
|
|
|
|
case URX_LD_SP:
|
|
{
|
|
U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
|
int32_t newStackSize = (int32_t)fData[opValue];
|
|
U_ASSERT(newStackSize <= fStack->size());
|
|
int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
|
if (newFP == (int64_t *)fp) {
|
|
break;
|
|
}
|
|
int32_t i;
|
|
for (i=0; i<fFrameSize; i++) {
|
|
newFP[i] = ((int64_t *)fp)[i];
|
|
}
|
|
fp = (REStackFrame *)newFP;
|
|
fStack->setSize(newStackSize);
|
|
}
|
|
break;
|
|
|
|
case URX_BACKREF:
|
|
{
|
|
U_ASSERT(opValue < fFrameSize);
|
|
int64_t groupStartIdx = fp->fExtra[opValue];
|
|
int64_t groupEndIdx = fp->fExtra[opValue+1];
|
|
U_ASSERT(groupStartIdx <= groupEndIdx);
|
|
if (groupStartIdx < 0) {
|
|
// This capture group has not participated in the match thus far,
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
|
break;
|
|
}
|
|
UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx);
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
// Note: if the capture group match was of an empty string the backref
|
|
// match succeeds. Verified by testing: Perl matches succeed
|
|
// in this case, so we do too.
|
|
|
|
UBool success = TRUE;
|
|
for (;;) {
|
|
if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
|
|
success = TRUE;
|
|
break;
|
|
}
|
|
if (utext_getNativeIndex(fInputText) >= fActiveLimit) {
|
|
success = FALSE;
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
UChar32 captureGroupChar = utext_next32(fAltInputText);
|
|
UChar32 inputChar = utext_next32(fInputText);
|
|
if (inputChar != captureGroupChar) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
|
|
case URX_BACKREF_I:
|
|
{
|
|
U_ASSERT(opValue < fFrameSize);
|
|
int64_t groupStartIdx = fp->fExtra[opValue];
|
|
int64_t groupEndIdx = fp->fExtra[opValue+1];
|
|
U_ASSERT(groupStartIdx <= groupEndIdx);
|
|
if (groupStartIdx < 0) {
|
|
// This capture group has not participated in the match thus far,
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
|
break;
|
|
}
|
|
utext_setNativeIndex(fAltInputText, groupStartIdx);
|
|
utext_setNativeIndex(fInputText, fp->fInputIdx);
|
|
CaseFoldingUTextIterator captureGroupItr(*fAltInputText);
|
|
CaseFoldingUTextIterator inputItr(*fInputText);
|
|
|
|
// Note: if the capture group match was of an empty string the backref
|
|
// match succeeds. Verified by testing: Perl matches succeed
|
|
// in this case, so we do too.
|
|
|
|
UBool success = TRUE;
|
|
for (;;) {
|
|
if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) {
|
|
success = TRUE;
|
|
break;
|
|
}
|
|
if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) {
|
|
success = FALSE;
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
UChar32 captureGroupChar = captureGroupItr.next();
|
|
UChar32 inputChar = inputItr.next();
|
|
if (inputChar != captureGroupChar) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (success && inputItr.inExpansion()) {
|
|
// We otained a match by consuming part of a string obtained from
|
|
// case-folding a single code point of the input text.
|
|
// This does not count as an overall match.
|
|
success = FALSE;
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
case URX_STO_INP_LOC:
|
|
{
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize);
|
|
fp->fExtra[opValue] = fp->fInputIdx;
|
|
}
|
|
break;
|
|
|
|
case URX_JMPX:
|
|
{
|
|
int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
|
fp->fPatIdx += 1;
|
|
int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
|
|
U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
|
|
int64_t savedInputIdx = fp->fExtra[dataLoc];
|
|
U_ASSERT(savedInputIdx <= fp->fInputIdx);
|
|
if (savedInputIdx < fp->fInputIdx) {
|
|
fp->fPatIdx = opValue; // JMP
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_LA_START:
|
|
{
|
|
// Entering a lookahead block.
|
|
// Save Stack Ptr, Input Pos.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
fData[opValue] = fStack->size();
|
|
fData[opValue+1] = fp->fInputIdx;
|
|
fActiveStart = fLookStart; // Set the match region change for
|
|
fActiveLimit = fLookLimit; // transparent bounds.
|
|
}
|
|
break;
|
|
|
|
case URX_LA_END:
|
|
{
|
|
// Leaving a look-ahead block.
|
|
// restore Stack Ptr, Input Pos to positions they had on entry to block.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int32_t stackSize = fStack->size();
|
|
int32_t newStackSize =(int32_t)fData[opValue];
|
|
U_ASSERT(stackSize >= newStackSize);
|
|
if (stackSize > newStackSize) {
|
|
// Copy the current top frame back to the new (cut back) top frame.
|
|
// This makes the capture groups from within the look-ahead
|
|
// expression available.
|
|
int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
|
int32_t i;
|
|
for (i=0; i<fFrameSize; i++) {
|
|
newFP[i] = ((int64_t *)fp)[i];
|
|
}
|
|
fp = (REStackFrame *)newFP;
|
|
fStack->setSize(newStackSize);
|
|
}
|
|
fp->fInputIdx = fData[opValue+1];
|
|
|
|
// Restore the active region bounds in the input string; they may have
|
|
// been changed because of transparent bounds on a Region.
|
|
fActiveStart = fRegionStart;
|
|
fActiveLimit = fRegionLimit;
|
|
}
|
|
break;
|
|
|
|
case URX_ONECHAR_I:
|
|
// Case insensitive one char. The char from the pattern is already case folded.
|
|
// Input text is not, but case folding the input can not reduce two or more code
|
|
// points to one.
|
|
if (fp->fInputIdx < fActiveLimit) {
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
break;
|
|
}
|
|
} else {
|
|
fHitEnd = TRUE;
|
|
}
|
|
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
case URX_STRING_I:
|
|
{
|
|
// Case-insensitive test input against a literal string.
|
|
// Strings require two slots in the compiled pattern, one for the
|
|
// offset to the string text, and one for the length.
|
|
// The compiled string has already been case folded.
|
|
{
|
|
const UChar *patternString = litText + opValue;
|
|
int32_t patternStringIdx = 0;
|
|
|
|
op = (int32_t)pat[fp->fPatIdx];
|
|
fp->fPatIdx++;
|
|
opType = URX_TYPE(op);
|
|
opValue = URX_VAL(op);
|
|
U_ASSERT(opType == URX_STRING_LEN);
|
|
int32_t patternStringLen = opValue; // Length of the string from the pattern.
|
|
|
|
|
|
UChar32 cPattern;
|
|
UChar32 cText;
|
|
UBool success = TRUE;
|
|
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
CaseFoldingUTextIterator inputIterator(*fInputText);
|
|
while (patternStringIdx < patternStringLen) {
|
|
if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) {
|
|
success = FALSE;
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
|
|
cText = inputIterator.next();
|
|
if (cText != cPattern) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
if (inputIterator.inExpansion()) {
|
|
success = FALSE;
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_LB_START:
|
|
{
|
|
// Entering a look-behind block.
|
|
// Save Stack Ptr, Input Pos.
|
|
// TODO: implement transparent bounds. Ticket #6067
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
fData[opValue] = fStack->size();
|
|
fData[opValue+1] = fp->fInputIdx;
|
|
// Init the variable containing the start index for attempted matches.
