scuffed-code/icu4c/source/i18n/ucol.cpp
2001-03-03 09:27:42 +00:00

5171 lines
186 KiB
C++

/*
*******************************************************************************
* Copyright (C) 1996-1999, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* Modification history
* Date Name Comments
* 02/16/2001 synwee Added internal method getPrevSpecialCE
* 03/01/2001 synwee Added maxexpansion functionality.
*/
#include "ucolimp.h"
#include "ucoltok.h"
#include "ucaelems.h"
#include "unicode/uloc.h"
#include "unicode/coll.h"
#include "unicode/tblcoll.h"
#include "unicode/coleitr.h"
#include "unicode/ustring.h"
#include "unicode/normlzr.h"
#include "unicode/unorm.h"
#include "unicode/udata.h"
#include "cpputils.h"
#include "cstring.h"
#include "ucmp32.h"
#include "ucmp16.h"
#include "umutex.h"
#include "uhash.h"
/* checkout this one - it might be replaceable by something faster */
#include "dcmpdata.h"
#include <stdio.h>
static UCollator* UCA = NULL;
static const InverseTableHeader* invUCA = NULL;
extern "C" UBool checkFCD(const UChar*, int32_t, UErrorCode*);
/* Fixup table a la Markus */
/* see http://www.ibm.com/software/developer/library/utf16.html for further explanation */
static uint8_t utf16fixup[32] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0x20, 0xf8, 0xf8, 0xf8, 0xf8
};
static UBool U_CALLCONV
isAcceptableUCA(void *context,
const char *type, const char *name,
const UDataInfo *pInfo){
/* context, type & name are intentionally not used */
if( pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==0x55 && /* dataFormat="UCol" */
pInfo->dataFormat[1]==0x43 &&
pInfo->dataFormat[2]==0x6f &&
pInfo->dataFormat[3]==0x6c &&
pInfo->formatVersion[0]==1 &&
pInfo->dataVersion[0]==3 &&
pInfo->dataVersion[1]==0 &&
pInfo->dataVersion[2]==0 &&
pInfo->dataVersion[3]==0) {
return TRUE;
} else {
return FALSE;
}
}
static UBool U_CALLCONV
isAcceptableInvUCA(void *context,
const char *type, const char *name,
const UDataInfo *pInfo){
/* context, type & name are intentionally not used */
if( pInfo->size>=20 &&
pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
pInfo->charsetFamily==U_CHARSET_FAMILY &&
pInfo->dataFormat[0]==0x49 && /* dataFormat="InvC" */
pInfo->dataFormat[1]==0x6e &&
pInfo->dataFormat[2]==0x76 &&
pInfo->dataFormat[3]==0x43 &&
pInfo->formatVersion[0]==1 &&
pInfo->dataVersion[0]==3 &&
pInfo->dataVersion[1]==0 &&
pInfo->dataVersion[2]==0 &&
pInfo->dataVersion[3]==0) {
return TRUE;
} else {
return FALSE;
}
}
int32_t ucol_inv_findCE(uint32_t CE, uint32_t SecondCE) {
uint32_t bottom = 0, top = invUCA->tableSize;
uint32_t i = 0;
uint32_t first = 0, second = 0;
uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table);
while(bottom < top-1) {
i = (top+bottom)/2;
first = *(CETable+3*i);
second = *(CETable+3*i+1);
if(first > CE) {
top = i;
} else if(first < CE) {
bottom = i;
} else {
if(second > SecondCE) {
top = i;
} else if(second < SecondCE) {
bottom = i;
} else {
break;
}
}
}
if(first == CE && second == SecondCE) {
return i;
} else {
return -1;
}
}
static uint32_t strengthMask[UCOL_CE_STRENGTH_LIMIT] = {
0xFFFF0000,
0xFFFFFF00,
0xFFFFFFFF
};
int32_t ucol_inv_getPrevious(UColTokListHeader *lh, uint32_t strength) {
uint32_t CE = lh->baseCE;
uint32_t SecondCE = lh->baseContCE;
uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table);
uint32_t previousCE, previousContCE;
int32_t iCE;
iCE = ucol_inv_findCE(CE, SecondCE);
if(iCE<0) {
return -1;
}
CE &= strengthMask[strength];
SecondCE &= strengthMask[strength];
previousCE = CE;
previousContCE = SecondCE;
while((previousCE & strengthMask[strength]) == CE && (previousContCE & strengthMask[strength])== SecondCE) {
previousCE = (*(CETable+3*(--iCE)));
previousContCE = (*(CETable+3*(iCE)+1));
}
lh->previousCE = previousCE;
lh->previousContCE = previousContCE;
return iCE;
}
int32_t ucol_inv_getNext(UColTokListHeader *lh, uint32_t strength) {
uint32_t CE = lh->baseCE;
uint32_t SecondCE = lh->baseContCE;
uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table);
uint32_t nextCE, nextContCE;
int32_t iCE;
iCE = ucol_inv_findCE(CE, SecondCE);
if(iCE<0) {
return -1;
}
CE &= strengthMask[strength];
SecondCE &= strengthMask[strength];
nextCE = CE;
nextContCE = SecondCE;
while((nextCE & strengthMask[strength]) == CE
&& (nextContCE & strengthMask[strength]) == SecondCE) {
nextCE = (*(CETable+3*(++iCE)));
nextContCE = (*(CETable+3*(iCE)+1));
}
lh->nextCE = nextCE;
lh->nextContCE = nextContCE;
return iCE;
}
U_CFUNC void ucol_inv_getGapPositions(UColTokListHeader *lh) {
/* reset all the gaps */
int32_t i = 0;
uint32_t *CETable = (uint32_t *)((uint8_t *)invUCA+invUCA->table);
uint32_t st = 0;
uint32_t t1, t2;
int32_t pos;
UColToken *tok = lh->first[UCOL_TOK_POLARITY_POSITIVE];
uint32_t tokStrength = tok->strength;
for(i = 0; i<3; i++) {
lh->gapsHi[3*i] = 0;
lh->gapsHi[3*i+1] = 0;
lh->gapsHi[3*i+2] = 0;
lh->gapsLo[3*i] = 0;
lh->gapsLo[3*i+1] = 0;
lh->gapsLo[3*i+2] = 0;
lh->numStr[i] = 0;
lh->fStrToken[i] = NULL;
lh->lStrToken[i] = NULL;
lh->pos[i] = -1;
}
for(;;) {
if(tokStrength < UCOL_CE_STRENGTH_LIMIT) {
if((lh->pos[tokStrength] = ucol_inv_getNext(lh, tokStrength)) >= 0) {
lh->fStrToken[tokStrength] = tok;
} else {
/* Error */
fprintf(stderr, "Error! couldn't find the CE!\n");
}
}
while(tok != NULL && tok->strength >= tokStrength) {
if(tokStrength < UCOL_CE_STRENGTH_LIMIT) {
lh->lStrToken[tokStrength] = tok;
}
tok = tok->next;
}
if(tokStrength < UCOL_CE_STRENGTH_LIMIT-1) {
/* check if previous interval is the same and merge the intervals if it is so */
if(lh->pos[tokStrength] == lh->pos[tokStrength+1]) {
lh->fStrToken[tokStrength] = lh->fStrToken[tokStrength+1];
lh->fStrToken[tokStrength+1] = NULL;
lh->lStrToken[tokStrength+1] = NULL;
lh->pos[tokStrength+1] = -1;
}
}
if(tok != NULL) {
tokStrength = tok->strength;
} else {
break;
}
}
for(st = 0; st < 3; st++) {
if((pos = lh->pos[st]) >= 0) {
t1 = *(CETable+3*(pos));
t2 = *(CETable+3*(pos)+1);
lh->gapsHi[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16;
lh->gapsHi[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8;
lh->gapsHi[3*st+2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16;
pos--;
t1 = *(CETable+3*(pos));
t2 = *(CETable+3*(pos)+1);
lh->gapsLo[3*st] = (t1 & UCOL_PRIMARYMASK) | (t2 & UCOL_PRIMARYMASK) >> 16;
lh->gapsLo[3*st+1] = (t1 & UCOL_SECONDARYMASK) << 16 | (t2 & UCOL_SECONDARYMASK) << 8;
lh->gapsLo[3*st+2] = (UCOL_TERTIARYORDER(t1)) << 24 | (UCOL_TERTIARYORDER(t2)) << 16;
}
}
}
/****************************************************************************/
/* Following are the open/close functions */
/* */
/****************************************************************************/
U_CAPI UCollator*
ucol_open( const char *loc,
UErrorCode *status)
{
/* New version */
if(U_FAILURE(*status)) return 0;
ucol_initUCA(status);
UCollator *result = NULL;
UResourceBundle *b = ures_open(NULL, loc, status);
/* first take on tailoring version: */
/* get CollationElements -> Version */
UResourceBundle *binary = ures_getByKey(b, "%%CollationNew", NULL, status);
if(*status == U_MISSING_RESOURCE_ERROR) { /* if we don't find tailoring, we'll fallback to UCA */
*status = U_USING_DEFAULT_ERROR;
result = ucol_initCollator(UCA->image, result, status);
/*result = UCA;*/
result->hasRealData = FALSE;
} else if(U_SUCCESS(*status)) { /* otherwise, we'll pick a collation data that exists */
int32_t len = 0;
const uint8_t *inData = ures_getBinary(binary, &len, status);
if((uint32_t)len > sizeof(UCATableHeader)) {
result = ucol_initCollator((const UCATableHeader *)inData, result, status);
result->hasRealData = TRUE;
} else {
result = ucol_initCollator(UCA->image, result, status);
ucol_setOptionsFromHeader(result, (const UCATableHeader *)inData, status);
result->hasRealData = FALSE;
}
} else { /* There is another error, and we're just gonna clean up */
ures_close(b);
return NULL;
}
result->rb = b;
ures_close(binary);
return result;
}
U_CAPI void
ucol_close(UCollator *coll)
{
/* Here, it would be advisable to close: */
/* - UData for UCA (unless we stuff it in the root resb */
/* Again, do we need additional housekeeping... HMMM! */
if(coll->freeOnClose == FALSE){
return; /* for safeClone, if freeOnClose is FALSE,
don't free the other instance data */
}
if(coll->mapping != NULL) {
ucmp32_close(coll->mapping);
}
if(coll->rules != NULL && coll->freeRulesOnClose) {
uprv_free((UChar *)coll->rules);