|
|
fData[opValue+2] = -1;
|
|
// Save input string length, then reset to pin any matches to end at
|
|
// the current position.
|
|
fData[opValue+3] = fActiveLimit;
|
|
fActiveLimit = fp->fInputIdx;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LB_CONT:
|
|
{
|
|
// Positive Look-Behind, at top of loop checking for matches of LB expression
|
|
// at all possible input starting positions.
|
|
|
|
// Fetch the min and max possible match lengths. They are the operands
|
|
// of this op in the pattern.
|
|
int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
|
int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
|
U_ASSERT(minML <= maxML);
|
|
U_ASSERT(minML >= 0);
|
|
|
|
// Fetch (from data) the last input index where a match was attempted.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int64_t *lbStartIdx = &fData[opValue+2];
|
|
if (*lbStartIdx < 0) {
|
|
// First time through loop.
|
|
*lbStartIdx = fp->fInputIdx - minML;
|
|
} else {
|
|
// 2nd through nth time through the loop.
|
|
// Back up start position for match by one.
|
|
if (*lbStartIdx == 0) {
|
|
(*lbStartIdx)--;
|
|
} else {
|
|
UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
|
|
(void)UTEXT_PREVIOUS32(fInputText);
|
|
*lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
}
|
|
|
|
if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
|
// We have tried all potential match starting points without
|
|
// getting a match. Backtrack out, and out of the
|
|
// Look Behind altogether.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
int64_t restoreInputLen = fData[opValue+3];
|
|
U_ASSERT(restoreInputLen >= fActiveLimit);
|
|
U_ASSERT(restoreInputLen <= fInputLength);
|
|
fActiveLimit = restoreInputLen;
|
|
break;
|
|
}
|
|
|
|
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
|
// (successful match will fall off the end of the loop.)
|
|
fp = StateSave(fp, fp->fPatIdx-3, status);
|
|
fp->fInputIdx = *lbStartIdx;
|
|
}
|
|
break;
|
|
|
|
case URX_LB_END:
|
|
// End of a look-behind block, after a successful match.
|
|
{
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
if (fp->fInputIdx != fActiveLimit) {
|
|
// The look-behind expression matched, but the match did not
|
|
// extend all the way to the point that we are looking behind from.
|
|
// FAIL out of here, which will take us back to the LB_CONT, which
|
|
// will retry the match starting at another position or fail
|
|
// the look-behind altogether, whichever is appropriate.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// Look-behind match is good. Restore the orignal input string length,
|
|
// which had been truncated to pin the end of the lookbehind match to the
|
|
// position being looked-behind.
|
|
int64_t originalInputLen = fData[opValue+3];
|
|
U_ASSERT(originalInputLen >= fActiveLimit);
|
|
U_ASSERT(originalInputLen <= fInputLength);
|
|
fActiveLimit = originalInputLen;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LBN_CONT:
|
|
{
|
|
// Negative Look-Behind, at top of loop checking for matches of LB expression
|
|
// at all possible input starting positions.
|
|
|
|
// Fetch the extra parameters of this op.
|
|
int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
|
int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
|
int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
|
|
continueLoc = URX_VAL(continueLoc);
|
|
U_ASSERT(minML <= maxML);
|
|
U_ASSERT(minML >= 0);
|
|
U_ASSERT(continueLoc > fp->fPatIdx);
|
|
|
|
// Fetch (from data) the last input index where a match was attempted.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int64_t *lbStartIdx = &fData[opValue+2];
|
|
if (*lbStartIdx < 0) {
|
|
// First time through loop.
|
|
*lbStartIdx = fp->fInputIdx - minML;
|
|
} else {
|
|
// 2nd through nth time through the loop.
|
|
// Back up start position for match by one.
|
|
if (*lbStartIdx == 0) {
|
|
(*lbStartIdx)--;
|
|
} else {
|
|
UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
|
|
(void)UTEXT_PREVIOUS32(fInputText);
|
|
*lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
}
|
|
|
|
if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
|
// We have tried all potential match starting points without
|
|
// getting a match, which means that the negative lookbehind as
|
|
// a whole has succeeded. Jump forward to the continue location
|
|
int64_t restoreInputLen = fData[opValue+3];
|
|
U_ASSERT(restoreInputLen >= fActiveLimit);
|
|
U_ASSERT(restoreInputLen <= fInputLength);
|
|
fActiveLimit = restoreInputLen;
|
|
fp->fPatIdx = continueLoc;
|
|
break;
|
|
}
|
|
|
|
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
|
// (successful match will cause a FAIL out of the loop altogether.)
|
|
fp = StateSave(fp, fp->fPatIdx-4, status);
|
|
fp->fInputIdx = *lbStartIdx;
|
|
}
|
|
break;
|
|
|
|
case URX_LBN_END:
|
|
// End of a negative look-behind block, after a successful match.
|
|
{
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
if (fp->fInputIdx != fActiveLimit) {
|
|
// The look-behind expression matched, but the match did not
|
|
// extend all the way to the point that we are looking behind from.
|
|
// FAIL out of here, which will take us back to the LB_CONT, which
|
|
// will retry the match starting at another position or succeed
|
|
// the look-behind altogether, whichever is appropriate.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// Look-behind expression matched, which means look-behind test as
|
|
// a whole Fails
|
|
|
|
// Restore the orignal input string length, which had been truncated
|
|
// inorder to pin the end of the lookbehind match
|
|
// to the position being looked-behind.
|
|
int64_t originalInputLen = fData[opValue+3];
|
|
U_ASSERT(originalInputLen >= fActiveLimit);
|
|
U_ASSERT(originalInputLen <= fInputLength);
|
|
fActiveLimit = originalInputLen;
|
|
|
|
// Restore original stack position, discarding any state saved
|
|
// by the successful pattern match.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int32_t newStackSize = (int32_t)fData[opValue];
|
|
U_ASSERT(fStack->size() > newStackSize);
|
|
fStack->setSize(newStackSize);
|
|
|
|
// FAIL, which will take control back to someplace
|
|
// prior to entering the look-behind test.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LOOP_SR_I:
|
|
// Loop Initialization for the optimized implementation of
|
|
// [some character set]*
|
|
// This op scans through all matching input.
|
|
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
|
{
|
|
U_ASSERT(opValue > 0 && opValue < sets->size());
|
|
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
|
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
|
|
|
// Loop through input, until either the input is exhausted or
|
|
// we reach a character that is not a member of the set.
|
|
int64_t ix = fp->fInputIdx;
|
|
UTEXT_SETNATIVEINDEX(fInputText, ix);
|
|
for (;;) {
|
|
if (ix >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if (c<256) {
|
|
if (s8->contains(c) == FALSE) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (s->contains(c) == FALSE) {
|
|
break;
|
|
}
|
|
}
|
|
ix = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
|
|
// If there were no matching characters, skip over the loop altogether.
|
|
// The loop doesn't run at all, a * op always succeeds.
|
|
if (ix == fp->fInputIdx) {
|
|
fp->fPatIdx++; // skip the URX_LOOP_C op.
|
|
break;
|
|
}
|
|
|
|
// Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
|
// must follow. It's operand is the stack location
|
|
// that holds the starting input index for the match of this [set]*
|
|
int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
|
U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
|
int32_t stackLoc = URX_VAL(loopcOp);
|
|
U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
|
fp->fExtra[stackLoc] = fp->fInputIdx;
|
|
fp->fInputIdx = ix;
|
|
|
|
// Save State to the URX_LOOP_C op that follows this one,
|
|
// so that match failures in the following code will return to there.
|
|
// Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
fp->fPatIdx++;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LOOP_DOT_I:
|
|
// Loop Initialization for the optimized implementation of .*
|
|
// This op scans through all remaining input.
|
|
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
|
{
|
|
// Loop through input until the input is exhausted (we reach an end-of-line)
|
|
// In DOTALL mode, we can just go straight to the end of the input.
|
|
int64_t ix;
|
|
if ((opValue & 1) == 1) {
|
|
// Dot-matches-All mode. Jump straight to the end of the string.
|
|
ix = fActiveLimit;
|
|
fHitEnd = TRUE;
|
|
} else {
|
|
// NOT DOT ALL mode. Line endings do not match '.'
|
|
// Scan forward until a line ending or end of input.
|
|
ix = fp->fInputIdx;
|
|
UTEXT_SETNATIVEINDEX(fInputText, ix);
|
|
for (;;) {
|
|
if (ix >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
UChar32 c = UTEXT_NEXT32(fInputText);
|
|
if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
|
|
if ((c == 0x0a) || // 0x0a is newline in both modes.
|
|
(((opValue & 2) == 0) && // IF not UNIX_LINES mode
|
|
(c<=0x0d && c>=0x0a)) || c==0x85 ||c==0x2028 || c==0x2029) {
|
|
// char is a line ending. Exit the scanning loop.
|
|
break;
|
|
}
|
|
}
|
|
ix = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
}
|
|
|
|
// If there were no matching characters, skip over the loop altogether.
|
|
// The loop doesn't run at all, a * op always succeeds.
|
|
if (ix == fp->fInputIdx) {
|
|
fp->fPatIdx++; // skip the URX_LOOP_C op.
|
|
break;
|
|
}
|
|
|
|
// Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
|
// must follow. It's operand is the stack location
|
|
// that holds the starting input index for the match of this .*
|
|
int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
|
U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
|
int32_t stackLoc = URX_VAL(loopcOp);
|
|
U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
|
fp->fExtra[stackLoc] = fp->fInputIdx;
|
|
fp->fInputIdx = ix;
|
|
|
|
// Save State to the URX_LOOP_C op that follows this one,
|
|
// so that match failures in the following code will return to there.
|
|
// Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
fp->fPatIdx++;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LOOP_C:
|
|
{
|
|
U_ASSERT(opValue>=0 && opValue<fFrameSize);
|
|
backSearchIndex = fp->fExtra[opValue];
|
|
U_ASSERT(backSearchIndex <= fp->fInputIdx);
|
|
if (backSearchIndex == fp->fInputIdx) {
|
|
// We've backed up the input idx to the point that the loop started.
|
|
// The loop is done. Leave here without saving state.
|
|
// Subsequent failures won't come back here.
|
|
break;
|
|
}
|
|
// Set up for the next iteration of the loop, with input index
|
|
// backed up by one from the last time through,
|
|
// and a state save to this instruction in case the following code fails again.
|
|
// (We're going backwards because this loop emulates stack unwinding, not
|
|
// the initial scan forward.)
|
|
U_ASSERT(fp->fInputIdx > 0);
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
UChar32 prevC = UTEXT_PREVIOUS32(fInputText);
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
|
|
UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText);
|
|
if (prevC == 0x0a &&
|
|
fp->fInputIdx > backSearchIndex &&
|
|
twoPrevC == 0x0d) {
|
|
int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
|
|
if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
|
|
// .*, stepping back over CRLF pair.
|
|
fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
|
}
|
|
}
|
|
|
|
|
|
fp = StateSave(fp, fp->fPatIdx-1, status);
|
|
}
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
// Trouble. The compiled pattern contains an entry with an
|
|
// unrecognized type tag.
|
|
U_ASSERT(FALSE);
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
isMatch = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
breakFromLoop:
|
|
fMatch = isMatch;
|
|
if (isMatch) {
|
|
fLastMatchEnd = fMatchEnd;
|
|
fMatchStart = startIdx;
|
|
fMatchEnd = fp->fInputIdx;
|
|
if (fTraceDebug) {
|
|
REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (fTraceDebug) {
|
|
REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
|
|
}
|
|
}
|
|
|
|
fFrame = fp; // The active stack frame when the engine stopped.
|
|
// Contains the capture group results that we need to
|
|
// access later.
|
|
return;
|
|
}
|
|
|
|
|
|
//--------------------------------------------------------------------------------
|
|
//
|
|
// MatchChunkAt This is the actual matching engine. Like MatchAt, but with the
|
|
// assumption that the entire string is available in the UText's
|
|
// chunk buffer. For now, that means we can use int32_t indexes,
|
|
// except for anything that needs to be saved (like group starts
|
|
// and ends).
|
|
//
|
|
// startIdx: begin matching a this index.
|
|
// toEnd: if true, match must extend to end of the input region
|
|
//
|
|
//--------------------------------------------------------------------------------
|
|
void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
|
|
UBool isMatch = FALSE; // True if the we have a match.
|
|
|
|
int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards
|
|
|
|
int32_t op; // Operation from the compiled pattern, split into
|
|
int32_t opType; // the opcode
|
|
int32_t opValue; // and the operand value.
|
|
|
|
#ifdef REGEX_RUN_DEBUG
|
|
if (fTraceDebug)
|
|
{
|
|
printf("MatchAt(startIdx=%ld)\n", startIdx);
|
|
printf("Original Pattern: ");
|
|
UChar32 c = utext_next32From(fPattern->fPattern, 0);
|
|
while (c != U_SENTINEL) {
|
|
if (c<32 || c>256) {
|
|
c = '.';
|
|
}
|
|
REGEX_DUMP_DEBUG_PRINTF(("%c", c));
|
|
|
|
c = UTEXT_NEXT32(fPattern->fPattern);
|
|
}
|
|
printf("\n");
|
|
printf("Input String: ");
|
|
c = utext_next32From(fInputText, 0);
|
|
while (c != U_SENTINEL) {
|
|
if (c<32 || c>256) {
|
|
c = '.';
|
|
}
|
|
printf("%c", c);
|
|
|
|
c = UTEXT_NEXT32(fInputText);
|
|
}
|
|
printf("\n");
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
// Cache frequently referenced items from the compiled pattern
|
|
//
|
|
int64_t *pat = fPattern->fCompiledPat->getBuffer();
|
|
|
|
const UChar *litText = fPattern->fLiteralText.getBuffer();
|
|
UVector *sets = fPattern->fSets;
|
|
|
|
const UChar *inputBuf = fInputText->chunkContents;
|
|
|
|
fFrameSize = fPattern->fFrameSize;
|
|
REStackFrame *fp = resetStack();
|
|
|
|
fp->fPatIdx = 0;
|
|
fp->fInputIdx = startIdx;
|
|
|
|
// Zero out the pattern's static data
|
|
int32_t i;
|
|
for (i = 0; i<fPattern->fDataSize; i++) {
|
|
fData[i] = 0;
|
|
}
|
|
|
|
//
|
|
// Main loop for interpreting the compiled pattern.