}
if(coll->rb != NULL) { /* pointing to read-only memory */
ures_close(coll->rb);
} else if(coll->hasRealData == TRUE) {
uprv_free((UCATableHeader *)coll->image);
}
uprv_free(coll);
}
#define ucol_countBytes(value, noOfBytes) \
{ \
uint32_t mask = 0xFFFFFFFF; \
(noOfBytes) = 0; \
while(mask != 0) { \
if(((value) & mask) != 0) { \
(noOfBytes)++; \
} \
mask >>= 8; \
} \
}
U_CFUNC uint32_t ucol_getNextGenerated(ucolCEGenerator *g) {
g->current += (1<<(32-(g->byteSize*8)));
if(g->current > g->fLow && g->current < g->fHigh) {
g->current = g->fHigh;
}
return g->current;
}
static uint32_t fbHigh[3] = {0, /*0,*/UCOL_COMMON_TOP2, 0};
static uint32_t fbLow[3] = {0, /*0,*/UCOL_COMMON_BOT2, 0};
U_CFUNC uint32_t ucol_getCEGenerator(ucolCEGenerator *g, uint32_t low, uint32_t high, UColToken *tok, uint32_t strength) {
uint32_t count = tok->toInsert;
g->fHigh = fbHigh[strength];
g->fLow = fbLow[strength];
uint32_t lobytes = 0, hibytes = 0;
ucol_countBytes(low, lobytes);
ucol_countBytes(high, hibytes);
if(low == high && strength > 0) {
high = (0xFF << (32-hibytes*8));
}
g->firstLow = low + (1 << (32-lobytes*8));
g->lastHigh = high - (1 << (32-hibytes*8));
if(g->firstLow != g->lastHigh) {
g->firstMid = low + (1 << (32-(lobytes-1)*8)) & (0xFFFFFF00 << (32-lobytes*8));
g->lastMid = high - (1 << (32-(hibytes-1)*8)) & (0xFFFFFF00 << (32-hibytes*8));
g->lastLow = g->firstMid - (1 << (32-lobytes*8));
g->firstHigh = g->lastMid + (1 << (32-(hibytes-1)*8)) + (0x02 << (32-(hibytes)*8));
ucol_countBytes(g->lastLow, g->lowByteCount);
ucol_countBytes(g->lastMid, g->midByteCount);
ucol_countBytes(g->lastHigh, g->highByteCount);
if(g->firstLow < low || g->lastLow > high) {
g->firstLow = g->lastLow = 0;
g->lowByteCount = 0xFFFF;
}
if(g->firstMid < low || g->lastMid > high) {
g->firstMid = g->lastMid = 0;
g->midByteCount = 0xFFFF;
}
if(g->firstHigh < low || g->lastHigh > high) {
g->firstHigh = g->lastHigh = 0;
g->highByteCount = 0xFFFF;
}
g->lowCount = (g->lastLow - g->firstLow) >> (32-g->lowByteCount*8);
g->midCount = (g->lastMid - g->firstMid) >> (32-g->midByteCount*8);
g->highCount = (g->lastHigh - g->firstHigh) >> (32-g->highByteCount*8);
g->count = count;
g->byteSize = 0xFFFFFFFF;
g->start = 0;
g->limit = 0;
/* Let's get the best one now */
if(g->lowCount > count+(g->fHigh - g->fLow) ) {
g->byteSize = g->lowByteCount;
g->start = g->firstLow;
g->limit = g->lastLow;
}
if(g->midCount > count+(g->fHigh - g->fLow) && g->midByteCount < g->byteSize) {
g->byteSize = g->midByteCount;
g->start = g->firstMid;
g->limit = g->lastMid;
}
if(g->highCount > count+(g->fHigh - g->fLow) && g->highByteCount < g->byteSize) {
g->byteSize = g->highByteCount;
g->start = g->firstHigh;
g->limit = g->lastHigh;
}
if(g->byteSize == 0xFFFFFFFF) { /* Still no solution */
if((g->lowCount)*254 > count+(g->fHigh - g->fLow) ) {
g->byteSize = g->lowByteCount+1;
g->start = g->firstLow | (0x02 << (32-g->byteSize*8));
g->limit = g->lastLow;
}
if((g->midCount)*254 > count+(g->fHigh - g->fLow) && g->midByteCount+1 < g->byteSize) {
g->byteSize = g->midByteCount+1;
g->start = g->firstMid | (0x02 << (32-g->byteSize*8));
g->limit = g->lastMid;
}
if((g->highCount)*254 > count+(g->fHigh - g->fLow) && g->highByteCount+1 < g->byteSize) {
g->byteSize = g->highByteCount+1;
g->start = g->firstHigh | (0x02 << (32-g->byteSize*8));
g->limit = g->lastHigh | (0xFF << (32-g->byteSize*8));
}
}
g->current = g->start;
} else { /* only trivial space size 1 */
if(count == 1) {
g->byteSize = lobytes;
g->current = g->start = g->limit = g->firstLow;
} else if(count < 254) {
g->byteSize = lobytes+1;
g->current = g->start = g->firstLow | (0x02 << (32-g->byteSize*8));
g->limit = g->firstLow | (0xFF << (32-g->byteSize*8));
} else {
g->byteSize = lobytes+2;
g->current = g->start = g->firstLow | (0x0202 << (32-g->byteSize*8));
g->limit = g->firstLow | (0xFFFF << (32-g->byteSize*8));
}
}
g->fLow = g->fLow << 24;
g->fHigh = g->fHigh << 24;
if(g->current > g->fLow && g->current < g->fHigh) {
g->current = g->fHigh;
}
return g->current;
}
U_CFUNC void ucol_doCE(uint32_t *CEparts, UColToken *tok, UHashtable *tailored, UErrorCode *status) {
/* this one makes the table and stuff */
uint32_t noOfBytes[3];
uint32_t i;
for(i = 0; i<3; i++) {
ucol_countBytes(CEparts[i], noOfBytes[i]);
}
/* Here we have to pack CEs from parts */
uint32_t CEi = 0;
uint32_t value = 0;
while(2*CEi<noOfBytes[0] || CEi<noOfBytes[1] || CEi<noOfBytes[2]) {
if(CEi > 0) {
value = 0x80; /* Continuation marker */
} else {
value = 0;
}
if(tok->caseBit == TRUE) {
value |= 0x40;
}
if(2*CEi<noOfBytes[0]) {
value |= ((CEparts[0]>>(32-16*(CEi+1))) & 0xFFFF) << 16;
}
if(CEi<noOfBytes[1]) {
value |= ((CEparts[1]>>(32-8*(CEi+1))) & 0xFF) << 8;
}
if(CEi<noOfBytes[2]) {
value |= ((CEparts[2]>>(32-8*(CEi+1))) & 0x3F);
}
tok->CEs[CEi] = value;
CEi++;
}
if(CEi == 0) { /* totally ignorable */
tok->noOfCEs = 1;
tok->CEs[0] = 0;
} else { /* there is at least something */
tok->noOfCEs = CEi;
}
/* We'll need to handle expansions slightly differently than in */
/* UCA generation since we don't know if the value for expansion is from UCA or is it tailored */
uhash_put(tailored, (void *)tok->source, tok, status);
/* and add them to a data table */
#if 0
fprintf(stderr, "str: %i, [%08X, %08X, %08X]: tok: ", tok->strength, CEparts[0] >> (32-8*noOfBytes[0]), CEparts[1] >> (32-8*noOfBytes[1]), CEparts[2]>> (32-8*noOfBytes[2]));
for(i = 0; i<tok->noOfCEs; i++) {
fprintf(stderr, "%08X ", tok->CEs[i]);
}
fprintf(stderr, "\n");
#endif
}
U_CFUNC void ucol_initBuffers(UColTokListHeader *lh, UHashtable *tailored, UErrorCode *status) {
ucolCEGenerator Gens[UCOL_CE_STRENGTH_LIMIT];
uint32_t CEparts[UCOL_CE_STRENGTH_LIMIT];
uint32_t i = 0;
UColToken *tok = lh->last[UCOL_TOK_POLARITY_POSITIVE];
uint32_t t[UCOL_STRENGTH_LIMIT];
for(i=0; i<UCOL_STRENGTH_LIMIT; i++) {
t[i] = 0;
}
tok->toInsert = 1;
t[tok->strength] = 1;
while(tok->previous != NULL) {
if(tok->previous->strength < tok->strength) { /* going up */
t[tok->strength] = 0;
t[tok->previous->strength]++;
} else if(tok->previous->strength > tok->strength) { /* going down */
t[tok->previous->strength] = 1;
} else {
t[tok->strength]++;
}
tok=tok->previous;
tok->toInsert = t[tok->strength];
}
tok->toInsert = t[tok->strength];
/*
tok=lh->first[UCOL_TOK_POLARITY_POSITIVE];
do {
fprintf(stderr,"%i", tok->strength);
tok = tok->next;
} while(tok != NULL);
fprintf(stderr, "\n");
tok=lh->first[UCOL_TOK_POLARITY_POSITIVE];
do {
fprintf(stderr,"%i", tok->toInsert);
tok = tok->next;
} while(tok != NULL);
*/
ucol_inv_getGapPositions(lh);
#if 0
fprintf(stderr, "BaseCE: %08X %08X\n", lh->baseCE, lh->baseContCE);
int32_t j = 2;
for(j = 2; j >= 0; j--) {
fprintf(stderr, "gapsLo[%i] [%08X %08X %08X]\n", j, lh->gapsLo[j*3], lh->gapsLo[j*3+1], lh->gapsLo[j*3+2]);
fprintf(stderr, "gapsHi[%i] [%08X %08X %08X]\n", j, lh->gapsHi[j*3], lh->gapsHi[j*3+1], lh->gapsHi[j*3+2]);
}
#endif
/* I strongly believe that this code can be refactored and simplified. */
/* have to do CE generation now, so let this soak a little bit */
tok = lh->first[UCOL_TOK_POLARITY_POSITIVE];
uint32_t fStrength = tok->strength;
/* Treat starting identicals */
/* &0 = nula = zero */
if(tok != NULL && fStrength == UCOL_IDENTICAL) {
CEparts[0] = (lh->baseCE & UCOL_PRIMARYMASK) | (lh->baseContCE & UCOL_PRIMARYMASK) >> 16;
CEparts[1] = (lh->baseCE & UCOL_SECONDARYMASK) << 16 | (lh->baseContCE & UCOL_SECONDARYMASK) << 8;
CEparts[2] = (UCOL_TERTIARYORDER(lh->baseCE)) << 24 | (UCOL_TERTIARYORDER(lh->baseContCE)) << 16;
while(tok != NULL && tok->strength == UCOL_IDENTICAL) {
ucol_doCE(CEparts, tok, tailored, status);
tok = tok->next;
}
}
if(tok != NULL && tok->strength == UCOL_TERTIARY) { /* starting with tertiary */
fStrength = tok->strength;
if(lh->pos[fStrength] == -1) {
while(lh->pos[fStrength] == -1 && fStrength > 0) {
fStrength--;
}
if(lh->pos[fStrength] == -1) {
fprintf(stderr, "OH MY GOD! NO PLACE TO PUT TERTIARIES!\n");
exit(-1);
}
}
CEparts[0] = lh->gapsLo[fStrength*3];
CEparts[1] = lh->gapsLo[fStrength*3+1];
CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], lh->gapsLo[fStrength*3+2], lh->gapsHi[fStrength*3+2], tok, UCOL_TERTIARY);
while(tok != NULL && tok->strength >= UCOL_TERTIARY) {
ucol_doCE(CEparts, tok, tailored, status);
tok = tok->next;
/* Treat identicals in starting tertiaries by NOT changing the tertiary value */