|
|
// One iteration of the loop per pattern operation performed.
|
|
//
|
|
for (;;) {
|
|
#if 0
|
|
if (_heapchk() != _HEAPOK) {
|
|
fprintf(stderr, "Heap Trouble\n");
|
|
}
|
|
#endif
|
|
|
|
op = (int32_t)pat[fp->fPatIdx];
|
|
opType = URX_TYPE(op);
|
|
opValue = URX_VAL(op);
|
|
#ifdef REGEX_RUN_DEBUG
|
|
if (fTraceDebug) {
|
|
UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
|
printf("inputIdx=%d inputChar=%x sp=%3d activeLimit=%d ", fp->fInputIdx,
|
|
UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
|
|
fPattern->dumpOp(fp->fPatIdx);
|
|
}
|
|
#endif
|
|
fp->fPatIdx++;
|
|
|
|
switch (opType) {
|
|
|
|
|
|
case URX_NOP:
|
|
break;
|
|
|
|
|
|
case URX_BACKTRACK:
|
|
// Force a backtrack. In some circumstances, the pattern compiler
|
|
// will notice that the pattern can't possibly match anything, and will
|
|
// emit one of these at that point.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
|
|
case URX_ONECHAR:
|
|
if (fp->fInputIdx < fActiveLimit) {
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (c == opValue) {
|
|
break;
|
|
}
|
|
} else {
|
|
fHitEnd = TRUE;
|
|
}
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
|
|
case URX_STRING:
|
|
{
|
|
// Test input against a literal string.
|
|
// Strings require two slots in the compiled pattern, one for the
|
|
// offset to the string text, and one for the length.
|
|
int32_t stringStartIdx = opValue;
|
|
int32_t stringLen;
|
|
|
|
op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
|
|
fp->fPatIdx++;
|
|
opType = URX_TYPE(op);
|
|
stringLen = URX_VAL(op);
|
|
U_ASSERT(opType == URX_STRING_LEN);
|
|
U_ASSERT(stringLen >= 2);
|
|
|
|
const UChar * pInp = inputBuf + fp->fInputIdx;
|
|
const UChar * pInpLimit = inputBuf + fActiveLimit;
|
|
const UChar * pPat = litText+stringStartIdx;
|
|
const UChar * pEnd = pInp + stringLen;
|
|
UBool success = TRUE;
|
|
while (pInp < pEnd) {
|
|
if (pInp >= pInpLimit) {
|
|
fHitEnd = TRUE;
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
if (*pInp++ != *pPat++) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx += stringLen;
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_STATE_SAVE:
|
|
fp = StateSave(fp, opValue, status);
|
|
break;
|
|
|
|
|
|
case URX_END:
|
|
// The match loop will exit via this path on a successful match,
|
|
// when we reach the end of the pattern.
|
|
if (toEnd && fp->fInputIdx != fActiveLimit) {
|
|
// The pattern matched, but not to the end of input. Try some more.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
isMatch = TRUE;
|
|
goto breakFromLoop;
|
|
|
|
// Start and End Capture stack frame variables are laid out out like this:
|
|
// fp->fExtra[opValue] - The start of a completed capture group
|
|
// opValue+1 - The end of a completed capture group
|
|
// opValue+2 - the start of a capture group whose end
|
|
// has not yet been reached (and might not ever be).
|
|
case URX_START_CAPTURE:
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
|
fp->fExtra[opValue+2] = fp->fInputIdx;
|
|
break;
|
|
|
|
|
|
case URX_END_CAPTURE:
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
|
U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
|
|
fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
|
|
fp->fExtra[opValue+1] = fp->fInputIdx; // End position
|
|
U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR: // $, test for End of line
|
|
// or for position before new line at end of input
|
|
if (fp->fInputIdx < fAnchorLimit-2) {
|
|
// We are no where near the end of input. Fail.
|
|
// This is the common case. Keep it first.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// We really are at the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
|
|
// If we are positioned just before a new-line that is located at the
|
|
// end of input, succeed.
|
|
if (fp->fInputIdx == fAnchorLimit-1) {
|
|
UChar32 c;
|
|
U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
|
|
|
|
if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
|
|
if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
|
|
// At new-line at end of input. Success
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
} else if (fp->fInputIdx == fAnchorLimit-2 &&
|
|
inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break; // At CR/LF at end of input. Success
|
|
}
|
|
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
|
|
if (fp->fInputIdx >= fAnchorLimit-1) {
|
|
// Either at the last character of input, or off the end.
|
|
if (fp->fInputIdx == fAnchorLimit-1) {
|
|
// At last char of input. Success if it's a new line.
|
|
if (inputBuf[fp->fInputIdx] == 0x0a) {
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
} else {
|
|
// Off the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Not at end of input. Back-track out.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR_M: // $, test for End of line in multi-line mode
|
|
{
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// We really are at the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
break;
|
|
}
|
|
// If we are positioned just before a new-line, succeed.
|
|
// It makes no difference where the new-line is within the input.
|
|
UChar32 c = inputBuf[fp->fInputIdx];
|
|
if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
|
|
// At a line end, except for the odd chance of being in the middle of a CR/LF sequence
|
|
// In multi-line mode, hitting a new-line just before the end of input does not
|
|
// set the hitEnd or requireEnd flags
|
|
if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
|
|
break;
|
|
}
|
|
}
|
|
// not at a new line. Fail.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
|
|
{
|
|
if (fp->fInputIdx >= fAnchorLimit) {
|
|
// We really are at the end of input. Success.
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE; // Java set requireEnd in this case, even though
|
|
break; // adding a new-line would not lose the match.
|
|
}
|
|
// If we are not positioned just before a new-line, the test fails; backtrack out.
|
|
// It makes no difference where the new-line is within the input.
|
|
if (inputBuf[fp->fInputIdx] != 0x0a) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_CARET: // ^, test for start of line
|
|
if (fp->fInputIdx != fAnchorStart) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_CARET_M: // ^, test for start of line in mulit-line mode
|
|
{
|
|
if (fp->fInputIdx == fAnchorStart) {
|
|
// We are at the start input. Success.
|
|
break;
|
|
}
|
|
// Check whether character just before the current pos is a new-line
|
|
// unless we are at the end of input
|
|
UChar c = inputBuf[fp->fInputIdx - 1];
|
|
if ((fp->fInputIdx < fAnchorLimit) &&
|
|
((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
|
// It's a new-line. ^ is true. Success.
|
|
// TODO: what should be done with positions between a CR and LF?
|
|
break;
|
|
}
|
|
// Not at the start of a line. Fail.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
|
|
{
|
|
U_ASSERT(fp->fInputIdx >= fAnchorStart);
|
|
if (fp->fInputIdx <= fAnchorStart) {
|
|
// We are at the start input. Success.
|
|
break;
|
|
}
|
|
// Check whether character just before the current pos is a new-line
|
|
U_ASSERT(fp->fInputIdx <= fAnchorLimit);
|
|
UChar c = inputBuf[fp->fInputIdx - 1];
|
|
if (c != 0x0a) {
|
|
// Not at the start of a line. Back-track out.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_BACKSLASH_B: // Test for word boundaries
|
|
{
|
|
UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx);
|
|
success ^= (UBool)(opValue != 0); // flip sense for \B
|
|
if (!success) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
|
|
{
|
|
UBool success = isUWordBoundary(fp->fInputIdx);
|
|
success ^= (UBool)(opValue != 0); // flip sense for \B
|
|
if (!success) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_D: // Test for decimal digit
|
|
{
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
|
|
UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
|
|
success ^= (UBool)(opValue != 0); // flip sense for \D
|
|
if (!success) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_G: // Test for position at end of previous match
|
|
if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_BACKSLASH_X:
|
|
// Match a Grapheme, as defined by Unicode TR 29.
|
|
// Differs slightly from Perl, which consumes combining marks independently
|
|
// of context.
|
|
{
|
|
|
|
// Fail if at end of input
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// Examine (and consume) the current char.
|
|
// Dispatch into a little state machine, based on the char.
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
UnicodeSet **sets = fPattern->fStaticSets;
|
|
if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
|
|
if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
|
|
if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
|
if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
|
if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
|
goto GC_Extend;
|
|
|
|
|
|
|
|
GC_L:
|
|
if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
|
if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
|
if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
|
U16_PREV(inputBuf, 0, fp->fInputIdx, c);
|
|
goto GC_Extend;
|
|
|
|
GC_V:
|
|
if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
|
if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
|
U16_PREV(inputBuf, 0, fp->fInputIdx, c);
|
|
goto GC_Extend;
|
|
|
|
GC_T:
|
|
if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
|
U16_PREV(inputBuf, 0, fp->fInputIdx, c);
|
|
goto GC_Extend;
|
|
|
|
GC_Extend:
|
|
// Combining characters are consumed here
|
|
for (;;) {
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
break;
|
|
}
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
|
|
U16_BACK_1(inputBuf, 0, fp->fInputIdx);
|
|
break;
|
|
}
|
|
}
|
|
goto GC_Done;
|
|
|
|
GC_Control:
|
|
// Most control chars stand alone (don't combine with combining chars),
|
|
// except for that CR/LF sequence is a single grapheme cluster.
|
|
if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) {
|
|
fp->fInputIdx++;
|
|
}
|
|
|
|
GC_Done:
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
|
|
|
|
case URX_BACKSLASH_Z: // Test for end of Input
|
|
if (fp->fInputIdx < fAnchorLimit) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
} else {
|
|
fHitEnd = TRUE;
|
|
fRequireEnd = TRUE;
|
|
}
|
|
break;
|
|
|
|
|
|
|
|
case URX_STATIC_SETREF:
|
|
{
|
|
// Test input character against one of the predefined sets
|
|
// (Word Characters, for example)
|
|
// The high bit of the op value is a flag for the match polarity.
|
|
// 0: success if input char is in set.
|
|
// 1: success if input char is not in set.
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
|
|
opValue &= ~URX_NEG_SET;
|
|
U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
|
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (c < 256) {
|
|
Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
|
if (s8->contains(c)) {
|
|
success = !success;
|
|
}
|
|
} else {
|
|
const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
|
if (s->contains(c)) {
|
|
success = !success;
|
|
}
|
|
}
|
|
if (!success) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_STAT_SETREF_N:
|
|
{
|
|
// Test input character for NOT being a member of one of
|
|
// the predefined sets (Word Characters, for example)
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
|
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (c < 256) {
|
|
Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
|
if (s8->contains(c) == FALSE) {
|
|
break;
|
|
}
|
|
} else {
|
|
const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
|
if (s->contains(c) == FALSE) {
|
|
break;
|
|
}
|
|
}
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_SETREF:
|
|
{
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
U_ASSERT(opValue > 0 && opValue < sets->size());
|
|
|
|
// There is input left. Pick up one char and test it for set membership.
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (c<256) {
|
|
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
|
if (s8->contains(c)) {
|
|
// The character is in the set. A Match.
|
|
break;
|
|
}
|
|
} else {
|
|
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
|
if (s->contains(c)) {
|
|
// The character is in the set. A Match.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// the character wasn't in the set.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOTANY:
|
|
{
|
|
// . matches anything, but stops at end-of-line.
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
// At end of input. Match failed. Backtrack out.
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// There is input left. Advance over one char, unless we've hit end-of-line
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
|
((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
|
// End of line in normal mode. . does not match.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOTANY_ALL:
|
|
{
|
|
// . in dot-matches-all (including new lines) mode
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
// At end of input. Match failed. Backtrack out.
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// There is input left. Advance over one char, except if we are
|
|
// at a cr/lf, advance over both of them.
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (c==0x0d && fp->fInputIdx < fActiveLimit) {
|
|
// In the case of a CR/LF, we need to advance over both.
|
|
if (inputBuf[fp->fInputIdx] == 0x0a) {
|
|
U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_DOTANY_UNIX:
|
|
{
|
|
// '.' operator, matches all, but stops at end-of-line.
|
|
// UNIX_LINES mode, so 0x0a is the only recognized line ending.
|
|
if (fp->fInputIdx >= fActiveLimit) {
|
|
// At end of input. Match failed. Backtrack out.
|
|
fHitEnd = TRUE;
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// There is input left. Advance over one char, unless we've hit end-of-line
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (c == 0x0a) {
|
|
// End of line in normal mode. '.' does not match the \n
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_JMP:
|
|
fp->fPatIdx = opValue;
|
|
break;
|
|
|
|
case URX_FAIL:
|
|
isMatch = FALSE;
|
|
goto breakFromLoop;
|
|
|
|
case URX_JMP_SAV:
|
|
U_ASSERT(opValue < fPattern->fCompiledPat->size());
|
|
fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
|
fp->fPatIdx = opValue; // Then JMP.
|
|
break;
|
|
|
|
case URX_JMP_SAV_X:
|
|
// This opcode is used with (x)+, when x can match a zero length string.
|
|
// Same as JMP_SAV, except conditional on the match having made forward progress.
|
|
// Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
|
|
// data address of the input position at the start of the loop.
|
|
{
|
|
U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
|
|
int32_t stoOp = (int32_t)pat[opValue-1];
|
|
U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
|
|
int32_t frameLoc = URX_VAL(stoOp);
|
|
U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
|
|
int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc];
|
|
U_ASSERT(prevInputIdx <= fp->fInputIdx);
|
|
if (prevInputIdx < fp->fInputIdx) {
|
|
// The match did make progress. Repeat the loop.
|
|
fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
|
fp->fPatIdx = opValue;
|
|
fp->fExtra[frameLoc] = fp->fInputIdx;
|
|
}
|
|
// If the input position did not advance, we do nothing here,
|
|
// execution will fall out of the loop.
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_INIT:
|
|
{
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
|
fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
|
|
|
// Pick up the three extra operands that CTR_INIT has, and
|
|
// skip the pattern location counter past
|
|
int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
|
fp->fPatIdx += 3;
|
|
int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
|
int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
|
int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
|
U_ASSERT(minCount>=0);
|
|
U_ASSERT(maxCount>=minCount || maxCount==-1);
|
|
U_ASSERT(loopLoc>fp->fPatIdx);
|
|
|
|
if (minCount == 0) {
|
|
fp = StateSave(fp, loopLoc+1, status);
|
|
}
|
|
if (maxCount == 0) {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_LOOP:
|
|
{
|
|
U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
|
int32_t initOp = (int32_t)pat[opValue];
|
|
U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
|
|
int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
|
int32_t minCount = (int32_t)pat[opValue+2];
|
|
int32_t maxCount = (int32_t)pat[opValue+3];
|
|
// Increment the counter. Note: we DIDN'T worry about counter
|
|
// overflow, since the data comes from UnicodeStrings, which
|
|
// stores its length in an int32_t. Do we have to think about
|
|
// this now that we're using UText? Probably not, since the length
|
|
// in UChar32s is still an int32_t.
|
|
(*pCounter)++;
|
|
U_ASSERT(*pCounter > 0);
|
|
if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
|
U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
|
break;
|
|
}
|
|
if (*pCounter >= minCount) {
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
}
|
|
fp->fPatIdx = opValue + 4; // Loop back.