if(tok != NULL && tok->strength == UCOL_TERTIARY) {
CEparts[2] = ucol_getNextGenerated(&Gens[2]);
}
}
}
if(tok != NULL && tok->strength == UCOL_SECONDARY) { /* secondaries */
fStrength = tok->strength;
if(lh->pos[1] == -1) {
fStrength = 0;
if(lh->pos[fStrength] == -1) {
fprintf(stderr, "OH MY GOD! NO PLACE TO PUT SECONDARIES!\n");
exit(-1);
}
}
if(tok->next != NULL) {
/* Treat identicals in starting secondaries*/
/* &0 [, <funny_tertiary_different_zero>] ; <funny_secondary_different_zero> = FunnySecZero */
CEparts[0] = lh->gapsLo[fStrength*3];
CEparts[1] = ucol_getCEGenerator(&Gens[1], lh->gapsLo[fStrength*3+1], lh->gapsHi[fStrength*3+1], tok, 1);
if(tok->next->strength == UCOL_TERTIARY) {
CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], 0x02000000, 0xFF000000, tok->next, UCOL_TERTIARY);
} else {
CEparts[UCOL_TERTIARY] = 0x03000000;
}
ucol_doCE(CEparts, tok, tailored, status);
tok = tok->next;
while(tok->next != NULL && tok->next->strength > 0) {
if(tok->strength == UCOL_TERTIARY) {
CEparts[2] = ucol_getNextGenerated(&Gens[2]);
ucol_doCE(CEparts, tok, tailored, status);
} else if(tok->strength == UCOL_SECONDARY) {
CEparts[1] = ucol_getNextGenerated(&Gens[1]);
if(tok->next->strength == UCOL_SECONDARY) {
CEparts[UCOL_TERTIARY] = 0x03000000;
} else {
CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], 0x02000000, 0xFF000000, tok->next, UCOL_TERTIARY);
}
ucol_doCE(CEparts, tok, tailored, status);
} else { /* Strength is identical */
ucol_doCE(CEparts, tok, tailored, status);
}
tok = tok->next;
}
/* This is the last token in rule */
if(tok->strength == UCOL_TERTIARY) {
CEparts[2] = ucol_getNextGenerated(&Gens[2]);
} else if(tok->strength == UCOL_SECONDARY) {
CEparts[1] = ucol_getNextGenerated(&Gens[1]);
CEparts[2] = 0x03000000;
}
/* if the strength is identical, it will just repeat the last CE value */
ucol_doCE(CEparts, tok, tailored, status);
tok = tok->next;
} else { /* only one secondary at the end of the rule fragment */
CEparts[0] = lh->gapsLo[fStrength*3];
CEparts[1] = lh->gapsLo[fStrength*3+1];
CEparts[2] = lh->gapsLo[fStrength*3+2];
ucol_doCE(CEparts, tok, tailored, status);
tok = NULL;
}
}
/* This is essentialy the main loop. Two loops in front of this one were just for postponing with lower bounding weights */
if(tok != NULL) { /* regular primaries */
if(lh->pos[0] == -1) {
fprintf(stderr, "OH MY GOD! NO PLACE TO PUT PRIMARIES!\n");
exit(-1);
}
/* what if the next token is identical??? */
/* How should the things be set up */
if(tok->next != NULL) {
CEparts[UCOL_PRIMARY] = ucol_getCEGenerator(&Gens[0], lh->gapsLo[0], lh->gapsHi[0], tok, UCOL_PRIMARY);
if(tok->next->strength == UCOL_PRIMARY) {
CEparts[1] = 0x03000000;
CEparts[2] = 0x03000000;
} else { /* Secondaries will also be generated */
CEparts[1] = ucol_getCEGenerator(&Gens[1], 0x02000000, 0xFF000000, tok->next, 1);
if(tok->next->strength == UCOL_SECONDARY) {
CEparts[UCOL_TERTIARY] = 0x03000000;
} else {
CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], 0x02000000, 0xFF000000, tok->next, UCOL_TERTIARY);
}
}
ucol_doCE(CEparts, tok, tailored, status);
tok = tok->next;
while(tok->next != NULL) {
/* Treat identicals*/
/* < 1 = one = jedan < 2 = two = dva < 3 = three = tri ... */
if(tok->strength == UCOL_IDENTICAL) {
ucol_doCE(CEparts, tok, tailored, status);
} else if(tok->strength == UCOL_TERTIARY) {
CEparts[2] = ucol_getNextGenerated(&Gens[2]);
ucol_doCE(CEparts, tok, tailored, status);
} else if(tok->strength == UCOL_SECONDARY) {
CEparts[1] = ucol_getNextGenerated(&Gens[1]);
if(tok->next->strength == UCOL_TERTIARY) {
CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], 0x02000000, 0xFF000000, tok->next, UCOL_TERTIARY);
} else { /* UCOL_SECONDARY */
CEparts[UCOL_TERTIARY] = 0x03000000;
}
ucol_doCE(CEparts, tok, tailored, status);
} else {
CEparts[0] = ucol_getNextGenerated(&Gens[0]);
if(tok->next->strength == UCOL_PRIMARY) {
CEparts[1] = 0x03000000;
CEparts[UCOL_TERTIARY] = 0x03000000;
} else {
if(tok->next->strength == UCOL_SECONDARY) {
CEparts[UCOL_TERTIARY] = 0x03000000;
} else { /* UCOL_TERTIARY */
CEparts[UCOL_TERTIARY] = ucol_getCEGenerator(&Gens[2], 0x02000000, 0xFF000000, tok->next, UCOL_TERTIARY);
}
CEparts[1] = ucol_getCEGenerator(&Gens[1], 0x02000000, 0xFF000000, tok->next, 1);
}
ucol_doCE(CEparts, tok, tailored, status);
}
tok = tok->next;
}
/* OK, there are no next tokens, we just have to wrap up with the last one */
if(tok->strength == UCOL_TERTIARY) {
CEparts[2] = ucol_getNextGenerated(&Gens[2]);
} else if(tok->strength == UCOL_SECONDARY) {
CEparts[1] = ucol_getNextGenerated(&Gens[1]);
CEparts[2] = 0x03000000;
} else if(tok->strength == UCOL_PRIMARY) {
CEparts[0] = ucol_getNextGenerated(&Gens[0]);
CEparts[1] = 0x03000000;
CEparts[2] = 0x03000000;
} /* else it is identical and do nothing */
ucol_doCE(CEparts, tok, tailored, status);
} else { /* there is only one primary in this sequence and it ends with it */
CEparts[0] = lh->gapsLo[0];
CEparts[1] = lh->gapsLo[1];
CEparts[2] = lh->gapsLo[2];
ucol_doCE(CEparts, tok, tailored, status);
}
}
}
U_CFUNC void ucol_createElements(UColTokenParser *src, tempUCATable *t, UColTokListHeader *lh, UHashtable *tailored, UErrorCode *status) {
UCAElements el;
UColToken *tok = lh->first[UCOL_TOK_POLARITY_POSITIVE];
UColToken *expt = NULL;
uint32_t i = 0;
while(tok != NULL) {
/* first, check if there are any expansions */
if(tok->expansion != 0) {
if((expt = (UColToken *)uhash_get(tailored, (void *)tok->expansion)) != NULL) { /* expansion is tailored */
/* just copy CEs from tailored token to this one */
for(i = 0; i<expt->noOfCEs; i++) {
tok->expCEs[i] = expt->CEs[i];
}
tok->noOfExpCEs = expt->noOfCEs;
} else { /* need to pick it from the UCA */
/* first, get the UChars from the rules */
/* then pick CEs out until there is no more and stuff them into expansion */
UChar source[256],buff[256];
collIterate s;
uint32_t order = 0;
uint32_t len = tok->expansion >> 24;
uprv_memcpy(buff, (tok->expansion & 0x00FFFFFF) + src->source, len*sizeof(UChar));
unorm_normalize(buff, len, UNORM_NFD, 0, source, 256, status);
init_collIterate(source, len, &s, FALSE);
for(;;) {
UCOL_GETNEXTCE(order, UCA, s, status);
if(order == UCOL_NO_MORE_CES) {
break;
}
tok->expCEs[tok->noOfExpCEs++] = order;
}
}
} else {
tok->noOfExpCEs = 0;
}
/* set the ucaelement with obtained values */
el.noOfCEs = tok->noOfCEs + tok->noOfExpCEs;
/* copy CEs */
for(i = 0; i<tok->noOfCEs; i++) {
el.CEs[i] = tok->CEs[i];
}
for(i = 0; i<tok->noOfExpCEs; i++) {
el.CEs[i+tok->noOfCEs] = tok->expCEs[i];
}
/* copy UChars */
/*
key.source = newCharsLen << 24 | charsOffset;
key.expansion = newExtensionsLen << 24 | extensionOffset;
*/
UChar buff[128];
uprv_memcpy(buff, (tok->source & 0x00FFFFFF) + src->source, (tok->source >> 24)*sizeof(UChar));
unorm_normalize(buff, tok->source >> 24, UNORM_NFD, 0, el.uchars, 128, status);
/*uprv_memcpy(el.uchars, (tok->source & 0x00FFFFFF) + src->source, (tok->source >> 24)*sizeof(UChar));*/
/* I think I don't want to have expansion chars in chars for UCAelement... HMMM! */
/*uprv_memcpy(el.uchars+(tok->source >> 24), (tok->expansion & 0x00FFFFFF) + src->source, (tok->expansion >> 24)*sizeof(UChar));*/
el.cSize = (tok->source >> 24); /* + (tok->expansion >> 24);*/
el.cPoints = el.uchars;
el.codepoint = el.cPoints[0];
el.caseBit = FALSE; /* how to see if there is case bit - pick it out from the UCA */
if(UCOL_ISTHAIPREVOWEL(el.codepoint)) {
el.isThai = TRUE;
} else {
el.isThai = FALSE;
}
/* and then, add it */
uprv_uca_addAnElement(t, &el, status);
tok = tok->next;
}
}
/* These are some normalizer constants */
#define STR_INDEX_SHIFT 2 //Must agree with the constants used in NormalizerBuilder
#define STR_LENGTH_MASK 0x0003
int32_t uprv_ucol_decompose (UChar curChar, UChar *result) {
/* either 0 or MAX_COMPAT = 11177 if we want just canonical */
int32_t minDecomp = 11177;
int32_t resSize = 0;
uint16_t offset = ucmp16_getu(DecompData::offsets, curChar);
uint16_t index = (uint16_t)(offset & DecompData::DECOMP_MASK);
if (index > minDecomp) {
if ((offset & DecompData::DECOMP_RECURSE) != 0) {
// Let Normalizer::decompose() handle recursive decomp
UnicodeString temp(curChar);
UnicodeString res;
UErrorCode status = U_ZERO_ERROR;
Normalizer::decompose(temp, minDecomp > 0,
/*hangul ? Normalizer::IGNORE_HANGUL : 0,*/
Normalizer::IGNORE_HANGUL,
res, status);
T_fillOutputParams(&res, result, 356, &resSize, &status);
} else {
const UChar *source = (const UChar*)&(DecompData::contents);
uint16_t ind = (int16_t)(index >> STR_INDEX_SHIFT);
uint16_t length = (int16_t)(index & STR_LENGTH_MASK);
if (length == 0) {
UChar ch;
while ((ch = source[ind++]) != 0x0000) {
result[resSize++] = ch;
}
} else {
while (length-- > 0) {
result[resSize++] = source[ind++];
}
}
}
return resSize;
}
#if 0
else if (hangul && curChar >= Normalizer::HANGUL_BASE && curChar < Normalizer::HANGUL_LIMIT) {
Normalizer::hangulToJamo(curChar, result, (uint16_t)minDecomp);
/* this has something to do with jamo hangul, check tomorrow */
}
#endif
else {
/*result += curChar; this doesn't decompose */
return 0;
}
}
uint32_t ucol_getDynamicCEs(tempUCATable *t, UChar *decomp, uint32_t noOfDec, uint32_t *result, uint32_t resultSize, UErrorCode *status) {
uint32_t j = 0, i = 0;
uint32_t CE = 0;
uint32_t resLen = 0;
collIterate colIt;
UBool lastNotFound = FALSE;
while(j<noOfDec) {
CE = ucmp32_get(t->mapping, decomp[j]);
if(CE == UCOL_NOT_FOUND || lastNotFound) { /* get it from the UCA */
lastNotFound = FALSE;
init_collIterate(decomp+j, 1, &colIt, TRUE);
while(CE != UCOL_NO_MORE_CES) {
CE = ucol_getNextCE(UCA, &colIt, status);
if(CE != UCOL_NO_MORE_CES) {
result[resLen++] = CE;
}
}
} else if(CE < UCOL_NOT_FOUND) { /*normal CE */
result[resLen++] = CE;
} else { /* special CE, contraction, expansion or Thai */
for(;;) {
uint32_t tag = getCETag(CE);
if(tag == THAI_TAG || tag == EXPANSION_TAG) {
uint32_t *CEOffset = t->expansions->CEs+(getExpansionOffset(CE) - (paddedsize(sizeof(UCATableHeader))>>2)); /* find the offset to expansion table */
uint32_t size = getExpansionCount(CE);
if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
for(i = 1; i<size; i++) {
result[resLen++] = *CEOffset++;
}
} else { /* else, we do */
while(*CEOffset != 0) {
result[resLen++] = *CEOffset++;
}
}
break;
} else if(tag == CONTRACTION_TAG) {
ContractionTable *ctb = t->contractions->elements[getContractOffset(CE)];
UChar c = decomp[++j];
/* what if this is already over */
i = 0;
while(c > ctb->codePoints[i] && i < ctb->position) {
i++;
}
if(c == ctb->codePoints[i] && j<noOfDec) {
CE = ctb->CEs[i];
} else {
CE = ctb->CEs[0];
j--;
}
if(CE == UCOL_NOT_FOUND) {
lastNotFound = TRUE;
j--;
break;
} else if(CE > UCOL_NOT_FOUND) {
continue;
} else {
result[resLen++] = CE;
break;
}
}
}
}
j++;
}
return resLen;
}
UCATableHeader *ucol_assembleTailoringTable(UColTokenParser *src, UErrorCode *status) {
uint32_t i = 0;
/*
2. Eliminate the negative lists by doing the following for each non-null negative list:
o if previousCE(baseCE, strongestN) != some ListHeader X's baseCE,
create new ListHeader X
o reverse the list, add to the end of X's positive list. Reset the strength of the
first item you add, based on the stronger strength levels of the two lists.
*/
/*
3. For each ListHeader with a non-null positive list:
*/
/*
o Find all character strings with CEs between the baseCE and the
next/previous CE, at the strength of the first token. Add these to the
tailoring.
? That is, if UCA has ... x <<< X << x' <<< X' < y ..., and the
tailoring has & x < z...
? Then we change the tailoring to & x <<< X << x' <<< X' < z ...
*/
/* It is possible that this part should be done even while constructing list */
/* The problem is that it is unknown what is going to be the strongest weight */
/* So we might as well do it here */
/*
o Allocate CEs for each token in the list, based on the total number N of the
largest level difference, and the gap G between baseCE and nextCE at that
level. The relation * between the last item and nextCE is the same as the
strongest strength.
o Example: baseCE < a << b <<< q << c < d < e * nextCE(X,1)
? There are 3 primary items: a, d, e. Fit them into the primary gap.
Then fit b and c into the secondary gap between a and d, then fit q
into the tertiary gap between b and c.
o Example: baseCE << b <<< q << c * nextCE(X,2)
? There are 2 secondary items: b, c. Fit them into the secondary gap.
Then fit q into the tertiary gap between b and c.
o When incrementing primary values, we will not cross high byte
boundaries except where there is only a single-byte primary. That is to
ensure that the script reordering will continue to work.
*/
UHashtable *tailored = uhash_open(uhash_hashLong, uhash_compareLong, status);
for(i = 0; i<src->resultLen; i++) {
/* now we need to generate the CEs */
/* We stuff the initial value in the buffers, and increase the appropriate buffer */
/* According to strength */
ucol_initBuffers(&src->lh[i], tailored, status);
}
tempUCATable *t = uprv_uca_initTempTable(src->image, status);
/* After this, we have assigned CE values to all regular CEs */
/* now we will go through list once more and resolve expansions, */
/* make UCAElements structs and add them to table */
for(i = 0; i<src->resultLen; i++) {
/* now we need to generate the CEs */
/* We stuff the initial value in the buffers, and increase the appropriate buffer */
/* According to strength */
ucol_createElements(src, t, &src->lh[i], tailored, status);
}
UCATableHeader *myData = NULL;
{
UChar decomp[256];
uint32_t noOfDec = 0, i = 0, CE = UCOL_NOT_FOUND;
uint32_t u = 0;
UCAElements el;
el.isThai = FALSE;
collIterate colIt;
uint32_t decompCE[256];
uint32_t compCE[256];
uint32_t decompRes = 0, compRes = 0;
/* produce canonical & compatibility closure */
for(u = 0; u < 0x10000; u++) {
/*if((noOfDec = unorm_normalize((const UChar *)&u, 1, UNORM_NFD, 0, decomp, 256, status)) > 1)*/
if((noOfDec = uprv_ucol_decompose ((UChar)u, decomp)) > 1) {
compRes = ucol_getDynamicCEs(t, (UChar *)&u, 1, compCE, 256, status);
decompRes = ucol_getDynamicCEs(t, decomp, noOfDec, decompCE, 256, status);
if((compRes != decompRes) || (uprv_memcmp(compCE, decompCE, compRes*sizeof(uint32_t)) != 0)) {
el.uchars[0] = (UChar)u;
el.cPoints = el.uchars;
el.codepoint = (UChar)u;
el.cSize = 1;
el.noOfCEs = decompRes;
for(i = 0; i<decompRes; i++) {
el.CEs[i] = decompCE[i];
}
uprv_uca_addAnElement(t, &el, status);
}
}
}
/* add latin-1 stuff */
for(u = 0; u<0x100; u++) {
if((CE = ucmp32_get(t->mapping, u)) == UCOL_NOT_FOUND /*) {*/
/* this test is for contractions that are missing the starting element. Looks like latin-1 should be done before assembling */
/* the table, even if it results in more false closure elements */
|| ((isContraction(CE)) &&
(uprv_cnttab_getCE(t->contractions, CE, 0, TRUE, status) == UCOL_NOT_FOUND))
) {
decomp[0] = (UChar)u;
el.uchars[0] = (UChar)u;
el.cPoints = el.uchars;
el.codepoint = (UChar)u;
el.cSize = 1;
el.noOfCEs = 0;
init_collIterate(decomp, 1, &colIt, TRUE);
while(CE != UCOL_NO_MORE_CES) {
CE = ucol_getNextCE(UCA, &colIt, status);
/*UCOL_GETNEXTCE(CE, temp, colIt, status);*/
if(CE != UCOL_NO_MORE_CES) {
el.CEs[el.noOfCEs++] = CE;
}
}
uprv_uca_addAnElement(t, &el, status);
}
}
}
myData = uprv_uca_assembleTable(t, status);
uhash_close(tailored);
uprv_uca_closeTempTable(t);
return myData;
}
U_CAPI UCollator*
ucol_openRules( const UChar *rules,
int32_t rulesLength,
UNormalizationMode mode,
UCollationStrength strength,
UErrorCode *status)
{
uint32_t listLen = 0;
UColTokenParser src;
ucol_initUCA(status);
ucol_initInverseUCA(status);
if(U_FAILURE(*status)) return 0;
Normalizer::EMode normMode;
switch(mode) {
case UCOL_NO_NORMALIZATION:
normMode = Normalizer::NO_OP;
break;
case UCOL_DECOMP_CAN:
normMode = Normalizer::DECOMP;
break;
case UCOL_DECOMP_COMPAT:
normMode = Normalizer::DECOMP_COMPAT;
break;
case UCOL_DECOMP_CAN_COMP_COMPAT:
normMode = Normalizer::COMPOSE;
break;
case UCOL_DECOMP_COMPAT_COMP_CAN:
normMode = Normalizer::COMPOSE_COMPAT;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
/* do we need to normalize the string beforehand? */
src.source = rules;
src.current = rules;
src.end = rules+rulesLength;
src.invUCA = invUCA;
src.UCA = UCA;
src.resultLen = 0;
src.lh = 0;
src.image = (UCATableHeader *)uprv_malloc(sizeof(UCATableHeader));
uprv_memcpy(src.image, UCA->image, sizeof(UCATableHeader));
listLen = ucol_tok_assembleTokenList(&src, status);
if(U_FAILURE(*status)) {
uprv_free(src.image);
ucol_tok_closeTokenList(&src);
return NULL;
}
UCollator *result = NULL;
UCATableHeader *table = NULL;
if(src.lh != NULL) { /* we have a set of rules, let's make something of it */
table = ucol_assembleTailoringTable(&src, status);
result = ucol_initCollator(table,0,status);
result->hasRealData = TRUE;