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_INIT_NG:
|
|
{
|
|
// Initialize a non-greedy loop
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
|
fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
|
|
|
// Pick up the three extra operands that CTR_INIT has, and
|
|
// skip the pattern location counter past
|
|
int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
|
fp->fPatIdx += 3;
|
|
int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
|
int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
|
int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
|
U_ASSERT(minCount>=0);
|
|
U_ASSERT(maxCount>=minCount || maxCount==-1);
|
|
U_ASSERT(loopLoc>fp->fPatIdx);
|
|
|
|
if (minCount == 0) {
|
|
if (maxCount != 0) {
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
}
|
|
fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_CTR_LOOP_NG:
|
|
{
|
|
// Non-greedy {min, max} loops
|
|
U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
|
int32_t initOp = (int32_t)pat[opValue];
|
|
U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
|
|
int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
|
int32_t minCount = (int32_t)pat[opValue+2];
|
|
int32_t maxCount = (int32_t)pat[opValue+3];
|
|
// Increment the counter. Note: we DIDN'T worry about counter
|
|
// overflow, since the data comes from UnicodeStrings, which
|
|
// stores its length in an int32_t. Do we have to think about
|
|
// this now that we're using UText? Probably not, since the length
|
|
// in UChar32s is still an int32_t.
|
|
(*pCounter)++;
|
|
U_ASSERT(*pCounter > 0);
|
|
|
|
if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
|
// The loop has matched the maximum permitted number of times.
|
|
// Break out of here with no action. Matching will
|
|
// continue with the following pattern.
|
|
U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
|
break;
|
|
}
|
|
|
|
if (*pCounter < minCount) {
|
|
// We haven't met the minimum number of matches yet.
|
|
// Loop back for another one.
|
|
fp->fPatIdx = opValue + 4; // Loop back.
|
|
} else {
|
|
// We do have the minimum number of matches.
|
|
// Fall into the following pattern, but first do
|
|
// a state save to the top of the loop, so that a failure
|
|
// in the following pattern will try another iteration of the loop.
|
|
fp = StateSave(fp, opValue + 4, status);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_STO_SP:
|
|
U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
|
fData[opValue] = fStack->size();
|
|
break;
|
|
|
|
case URX_LD_SP:
|
|
{
|
|
U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
|
int32_t newStackSize = (int32_t)fData[opValue];
|
|
U_ASSERT(newStackSize <= fStack->size());
|
|
int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
|
if (newFP == (int64_t *)fp) {
|
|
break;
|
|
}
|
|
int32_t i;
|
|
for (i=0; i<fFrameSize; i++) {
|
|
newFP[i] = ((int64_t *)fp)[i];
|
|
}
|
|
fp = (REStackFrame *)newFP;
|
|
fStack->setSize(newStackSize);
|
|
}
|
|
break;
|
|
|
|
case URX_BACKREF:
|
|
{
|
|
U_ASSERT(opValue < fFrameSize);
|
|
int64_t groupStartIdx = fp->fExtra[opValue];
|
|
int64_t groupEndIdx = fp->fExtra[opValue+1];
|
|
U_ASSERT(groupStartIdx <= groupEndIdx);
|
|
int64_t inputIndex = fp->fInputIdx;
|
|
if (groupStartIdx < 0) {
|
|
// This capture group has not participated in the match thus far,
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
|
break;
|
|
}
|
|
UBool success = TRUE;
|
|
for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) {
|
|
if (inputIndex >= fActiveLimit) {
|
|
success = FALSE;
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
if (inputBuf[groupIndex] != inputBuf[inputIndex]) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
if (success) {
|
|
fp->fInputIdx = inputIndex;
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_BACKREF_I:
|
|
{
|
|
U_ASSERT(opValue < fFrameSize);
|
|
int64_t groupStartIdx = fp->fExtra[opValue];
|
|
int64_t groupEndIdx = fp->fExtra[opValue+1];
|
|
U_ASSERT(groupStartIdx <= groupEndIdx);
|
|
if (groupStartIdx < 0) {
|
|
// This capture group has not participated in the match thus far,
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
|
break;
|
|
}
|
|
CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx);
|
|
CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit);
|
|
|
|
// Note: if the capture group match was of an empty string the backref
|
|
// match succeeds. Verified by testing: Perl matches succeed
|
|
// in this case, so we do too.
|
|
|
|
UBool success = TRUE;
|
|
for (;;) {
|
|
UChar32 captureGroupChar = captureGroupItr.next();
|
|
if (captureGroupChar == U_SENTINEL) {
|
|
success = TRUE;
|
|
break;
|
|
}
|
|
UChar32 inputChar = inputItr.next();
|
|
if (inputChar == U_SENTINEL) {
|
|
success = FALSE;
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
if (inputChar != captureGroupChar) {
|
|
success = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (success && inputItr.inExpansion()) {
|
|
// We otained a match by consuming part of a string obtained from
|
|
// case-folding a single code point of the input text.
|
|
// This does not count as an overall match.
|
|
success = FALSE;
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx = inputItr.getIndex();
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_STO_INP_LOC:
|
|
{
|
|
U_ASSERT(opValue >= 0 && opValue < fFrameSize);
|
|
fp->fExtra[opValue] = fp->fInputIdx;
|
|
}
|
|
break;
|
|
|
|
case URX_JMPX:
|
|
{
|
|
int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
|
fp->fPatIdx += 1;
|
|
int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
|
|
U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
|
|
int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc];
|
|
U_ASSERT(savedInputIdx <= fp->fInputIdx);
|
|
if (savedInputIdx < fp->fInputIdx) {
|
|
fp->fPatIdx = opValue; // JMP
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_LA_START:
|
|
{
|
|
// Entering a lookahead block.
|
|
// Save Stack Ptr, Input Pos.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
fData[opValue] = fStack->size();
|
|
fData[opValue+1] = fp->fInputIdx;
|
|
fActiveStart = fLookStart; // Set the match region change for
|
|
fActiveLimit = fLookLimit; // transparent bounds.
|
|
}
|
|
break;
|
|
|
|
case URX_LA_END:
|
|
{
|
|
// Leaving a look-ahead block.
|
|
// restore Stack Ptr, Input Pos to positions they had on entry to block.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int32_t stackSize = fStack->size();
|
|
int32_t newStackSize = (int32_t)fData[opValue];
|
|
U_ASSERT(stackSize >= newStackSize);
|
|
if (stackSize > newStackSize) {
|
|
// Copy the current top frame back to the new (cut back) top frame.
|
|
// This makes the capture groups from within the look-ahead
|
|
// expression available.