} else { /* no rules, but no error either */
/* must be only options */
result = ucol_initCollator(UCA->image,0,status);
ucol_setOptionsFromHeader(result, src.image, status);
result->hasRealData = FALSE;
}
result->dataInfo.dataVersion[0] = UCOL_BUILDER_VERSION;
if(U_SUCCESS(*status)) {
result->rules = (UChar *)uprv_malloc((u_strlen(rules)+1)*sizeof(UChar));
u_strcpy((UChar *)result->rules, rules);
result->freeRulesOnClose = TRUE;
result->rb = 0;
} else {
if(table != NULL) {
uprv_free(table);
ucol_close(result);
}
uprv_free(src.image);
ucol_tok_closeTokenList(&src);
return NULL;
}
uprv_free(src.image);
ucol_tok_closeTokenList(&src);
ucol_setAttribute(result, UCOL_STRENGTH, strength, status);
return result;
}
/* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/
/* you should be able to get the binary chunk to write out... Doesn't look very full now */
U_CAPI uint8_t *
ucol_cloneRuleData(UCollator *coll, int32_t *length, UErrorCode *status)
{
uint8_t *result = NULL;
if(coll->hasRealData == TRUE) {
*length = coll->image->size;
result = (uint8_t *)uprv_malloc(*length);
uprv_memcpy(result, coll->image, *length);
} else {
*length = sizeof(UCATableHeader);
result = (uint8_t *)uprv_malloc(sizeof(UCATableHeader));
UCATableHeader *head = (UCATableHeader *)result;
ucol_putOptionsToHeader(coll, head, status);
}
return result;
}
void ucol_setOptionsFromHeader(UCollator* result, const UCATableHeader * image, UErrorCode *status) {
if(U_FAILURE(*status)) {
return;
}
result->caseFirst = image->caseFirst;
result->caseLevel = image->caseLevel;
result->frenchCollation = image->frenchCollation;
result->normalizationMode = image->normalizationMode;
result->strength = image->strength;
result->variableTopValue = image->variableTopValue;
result->alternateHandling = image->alternateHandling;
result->caseFirstisDefault = TRUE;
result->caseLevelisDefault = TRUE;
result->frenchCollationisDefault = TRUE;
result->normalizationModeisDefault = TRUE;
result->strengthisDefault = TRUE;
result->variableTopValueisDefault = TRUE;
ucol_updateInternalState(result);
}
void ucol_putOptionsToHeader(UCollator* result, UCATableHeader * image, UErrorCode *status) {
if(U_FAILURE(*status)) {
return;
}
image->caseFirst = result->caseFirst;
image->caseLevel = result->caseLevel;
image->frenchCollation = result->frenchCollation;
image->normalizationMode = result->normalizationMode;
image->strength = result->strength;
image->variableTopValue = result->variableTopValue;
image->alternateHandling = result->alternateHandling;
}
static void addCEtoContrHash(uint32_t ce, uint8_t *cTable, UCollator* coll)
{
uint32_t offset;
UChar c;
const UChar *cPtr;
const uint32_t *cePtr;
offset = getContractOffset(ce); /* Uchar (!) offset from top of data image into */
cPtr = (UChar *)coll->image + offset; /* contraction UChars table. */
offset = cPtr - coll->contractionIndex; /* Convert to an integer index that can be */
/* used for both the UChar and CE tables */
fprintf(stderr, " Index to contraction table arrays is %x\n", offset);
offset++;
/* loop through all contraction UChars in this section of the contraction table */
/* add each to the hash table, and recursively do the CE for each. */
cPtr = coll->contractionIndex;
cePtr = coll->contractionCEs;
for (c=cPtr[offset]; c != 0xffff; c=cPtr[++offset]) {
uint32_t i;
uint8_t bitInByte;
uint32_t ce;
fprintf(stderr, " adding char %x, offset = %x. CE is %x\n", c, offset, cePtr[offset]);
if (c < 256) /* hash the UChar */
i = c >> 3;
else
i = 32 + ((c & UCOL_UNSAFECP_TABLE_MASK) >> 3);
bitInByte = 1 << (c & 0x7); /* set the bit in the hash table. */
//cTable[i] |= bitInByte;
ce = cePtr[offset]; /* recursively add the corresponding CE, */
if (isContraction(ce)) { /* if it's another contraction. */
fprintf(stderr, " Recursing on the CE ...\n");
addCEtoContrHash(ce, cTable, coll);
fprintf(stderr, " Return from recursion.\n");
}
}
}
static void buildUnsafeCPTable(uint8_t *cTable, UCollator* coll) {
uint32_t ce;
UChar32 c;
int32_t i;
uint8_t bitInByte;
fprintf(stderr, "Building UnSafeCharTable... ");
uprv_memset(cTable, 0, UCOL_UNSAFECP_TABLE_SIZE);
for (UChar cp=0; cp<0xffff; cp++) {
ce = ucmp32_get(coll->mapping, cp);
// ce = CEs[i];
if (isContraction(ce)) {
fprintf(stderr, "char, CE = %x %x\n", cp, ce);
addCEtoContrHash(ce, cTable, coll);
}
}
#if 0
// Do again for main UCA table. ???
if (UCA) { // But don't do when initing the global UCA itself.
CEs = (uint32_t *)ucmp32_getArray(UCA->mapping);
numCEs = ucmp32_getCount(UCA->mapping);
for (i=0; i<numCEs; i++) {
ce = CEs[i];
if (isContraction(ce))
addCEtoContrHash(ce, cTable, coll);
}
}
#endif
// Add all characters with combining class != 0
for (c=0; c<=0xffff; c++) {
if (c >= 0xd800 && c <= 0xf7ff)
continue;
if (u_getCombiningClass(c) != 0) {
if (c < 256)
i = c >> 3;
else
i = 32 + ((c & UCOL_UNSAFECP_TABLE_MASK) >> 3);
bitInByte = 1 << (c & 0x7);
cTable[i] |= bitInByte;
}
}
int count = 0;
for (i=0; i<UCOL_UNSAFECP_TABLE_SIZE; i++) {
uint8_t b = cTable[i];
for (int bit=0; bit<8; bit++) {
if (b & 1)
count ++;
b >>= 1;
}
}
fprintf(stderr, "done. %d entries.\n", count);
}
UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, UErrorCode *status) {
UCollator *result = fillIn;
if(U_FAILURE(*status) || image == NULL) {
return NULL;
}
if(result == NULL) {
result = (UCollator *)uprv_malloc(sizeof(UCollator));
if(result == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return result;
}
result->freeOnClose = TRUE;
} else {
result->freeOnClose = FALSE;
}
result->image = image;
const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition;
CompactIntArray *newUCAmapping = ucmp32_openFromData(&mapping, status);
if(U_SUCCESS(*status)) {
result->mapping = newUCAmapping;
} else {
if(result->freeOnClose == TRUE) {
uprv_free(result);
result = NULL;
}
return result;
}
result->latinOneMapping = (uint32_t*)((uint8_t*)result->image+result->image->latinOneMapping);
result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs);
result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex);
result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion);
/* set attributes */
result->caseFirst = result->image->caseFirst;
result->caseLevel = result->image->caseLevel;
result->frenchCollation = result->image->frenchCollation;
result->normalizationMode = result->image->normalizationMode;
result->strength = result->image->strength;
result->variableTopValue = result->image->variableTopValue;
result->alternateHandling = result->image->alternateHandling;
result->caseFirstisDefault = TRUE;
result->caseLevelisDefault = TRUE;
result->frenchCollationisDefault = TRUE;
result->normalizationModeisDefault = TRUE;
result->strengthisDefault = TRUE;
result->variableTopValueisDefault = TRUE;
result->alternateHandlingisDefault = TRUE;
uint32_t variableMaxCE = ucmp32_get(result->mapping, result->variableTopValue);
result->variableMax1 = (uint8_t)((variableMaxCE & 0xFF000000) >> 24);
result->variableMax2 = (uint8_t)((variableMaxCE & 0x00FF0000) >> 16);
result->scriptOrder = NULL;
result->zero = 0;
result->rules = NULL;
/* get the version info form UCATableHeader and populate the Collator struct*/
result->dataInfo.dataVersion[0] = result->image->version[0]; /* UCA Builder version*/
result->dataInfo.dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/
#if 0
/* Build the unsafe chars hash table */
uint8_t *t; /*non-const, unlike result->unsafeCP */
/* result->unsafeCP = */ t = (uint8_t *)uprv_malloc(UCOL_UNSAFECP_TABLE_SIZE);
buildUnsafeCPTable(t, result);
#endif
result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP;
/* max expansion tables */
result->endExpansionCE = (uint32_t*)((uint8_t*)result->image +
result->image->endExpansionCE);
result->lastEndExpansionCE = result->endExpansionCE +
result->image->endExpansionCECount - 1;
result->expansionCESize = (uint8_t*)result->image +
result->image->expansionCESize;
ucol_updateInternalState(result);
return result;
}
void ucol_initUCA(UErrorCode *status) {
if(U_FAILURE(*status)) return;
if(UCA == NULL) {
UCollator *newUCA = (UCollator *)uprv_malloc(sizeof(UCollator));
UDataMemory *result = udata_openChoice(NULL, UCA_DATA_TYPE, UCA_DATA_NAME, isAcceptableUCA, NULL, status);
if(U_FAILURE(*status)) {
udata_close(result);
uprv_free(newUCA);
}
if(result != NULL) { /* It looks like sometimes we can fail to find the data file */
newUCA = ucol_initCollator((const UCATableHeader *)udata_getMemory(result), newUCA, status);
newUCA->rb = NULL;
umtx_lock(NULL);
if(UCA == NULL) {
UCA = newUCA;
newUCA = NULL;
}
umtx_unlock(NULL);
if(newUCA != NULL) {
udata_close(result);
uprv_free(newUCA);
}
}
}
}
void ucol_initInverseUCA(UErrorCode *status) {
if(U_FAILURE(*status)) return;
if(invUCA == NULL) {
InverseTableHeader *newInvUCA = NULL; /*(InverseTableHeader *)uprv_malloc(sizeof(InverseTableHeader ));*/
UDataMemory *result = udata_openChoice(NULL, INVC_DATA_TYPE, INVC_DATA_NAME, isAcceptableInvUCA, NULL, status);
if(U_FAILURE(*status)) {
udata_close(result);
uprv_free(newInvUCA);
}
if(result != NULL) { /* It looks like sometimes we can fail to find the data file */
newInvUCA = (InverseTableHeader *)udata_getMemory(result);
umtx_lock(NULL);
if(invUCA == NULL) {
invUCA = newInvUCA;
newInvUCA = NULL;
}
umtx_unlock(NULL);
if(newInvUCA != NULL) {
udata_close(result);
uprv_free(newInvUCA);
}
}
}
}
/****************************************************************************/
/* Following are the CE retrieval functions */
/* */
/****************************************************************************/
/* there should be a macro version of this function in the header file */
/* This is the first function that tries to fetch a collation element */
/* If it's not succesfull or it encounters a more difficult situation */
/* some more sofisticated and slower functions are invoked */
uint32_t ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) {
uint32_t order;
if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */
order = *(collationSource->toReturn++); /* if so, return them */
if(collationSource->CEpos == collationSource->toReturn) {
collationSource->CEpos = collationSource->toReturn = collationSource->CEs;
}
} else if(collationSource->pos < collationSource->len) { /* This is the real business now */
UChar ch = *collationSource->pos++;
if(ch <= 0xFF) { /* if it's Latin One, we'll try to fast track it */
order = coll->latinOneMapping[ch]; /* by looking in up in an array */
} else { /* otherwise, */
order = ucmp32_get(coll->mapping, ch); /* we'll go for slightly slower trie */
}
if(order >= UCOL_NOT_FOUND) { /* if a CE is special */
//*(collationSource->CEpos) = order; /* prepare the buffer */
order = getSpecialCE(coll, order, collationSource, status); /* and try to get the special CE */
if(order == UCOL_NOT_FOUND) { /* We couldn't find a good CE in the tailoring */
order = ucol_getNextUCA(ch, collationSource, status);
}
}
//collationSource->pos++; /* we're advancing to the next codepoint */
} else {
order = UCOL_NO_MORE_CES; /* if so, we won't play any more */
}
/* This means that contraction should spit back the last codepoint eaten! */
return order; /* return the CE */
}
/* This function tries to get a CE from UCA, which should be always around */
/* UChar is passed in in order to speed things up */
/* here is also the generation of implicit CEs */
uint32_t ucol_getNextUCA(UChar ch, collIterate *collationSource, UErrorCode *status) {
uint32_t order;
if(ch < 0xFF) { /* so we'll try to find it in the UCA */
order = UCA->latinOneMapping[ch];
} else {
order = ucmp32_get(UCA->mapping, ch);
}
if(order >= UCOL_NOT_FOUND) { /* UCA also gives us a special CE */
order = getSpecialCE(UCA, order, collationSource, status);
}
if(order == UCOL_NOT_FOUND) { /* This is where we have to resort to algorithmical generation */
/* We have to check if ch is possibly a first surrogate - then we need to take the next code unit */
/* and make a bigger CE */
UChar nextChar;
const uint32_t
SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7,
LCount = 19, VCount = 21, TCount = 28,
NCount = VCount * TCount, // 588
SCount = LCount * NCount; // 11172
//LLimit = LBase + LCount, // 1113
//VLimit = VBase + VCount, // 1176
//TLimit = TBase + TCount, // 11C3
//SLimit = SBase + SCount; // D7A4
// once we have failed to find a match for codepoint cp, and are in the implicit code.
uint32_t L = ch - SBase;
//if (ch < SLimit) { // since it is unsigned, catchs zero case too
if (L < SCount) { // since it is unsigned, catchs zero case too
// divide into pieces
uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation
L /= TCount;
uint32_t V = L % VCount;
L /= VCount;
// offset them
L += LBase;
V += VBase;
T += TBase;
// return the first CE, but first put the rest into the expansion buffer
if (!collationSource->JamoSpecial) { // FAST PATH
*(collationSource->CEpos++) = ucmp32_get(UCA->mapping, V);
if (T != TBase) {
*(collationSource->CEpos++) = ucmp32_get(UCA->mapping, T);
}
return ucmp32_get(UCA->mapping, L); // return first one
} else { // Jamo is Special
// do recursive processing of L, V, and T with fetchCE (but T only if not equal to TBase!!)
// Since fetchCE returns a CE, and (potentially) stuffs items into the ce buffer,
// this is how it is done.
/*
int firstCE = fetchCE(L, ...);
int* lastExpansion = expansionBufferEnd++; // set pointer, leave gap!
*lastExpansion = fetchCE(V,...);
if (T != TBase) {
lastExpansion = expansionBufferEnd++; // set pointer, leave gap!
*lastExpansion = fetchCE(T,...);
}
*/
}
}
if(UTF_IS_FIRST_SURROGATE(ch)) {
if( (collationSource->pos<collationSource->len) &&
UTF_IS_SECOND_SURROGATE((nextChar=*collationSource->pos))) {
uint32_t cp = (((ch)<<10UL)+(nextChar)-((0xd800<<10UL)+0xdc00));
collationSource->pos++;
if ((cp & 0xFFFE) == 0xFFFE || (0xD800 <= cp && cp <= 0xDC00)) {
return 0; /* illegal code value, use completely ignoreable! */
}
/* This is a code point minus 0x10000, that's what algorithm requires */
order = 0xE0010303 | (cp & 0xFFE00) << 8;
*(collationSource->CEpos++) = 0x80200080 | (cp & 0x001FF) << 22;
} else {
return 0; /* completely ignorable */
}
} else {
/* otherwise */
if(UTF_IS_SECOND_SURROGATE((ch)) || (ch & 0xFFFE) == 0xFFFE) {
return 0; /* completely ignorable */
}
/* Make up an artifical CE from code point as per UCA */
order = 0xD0800303 | (ch & 0xF000) << 12 | (ch & 0x0FE0) << 11;
*(collationSource->CEpos++) = 0x04000080 | (ch & 0x001F) << 27;
}
}
return order; /* return the CE */
}
/*
* This function tries to get a CE from UCA, which should be always around
* UChar is passed in in order to speed things up here is also the generation
* of implicit CEs
*/
uint32_t ucol_getPrevUCA(UChar ch, collIterate *collationSource,
uint32_t length, UErrorCode *status)
{
uint32_t order;
if (ch < 0xFF)
order = UCA->latinOneMapping[ch];
else
order = ucmp32_get(UCA->mapping, ch);
if (order >= UCOL_NOT_FOUND)
order = getSpecialPrevCE(UCA, order, collationSource, length, status);
if (order == UCOL_NOT_FOUND)
{
/*
This is where we have to resort to algorithmical generation.
We have to check if ch is possibly a first surrogate - then we need to
take the next code unit and make a bigger CE
*/
UChar prevChar;
uint32_t
SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7,
LCount = 19, VCount = 21, TCount = 28,
NCount = VCount * TCount, // 588
SCount = LCount * NCount; // 11172
//LLimit = LBase + LCount, // 1113
//VLimit = VBase + VCount, // 1176
//TLimit = TBase + TCount, // 11C3
//SLimit = SBase + SCount; // D7A4
/*
once we have failed to find a match for codepoint cp, and are in the
implicit code.
*/
uint32_t L = ch - SBase;
if (L < SCount)
{ /* since it is unsigned, catchs zero case too */
/*
divide into pieces.
we do it in this order since some compilers can do % and / in one
operation
*/
uint32_t T = L % TCount;
L /= TCount;
uint32_t V = L % VCount;
L /= VCount;
/* offset them */
L += LBase;
V += VBase;
T += TBase;
/*
return the first CE, but first put the rest into the expansion buffer
*/
if (!collationSource->JamoSpecial)
{
*(collationSource->CEpos ++) = ucmp32_get(UCA->mapping, L);
*(collationSource->CEpos ++) = ucmp32_get(UCA->mapping, V);
if (T != TBase)
*(collationSource->CEpos ++) = ucmp32_get(UCA->mapping, T);
collationSource->toReturn = collationSource->CEpos - 1;
return *(collationSource->toReturn);
} else {
/*
Jamo is Special
do recursive processing of L, V, and T with fetchCE (but T only if not
equal to TBase!!)
Since fetchCE returns a CE, and (potentially) stuffs items into the ce
buffer,
this is how it is done.
*/
/*
int firstCE = fetchCE(L, ...);
// set pointer, leave gap!
int* lastExpansion = expansionBufferEnd++;
*lastExpansion = fetchCE(V,...);
if (T != TBase) {
lastExpansion = expansionBufferEnd++; // set pointer, leave gap!