|
|
int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
|
int32_t i;
|
|
for (i=0; i<fFrameSize; i++) {
|
|
newFP[i] = ((int64_t *)fp)[i];
|
|
}
|
|
fp = (REStackFrame *)newFP;
|
|
fStack->setSize(newStackSize);
|
|
}
|
|
fp->fInputIdx = fData[opValue+1];
|
|
|
|
// Restore the active region bounds in the input string; they may have
|
|
// been changed because of transparent bounds on a Region.
|
|
fActiveStart = fRegionStart;
|
|
fActiveLimit = fRegionLimit;
|
|
}
|
|
break;
|
|
|
|
case URX_ONECHAR_I:
|
|
if (fp->fInputIdx < fActiveLimit) {
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
|
if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
|
|
break;
|
|
}
|
|
} else {
|
|
fHitEnd = TRUE;
|
|
}
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
|
|
case URX_STRING_I:
|
|
// Case-insensitive test input against a literal string.
|
|
// Strings require two slots in the compiled pattern, one for the
|
|
// offset to the string text, and one for the length.
|
|
// The compiled string has already been case folded.
|
|
{
|
|
const UChar *patternString = litText + opValue;
|
|
|
|
op = (int32_t)pat[fp->fPatIdx];
|
|
fp->fPatIdx++;
|
|
opType = URX_TYPE(op);
|
|
opValue = URX_VAL(op);
|
|
U_ASSERT(opType == URX_STRING_LEN);
|
|
int32_t patternStringLen = opValue; // Length of the string from the pattern.
|
|
|
|
UChar32 cText;
|
|
UChar32 cPattern;
|
|
UBool success = TRUE;
|
|
int32_t patternStringIdx = 0;
|
|
CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit);
|
|
while (patternStringIdx < patternStringLen) {
|
|
U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern);
|
|
cText = inputIterator.next();
|
|
if (cText != cPattern) {
|
|
success = FALSE;
|
|
if (cText == U_SENTINEL) {
|
|
fHitEnd = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (inputIterator.inExpansion()) {
|
|
success = FALSE;
|
|
}
|
|
|
|
if (success) {
|
|
fp->fInputIdx = inputIterator.getIndex();
|
|
} else {
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case URX_LB_START:
|
|
{
|
|
// Entering a look-behind block.
|
|
// Save Stack Ptr, Input Pos.
|
|
// TODO: implement transparent bounds. Ticket #6067
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
fData[opValue] = fStack->size();
|
|
fData[opValue+1] = fp->fInputIdx;
|
|
// Init the variable containing the start index for attempted matches.
|
|
fData[opValue+2] = -1;
|
|
// Save input string length, then reset to pin any matches to end at
|
|
// the current position.
|
|
fData[opValue+3] = fActiveLimit;
|
|
fActiveLimit = fp->fInputIdx;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LB_CONT:
|
|
{
|
|
// Positive Look-Behind, at top of loop checking for matches of LB expression
|
|
// at all possible input starting positions.
|
|
|
|
// Fetch the min and max possible match lengths. They are the operands
|
|
// of this op in the pattern.
|
|
int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
|
int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
|
U_ASSERT(minML <= maxML);
|
|
U_ASSERT(minML >= 0);
|
|
|
|
// Fetch (from data) the last input index where a match was attempted.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int64_t *lbStartIdx = &fData[opValue+2];
|
|
if (*lbStartIdx < 0) {
|
|
// First time through loop.
|
|
*lbStartIdx = fp->fInputIdx - minML;
|
|
} else {
|
|
// 2nd through nth time through the loop.
|
|
// Back up start position for match by one.
|
|
if (*lbStartIdx == 0) {
|
|
(*lbStartIdx)--;
|
|
} else {
|
|
U16_BACK_1(inputBuf, 0, *lbStartIdx);
|
|
}
|
|
}
|
|
|
|
if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
|
// We have tried all potential match starting points without
|
|
// getting a match. Backtrack out, and out of the
|
|
// Look Behind altogether.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
int64_t restoreInputLen = fData[opValue+3];
|
|
U_ASSERT(restoreInputLen >= fActiveLimit);
|
|
U_ASSERT(restoreInputLen <= fInputLength);
|
|
fActiveLimit = restoreInputLen;
|
|
break;
|
|
}
|
|
|
|
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
|
// (successful match will fall off the end of the loop.)
|
|
fp = StateSave(fp, fp->fPatIdx-3, status);
|
|
fp->fInputIdx = *lbStartIdx;
|
|
}
|
|
break;
|
|
|
|
case URX_LB_END:
|
|
// End of a look-behind block, after a successful match.
|
|
{
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
if (fp->fInputIdx != fActiveLimit) {
|
|
// The look-behind expression matched, but the match did not
|
|
// extend all the way to the point that we are looking behind from.
|
|
// FAIL out of here, which will take us back to the LB_CONT, which
|
|
// will retry the match starting at another position or fail
|
|
// the look-behind altogether, whichever is appropriate.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// Look-behind match is good. Restore the orignal input string length,
|
|
// which had been truncated to pin the end of the lookbehind match to the
|
|
// position being looked-behind.
|
|
int64_t originalInputLen = fData[opValue+3];
|
|
U_ASSERT(originalInputLen >= fActiveLimit);
|
|
U_ASSERT(originalInputLen <= fInputLength);
|
|
fActiveLimit = originalInputLen;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LBN_CONT:
|
|
{
|
|
// Negative Look-Behind, at top of loop checking for matches of LB expression
|
|
// at all possible input starting positions.
|
|
|
|
// Fetch the extra parameters of this op.
|
|
int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
|
int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
|
int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
|
|
continueLoc = URX_VAL(continueLoc);
|
|
U_ASSERT(minML <= maxML);
|
|
U_ASSERT(minML >= 0);
|
|
U_ASSERT(continueLoc > fp->fPatIdx);
|
|
|
|
// Fetch (from data) the last input index where a match was attempted.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int64_t *lbStartIdx = &fData[opValue+2];
|
|
if (*lbStartIdx < 0) {
|
|
// First time through loop.
|
|
*lbStartIdx = fp->fInputIdx - minML;
|
|
} else {
|
|
// 2nd through nth time through the loop.
|
|
// Back up start position for match by one.
|
|
if (*lbStartIdx == 0) {
|
|
(*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
|
|
} else {
|
|
U16_BACK_1(inputBuf, 0, *lbStartIdx);
|
|
}
|
|
}
|
|
|
|
if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
|
// We have tried all potential match starting points without
|
|
// getting a match, which means that the negative lookbehind as
|
|
// a whole has succeeded. Jump forward to the continue location
|
|
int64_t restoreInputLen = fData[opValue+3];
|
|
U_ASSERT(restoreInputLen >= fActiveLimit);
|
|
U_ASSERT(restoreInputLen <= fInputLength);
|
|
fActiveLimit = restoreInputLen;
|
|
fp->fPatIdx = continueLoc;
|
|
break;
|
|
}
|
|
|
|
// Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
|
// (successful match will cause a FAIL out of the loop altogether.)
|
|
fp = StateSave(fp, fp->fPatIdx-4, status);
|
|
fp->fInputIdx = *lbStartIdx;
|
|
}
|
|
break;
|
|
|
|
case URX_LBN_END:
|
|
// End of a negative look-behind block, after a successful match.
|
|
{
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
if (fp->fInputIdx != fActiveLimit) {
|
|
// The look-behind expression matched, but the match did not
|
|
// extend all the way to the point that we are looking behind from.