*lastExpansion = fetchCE(T,...);
}
*/
}
}
if (UTF_IS_SECOND_SURROGATE(ch))
{
UChar *temp = collationSource->pos;
if (((collationSource->string < temp) ||
(collationSource->writableBuffer < temp)) &&
(UTF_IS_FIRST_SURROGATE(prevChar = *(collationSource->pos - 1))))
{
uint32_t cp = ((prevChar << 10UL) + ch - ((0xd800 << 10UL) + 0xdc00));
collationSource->pos --;
if ((cp & 0xFFFE) == 0xFFFE || (0xD800 <= cp && cp <= 0xDC00))
return 0; /* illegal code value, use completely ignoreable! */
/*
This is a code point minus 0x10000, that's what algorithm requires
*/
*(collationSource->CEpos ++) = 0xE0010303 | (cp & 0xFFE00) << 8;
order = 0x80200080 | (cp & 0x001FF) << 22;
collationSource->toReturn = collationSource->CEpos;
*(collationSource->CEpos ++) = order;
}
else
return 0; /* completely ignorable */
}
else
{
/* otherwise */
if (UTF_IS_FIRST_SURROGATE(ch) || (ch & 0xFFFE) == 0xFFFE)
return 0; /* completely ignorable */
/* Make up an artifical CE from code point as per UCA */
*(collationSource->CEpos ++) = 0xD0800303 | (ch & 0xF000) << 12 |
(ch & 0x0FE0) << 11;
collationSource->toReturn = collationSource->CEpos;
order = 0x04000080 | (ch & 0x001F) << 27;
*(collationSource->CEpos ++) = order;
}
}
return order; /* return the CE */
}
/*
* This function tries to get a maximum expansion count from UCA,
* @param order last collation element to look for in expansion sequence
* @param status error status
* @return maximum size of the expansion sequences ending with the collation
* element or 1 if collation element does not occur at the end of any
* expansion sequence
*/
uint8_t ucol_getMaxExpansionUCA(uint32_t order)
{
uint8_t result;
UCOL_GETCOLLATORMAXEXPANSION(UCA, order, result);
return result;
}
/* This function handles the special CEs like contractions, expansions, surrogates, Thai */
/* It is called by both getNextCE and getNextUCA */
uint32_t getSpecialCE(const UCollator *coll, uint32_t CE, collIterate *source, UErrorCode *status) {
uint32_t i = 0; /* general counter */
//uint32_t CE = *source->CEpos;
for (;;) {
const uint32_t *CEOffset = NULL;
const UChar *UCharOffset = NULL;
UChar schar, tchar;
uint32_t size = 0;
switch(getCETag(CE)) {
case NOT_FOUND_TAG:
/* This one is not found, and we'll let somebody else bother about it... no more games */
return CE;
case SURROGATE_TAG:
/* pending surrogate discussion with Markus and Mark */
return UCOL_NOT_FOUND;
case THAI_TAG:
/* Thai/Lao reordering */
if(source->isThai == TRUE) { /* if we encountered Thai prevowel & the string is not yet touched */
source->isThai = FALSE; /* We will touch the string */
--source->pos;
if((source->len - source->pos) > UCOL_WRITABLE_BUFFER_SIZE) {
/* Problematic part - if the stack buffer is too small, we need to allocate */
/* However, somebody needs to keep track of that allocated space */
/* And context structure is not good for that */
/* allocate a new buffer - This is unfortunate and should be way smarter */
/*source->writableBuffer = (UChar *)ucol_getABuffer(coll, (source->len - source->pos)*sizeof(UChar));*/
}
UChar *sourceCopy = source->pos;
UChar *targetCopy = source->writableBuffer;
while(sourceCopy < source->len) {
if(UCOL_ISTHAIPREVOWEL(*(sourceCopy)) && /* This is the combination that needs to be swapped */
UCOL_ISTHAIBASECONSONANT(*(sourceCopy+1))) {
*(targetCopy) = *(sourceCopy+1);
*(targetCopy+1) = *(sourceCopy);
targetCopy+=2;
sourceCopy+=2;
} else {
*(targetCopy++) = *(sourceCopy++);
}
}
source->pos = source->writableBuffer;
source->len = targetCopy;
source->CEpos = source->toReturn = source->CEs;
CE = UCOL_IGNORABLE;
} else { /* we have already played with the string, so treat Thai as a length one expansion */
CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
CE = *CEOffset++;
}
break;
case CONTRACTION_TAG:
/* This should handle contractions */
for (;;) {
/* First we position ourselves at the begining of contraction sequence */
const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
if (source->pos>=source->len) { /* this is the end of string */
CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); /* So we'll pick whatever we have at the point... */
break;
}
/* we need to convey the notion of having a backward search - most probably through the context object */
/* if (backwardsSearch) offset += contractionUChars[(int16_t)offset]; else UCharOffset++; */
UCharOffset++; /* skip the backward offset, see above */
schar = *source->pos++;
while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
UCharOffset++;
}
if(schar != tchar) { /* we didn't find the correct codepoint. We can use either the first or the last CE */
if(tchar != 0xFFFF) {
UCharOffset = ContractionStart; /* We're not at the end, bailed out in the middle. Better use starting CE */
}
source->pos--; /* Spit out the last char of the string, wasn't tasty enough */
}
CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
if(!isContraction(CE)) {
break;
}
}
break;
case EXPANSION_TAG:
/* This should handle expansion. */
/* NOTE: we can encounter both continuations and expansions in an expansion! */
/* I have to decide where continuations are going to be dealt with */
CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
size = getExpansionCount(CE);
CE = *CEOffset++;
if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
for(i = 1; i<size; i++) {
*(source->CEpos++) = *CEOffset++;
}
} else { /* else, we do */
while(*CEOffset != 0) {
*(source->CEpos++) = *CEOffset++;
}
}
return CE;
case CHARSET_TAG:
/* probably after 1.8 */
return UCOL_NOT_FOUND;
default:
*status = U_INTERNAL_PROGRAM_ERROR;
CE=0;
break;
}
if (CE <= UCOL_NOT_FOUND) break;
}
return CE;
}
/**
* This function handles the special CEs like contractions, expansions,
* surrogates, Thai.
* It is called by both getPrevCE and getPrevUCA
* synwee
*/
uint32_t getSpecialPrevCE(const UCollator *coll, uint32_t CE,
collIterate *source, uint32_t length,
UErrorCode *status)
{
uint32_t count = 0;
const uint32_t *CEOffset = NULL;
const UChar *UCharOffset = NULL;
UChar schar,
tchar;
const UChar *strend = NULL;
const UChar *constart = NULL;
uint32_t size;
for(;;)
{
switch (getCETag(CE))
{
case NOT_FOUND_TAG:
return CE;
case SURROGATE_TAG:
/* pending surrogate discussion with Markus and Mark */
return UCOL_NOT_FOUND;
case THAI_TAG:
if (source->isThai == TRUE)
{ /* if we encountered Thai prevowel & the string is not yet touched */
source->isThai = FALSE;
strend = source->pos;
size = strend - source->string;
if (size > UCOL_WRITABLE_BUFFER_SIZE)
{
/*
someone else has already allocated something
*/
if (source->writableBuffer != source->stackWritableBuffer)
uprv_free(source->writableBuffer);
source->writableBuffer =
(UChar *)uprv_malloc(size * sizeof(UChar));
source->isThai = FALSE;
}
UChar *sourceCopy = source->string;
UChar *targetCopy = source->writableBuffer;
while (sourceCopy <= strend)
{
if (UCOL_ISTHAIPREVOWEL(*sourceCopy) &&
/* This is the combination that needs to be swapped */
UCOL_ISTHAIBASECONSONANT(*(sourceCopy + 1)))
{
*(targetCopy) = *(sourceCopy + 1);
*(targetCopy + 1) = *(sourceCopy);
targetCopy += 2;
sourceCopy += 2;
}
else
*(targetCopy ++) = *(sourceCopy ++);
}
source->pos = targetCopy;
source->len = targetCopy;
source->CEpos = source->toReturn = source->CEs;
CE = UCOL_IGNORABLE;
}
else
{
/*
we have already played with the string, so treat Thai as a length one
expansion
*/
/* find the offset to expansion table */
CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
CE = *CEOffset ++;
}
break;
case CONTRACTION_TAG:
/* This should handle contractions */
for(;;)
{
/*
First we position ourselves at the begining of contraction sequence
*/
constart = UCharOffset = (UChar *)coll->image + getContractOffset(CE);
strend = source->len;
if ((uint32_t)(strend - source->pos) == length)
{ /* this is the start of string */
CE = *(coll->contractionCEs +
(UCharOffset - coll->contractionIndex));
break;
}
/*
Progressing to backwards block
*/
UCharOffset += *UCharOffset;
schar = *(source->pos - 1);
while (schar > (tchar = *UCharOffset))
UCharOffset ++;
if (schar != tchar)
{
/*
we didn't find the correct codepoint. We can use either the first or
the last CE
*/
/* testing if (tchar != 0xFFFF) */
UCharOffset = constart;
}
else
/* Move up one character */
source->pos --;
CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
if (!isContraction(CE))
break;
}
break;
case EXPANSION_TAG:
/*
This should handle expansion.
NOTE: we can encounter both continuations and expansions in an expansion!