|
|
// FAIL out of here, which will take us back to the LB_CONT, which
|
|
// will retry the match starting at another position or succeed
|
|
// the look-behind altogether, whichever is appropriate.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
break;
|
|
}
|
|
|
|
// Look-behind expression matched, which means look-behind test as
|
|
// a whole Fails
|
|
|
|
// Restore the orignal input string length, which had been truncated
|
|
// inorder to pin the end of the lookbehind match
|
|
// to the position being looked-behind.
|
|
int64_t originalInputLen = fData[opValue+3];
|
|
U_ASSERT(originalInputLen >= fActiveLimit);
|
|
U_ASSERT(originalInputLen <= fInputLength);
|
|
fActiveLimit = originalInputLen;
|
|
|
|
// Restore original stack position, discarding any state saved
|
|
// by the successful pattern match.
|
|
U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
|
int32_t newStackSize = (int32_t)fData[opValue];
|
|
U_ASSERT(fStack->size() > newStackSize);
|
|
fStack->setSize(newStackSize);
|
|
|
|
// FAIL, which will take control back to someplace
|
|
// prior to entering the look-behind test.
|
|
fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LOOP_SR_I:
|
|
// Loop Initialization for the optimized implementation of
|
|
// [some character set]*
|
|
// This op scans through all matching input.
|
|
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
|
{
|
|
U_ASSERT(opValue > 0 && opValue < sets->size());
|
|
Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
|
UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
|
|
|
// Loop through input, until either the input is exhausted or
|
|
// we reach a character that is not a member of the set.
|
|
int32_t ix = (int32_t)fp->fInputIdx;
|
|
for (;;) {
|
|
if (ix >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, ix, fActiveLimit, c);
|
|
if (c<256) {
|
|
if (s8->contains(c) == FALSE) {
|
|
U16_BACK_1(inputBuf, 0, ix);
|
|
break;
|
|
}
|
|
} else {
|
|
if (s->contains(c) == FALSE) {
|
|
U16_BACK_1(inputBuf, 0, ix);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there were no matching characters, skip over the loop altogether.
|
|
// The loop doesn't run at all, a * op always succeeds.
|
|
if (ix == fp->fInputIdx) {
|
|
fp->fPatIdx++; // skip the URX_LOOP_C op.
|
|
break;
|
|
}
|
|
|
|
// Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
|
// must follow. It's operand is the stack location
|
|
// that holds the starting input index for the match of this [set]*
|
|
int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
|
U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
|
int32_t stackLoc = URX_VAL(loopcOp);
|
|
U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
|
fp->fExtra[stackLoc] = fp->fInputIdx;
|
|
fp->fInputIdx = ix;
|
|
|
|
// Save State to the URX_LOOP_C op that follows this one,
|
|
// so that match failures in the following code will return to there.
|
|
// Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
fp->fPatIdx++;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LOOP_DOT_I:
|
|
// Loop Initialization for the optimized implementation of .*
|
|
// This op scans through all remaining input.
|
|
// The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
|
{
|
|
// Loop through input until the input is exhausted (we reach an end-of-line)
|
|
// In DOTALL mode, we can just go straight to the end of the input.
|
|
int32_t ix;
|
|
if ((opValue & 1) == 1) {
|
|
// Dot-matches-All mode. Jump straight to the end of the string.
|
|
ix = (int32_t)fActiveLimit;
|
|
fHitEnd = TRUE;
|
|
} else {
|
|
// NOT DOT ALL mode. Line endings do not match '.'
|
|
// Scan forward until a line ending or end of input.
|
|
ix = (int32_t)fp->fInputIdx;
|
|
for (;;) {
|
|
if (ix >= fActiveLimit) {
|
|
fHitEnd = TRUE;
|
|
break;
|
|
}
|
|
UChar32 c;
|
|
U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++]
|
|
if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
|
|
if ((c == 0x0a) || // 0x0a is newline in both modes.
|
|
(((opValue & 2) == 0) && // IF not UNIX_LINES mode
|
|
((c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029))) {
|
|
// char is a line ending. Put the input pos back to the
|
|
// line ending char, and exit the scanning loop.
|
|
U16_BACK_1(inputBuf, 0, ix);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there were no matching characters, skip over the loop altogether.
|
|
// The loop doesn't run at all, a * op always succeeds.
|
|
if (ix == fp->fInputIdx) {
|
|
fp->fPatIdx++; // skip the URX_LOOP_C op.
|
|
break;
|
|
}
|
|
|
|
// Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
|
// must follow. It's operand is the stack location
|
|
// that holds the starting input index for the match of this .*
|
|
int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
|
U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
|
int32_t stackLoc = URX_VAL(loopcOp);
|
|
U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
|
fp->fExtra[stackLoc] = fp->fInputIdx;
|
|
fp->fInputIdx = ix;
|
|
|
|
// Save State to the URX_LOOP_C op that follows this one,
|
|
// so that match failures in the following code will return to there.
|
|
// Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
|
fp = StateSave(fp, fp->fPatIdx, status);
|
|
fp->fPatIdx++;
|
|
}
|
|
break;
|
|
|
|
|
|
case URX_LOOP_C:
|
|
{
|
|
U_ASSERT(opValue>=0 && opValue<fFrameSize);
|
|
backSearchIndex = (int32_t)fp->fExtra[opValue];
|
|
U_ASSERT(backSearchIndex <= fp->fInputIdx);
|
|
if (backSearchIndex == fp->fInputIdx) {
|
|
// We've backed up the input idx to the point that the loop started.
|
|
// The loop is done. Leave here without saving state.
|
|
// Subsequent failures won't come back here.
|
|
break;
|
|
}
|
|
// Set up for the next iteration of the loop, with input index
|
|
// backed up by one from the last time through,
|
|
// and a state save to this instruction in case the following code fails again.
|
|
// (We're going backwards because this loop emulates stack unwinding, not
|
|
// the initial scan forward.)
|
|
U_ASSERT(fp->fInputIdx > 0);
|
|
UChar32 prevC;
|
|
U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?
|
|
|
|
if (prevC == 0x0a &&
|
|
fp->fInputIdx > backSearchIndex &&
|
|
inputBuf[fp->fInputIdx-1] == 0x0d) {
|
|
int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
|
|
if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
|
|
// .*, stepping back over CRLF pair.
|
|
U16_BACK_1(inputBuf, 0, fp->fInputIdx);
|
|
}
|
|
}
|
|
|
|
|
|
fp = StateSave(fp, fp->fPatIdx-1, status);
|
|
}
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
// Trouble. The compiled pattern contains an entry with an
|
|
// unrecognized type tag.
|
|
U_ASSERT(FALSE);
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
isMatch = FALSE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
breakFromLoop:
|
|
fMatch = isMatch;
|
|
if (isMatch) {
|
|
fLastMatchEnd = fMatchEnd;
|
|
fMatchStart = startIdx;
|
|
fMatchEnd = fp->fInputIdx;
|
|
if (fTraceDebug) {
|
|
REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (fTraceDebug) {
|
|
REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
|
|
}
|
|
}
|
|
|
|
fFrame = fp; // The active stack frame when the engine stopped.
|
|
// Contains the capture group results that we need to
|
|
// access later.
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
|
|
|
|
U_NAMESPACE_END
|
|
|
|
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
|