I have to decide where continuations are going to be dealt with
*/
/* find the offset to expansion table */
CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
size = getExpansionCount(CE);
if (size != 0)
/*
if there are less than 16 elements in expansion, we don't terminate
*/
for (count = 0; count < size; count++)
*(source->CEpos ++) = *CEOffset++;
else
/* else, we do */
while (*CEOffset != 0)
*(source->CEpos ++) = *CEOffset ++;
source->toReturn = source->CEpos - 1;
return *(source->toReturn);
case CHARSET_TAG:
/* probably after 1.8 */
return UCOL_NOT_FOUND;
default:
*status = U_INTERNAL_PROGRAM_ERROR;
CE=0;
break;
}
if (CE <= UCOL_NOT_FOUND) break;
}
return CE;
}
/* This should really be a macro */
/* However, it is used only when stack buffers are not sufficiently big, and then we're messed up performance wise */
/* anyway */
uint8_t *reallocateBuffer(uint8_t **secondaries, uint8_t *secStart, uint8_t *second, uint32_t *secSize, UErrorCode *status) {
uint8_t *newStart = NULL;
if(secStart==second) {
newStart=(uint8_t*)uprv_malloc(*secSize*2);
if(newStart==NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
uprv_memcpy(newStart, secStart, *secondaries-secStart);
} else {
newStart=(uint8_t*)uprv_realloc(secStart, *secSize*2);
if(newStart==NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
}
*secondaries=newStart+(*secondaries-secStart);
*secSize*=2;
return newStart;
}
/* This should really be a macro */
/* This function is used to reverse parts of a buffer. We need this operation when doing continuation */
/* secondaries in French */
/*
void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) {
uint8_t temp;
while(start<end) {
temp = *start;
*start++ = *end;
*end-- = temp;
}
}
*/
#define uprv_ucol_reverse_buffer(TYPE, start, end) { \
TYPE tempA; \
while((start)<(end)) { \
tempA = *(start); \
*(start)++ = *(end); \
*(end)-- = tempA; \
} \
}
/****************************************************************************/
/* Following are the sortkey generation functions */
/* */
/****************************************************************************/
#define MIN_VALUE 0x02
#define UCOL_VARIABLE_MAX 0x20
#define UCOL_NEW_IGNORABLE 0
/* sortkey API */
U_CAPI int32_t
ucol_getSortKey(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
uint8_t *result,
int32_t resultLength)
{
UErrorCode status = U_ZERO_ERROR;
return ucol_calcSortKey(coll, source, sourceLength, &result, resultLength, FALSE, &status);
/*return ucol_calcSortKeySimpleTertiary(coll, source, sourceLength, &result, resultLength, FALSE, &status);*/
}
/* this function is called by the C++ API for sortkey generation */
U_CFUNC uint8_t *ucol_getSortKeyWithAllocation(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
int32_t *resultLen) {
uint8_t *result = NULL;
UErrorCode status = U_ZERO_ERROR;
*resultLen = ucol_calcSortKey(coll, source, sourceLength, &result, 0, TRUE, &status);
return result;
}
/* This function tries to get the size of a sortkey. It will be invoked if the size of resulting buffer is 0 */
/* or if we run out of space while making a sortkey and want to return ASAP */
int32_t ucol_getSortKeySize(const UCollator *coll, collIterate *s, int32_t currentSize, UColAttributeValue strength, int32_t len) {
UErrorCode status = U_ZERO_ERROR;
uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
UBool compareIdent = (strength == UCOL_IDENTICAL);
UBool doCase = (coll->caseLevel == UCOL_ON);
UBool shifted = (coll->alternateHandling == UCOL_SHIFTED) && (compareQuad == 0);
UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0);
uint8_t variableMax1 = coll->variableMax1;
uint8_t variableMax2 = coll->variableMax2;
uint8_t UCOL_COMMON_BOT4 = (uint8_t)(variableMax1+1);
uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
int32_t order = UCOL_NO_MORE_CES;
uint8_t primary1 = 0;
uint8_t primary2 = 0;
uint32_t ce = 0;
uint8_t secondary = 0;
uint8_t tertiary = 0;
int32_t caseShift = 0;
uint32_t c2 = 0, c3 = 0, c4 = 0; /* variables for compression */
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
UBool wasShifted = FALSE;
UBool notIsContinuation = FALSE;
for(;;) {
order = ucol_getNextCE(coll, s, &status);
/*UCOL_GETNEXTCE(order, coll, *s, &status);*/
if(isCEIgnorable(order)) {
continue;
}
if(order == UCOL_NO_MORE_CES) {
break;
}
/* We're saving order in ce, since we will destroy order in order to get primary, secondary, tertiary in order ;)*/
ce = order;
notIsContinuation = !isContinuation(ce);
order ^= caseSwitch;
tertiary = (uint8_t)((order & tertiaryMask));
secondary = (uint8_t)((order >>= 8) & 0xFF);
primary2 = (uint8_t)((order >>= 8) & 0xFF);
primary1 = (uint8_t)(order >>= 8);
if(shifted && ((notIsContinuation && primary1 <= variableMax1 && primary1 > 0
&& (primary1 < variableMax1 || primary1 == variableMax1 && primary2 < variableMax2))
|| (!notIsContinuation && wasShifted))) {
if(c4 > 0) {
currentSize += (c2/UCOL_BOT_COUNT4)+1;
c4 = 0;
}
currentSize++;
if(primary2 != 0) {
currentSize++;
}
wasShifted = TRUE;
} else {
wasShifted = FALSE;
/* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
/* Usually, we'll have non-zero primary1 & primary2, except in cases of LatinOne and friends, when primary2 will */
/* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */
if(primary1 != UCOL_NEW_IGNORABLE) {
currentSize++;
if(primary2 != UCOL_NEW_IGNORABLE) {
currentSize++;
}
}
if(secondary > compareSec) { /* I think that != 0 test should be != IGNORABLE */
if(!isFrenchSec){
if (secondary == UCOL_COMMON2 && notIsContinuation) {
c2++;
} else {
if(c2 > 0) {
if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
currentSize += (c2/UCOL_TOP_COUNT2)+1;
} else {
currentSize += (c2/UCOL_BOT_COUNT2)+1;
}
c2 = 0;
}
currentSize++;
}
} else {
currentSize++;
}
}
if(doCase) {
if (caseShift == 0) {
currentSize++;
caseShift = 7;
}
if(tertiary > 0) {
caseShift--;
}
}
if(tertiary > compareTer) { /* I think that != 0 test should be != IGNORABLE */
if (tertiary == UCOL_COMMON3 && notIsContinuation) {
c3++;
} else {
if(c3 > 0) {
if (tertiary > UCOL_COMMON3) { // not necessary for 4th level.
currentSize += (c3/UCOL_TOP_COUNT3)+1;
} else {
currentSize += (c3/UCOL_BOT_COUNT3)+1;
}
c3 = 0;
}
currentSize++;
}
}
if(shifted && notIsContinuation) {
c4++;
}
}
}
if(c2 > 0) {
currentSize += (c2/UCOL_BOT_COUNT2)+1;
}
if(c3 > 0) {
currentSize += (c3/UCOL_BOT_COUNT3)+1;
}
if(c4 > 0) {
currentSize += (c4/UCOL_BOT_COUNT4)+1;
}
if(compareIdent) {
currentSize += len*sizeof(UChar);
UChar *ident = s->string;
while(ident<s->len) {
if((*(ident) >> 8) + utf16fixup[*(ident) >> 11]<0x02) {
currentSize++;
}
if((*(ident) & 0xFF)<0x02) {
currentSize++;
}
ident++;
}
}
return currentSize;
}
/* This is the sortkey work horse function */
int32_t
ucol_calcSortKey(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
uint8_t **result,
uint32_t resultLength,
UBool allocatePrimary,
UErrorCode *status)
{
uint32_t i = 0; /* general purpose counter */
/* Stack allocated buffers for buffers we use */
uint8_t second[UCOL_MAX_BUFFER], tert[UCOL_MAX_BUFFER], caseB[UCOL_MAX_BUFFER], quad[UCOL_MAX_BUFFER];
uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert, *cases = caseB, *quads = quad;
if(U_FAILURE(*status)) {
return 0;
}
if(primaries == NULL && allocatePrimary == TRUE) {
primaries = *result = (uint8_t *)uprv_malloc(2*UCOL_MAX_BUFFER);
resultLength = 2*UCOL_MAX_BUFFER;
}
uint8_t *primarySafeEnd = primaries + resultLength - 2;
uint32_t secSize = UCOL_MAX_BUFFER, terSize = UCOL_MAX_BUFFER,
caseSize = UCOL_MAX_BUFFER, quadSize = UCOL_MAX_BUFFER;
uint32_t sortKeySize = 1; /* it is always \0 terminated */
UChar normBuffer[UCOL_NORMALIZATION_GROWTH*UCOL_MAX_BUFFER];
UChar *normSource = normBuffer;
int32_t normSourceLen = UCOL_NORMALIZATION_GROWTH*UCOL_MAX_BUFFER;
int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
uint8_t variableMax1 = coll->variableMax1;
uint8_t variableMax2 = coll->variableMax2;
uint8_t UCOL_COMMON_BOT4 = (uint8_t)(variableMax1+1);
uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
UColAttributeValue strength = coll->strength;
uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
UBool compareIdent = (strength == UCOL_IDENTICAL);
UBool doCase = (coll->caseLevel == UCOL_ON);
UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0);
UBool upperFirst = (coll->caseFirst == UCOL_UPPER_FIRST) && (compareTer == 0);
UBool shifted = (coll->alternateHandling == UCOL_SHIFTED) && (compareQuad == 0);
const uint8_t *scriptOrder = coll->scriptOrder;
/* support for special features like caselevel and funky secondaries */
uint8_t *frenchStartPtr = NULL;
uint8_t *frenchEndPtr = NULL;
uint32_t caseShift = 0;
sortKeySize += ((compareSec?0:1) + (compareTer?0:1) + (doCase?1:0) + (compareQuad?0:1) + (compareIdent?1:0));
collIterate s;
init_collIterate((UChar *)source, len, &s, FALSE);
/* If we need to normalize, we'll do it all at once at the beggining! */
UColAttributeValue normMode = coll->normalizationMode;
if((normMode != UCOL_OFF)
/* changed by synwee */
&& !checkFCD(source, len, status))
{
/*fprintf(stderr, ".");*/
normSourceLen = unorm_normalize(source, sourceLength, UNORM_NFD, 0, normSource, normSourceLen, status);
if(U_FAILURE(*status)) {
*status=U_ZERO_ERROR;
normSource = (UChar *) uprv_malloc((normSourceLen+1)*sizeof(UChar));
normSourceLen = unorm_normalize(source, sourceLength, UNORM_NFD, 0, normSource, (normSourceLen+1), status);
}
normSource[normSourceLen] = 0;
s.string = normSource;
s.pos = normSource;
s.len = normSource+normSourceLen;
}
len = s.len-s.pos;
if(resultLength == 0) {
return ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
}
uint32_t minBufferSize = UCOL_MAX_BUFFER;
uint8_t *primStart = primaries;
uint8_t *secStart = secondaries;
uint8_t *terStart = tertiaries;
uint8_t *caseStart = cases;
uint8_t *quadStart = quads;
uint32_t order = 0;
uint32_t ce = 0;
uint8_t primary1 = 0;
uint8_t primary2 = 0;
uint8_t secondary = 0;
uint8_t tertiary = 0;
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
UBool caseBit = FALSE;
UBool finished = FALSE;
UBool resultOverflow = FALSE;
UBool wasShifted = FALSE;
UBool notIsContinuation = FALSE;
uint32_t prevBuffSize = 0;
uint32_t count2 = 0, count3 = 0, count4 = 0;
for(;;) {
for(i=prevBuffSize; i<minBufferSize; ++i) {
order = ucol_getNextCE(coll, &s, status);
/*UCOL_GETNEXTCE(order, coll, s, status);*/
if(isCEIgnorable(order)) {
continue;
}
if(order == UCOL_NO_MORE_CES) {
finished = TRUE;
break;
}
/* We're saving order in ce, since we will destroy order in order to get primary, secondary, tertiary in order ;)*/
ce = order;
notIsContinuation = !isContinuation(ce);
order ^= caseSwitch;
caseBit = (order & UCOL_CASE_BIT_MASK);
tertiary = (uint8_t)((order & tertiaryMask));
secondary = (uint8_t)((order >>= 8) & 0xFF);
primary2 = (uint8_t)((order >>= 8) & 0xFF);
primary1 = (uint8_t)(order >>= 8);
if(notIsContinuation) {
if(scriptOrder != NULL) {
primary1 = scriptOrder[primary1];
}
}
/* In the code below, every increase in any of buffers is followed by the increase to */
/* sortKeySize - this might look tedious, but it is needed so that we can find out if */
/* we're using too much space and need to reallocate the primary buffer or easily bail */
/* out to ucol_getSortKeySizeNew. */
if(shifted && ((notIsContinuation && primary1 <= variableMax1 && primary1 > 0
&& (primary1 < variableMax1 || primary1 == variableMax1 && primary2 < variableMax2))
|| (!notIsContinuation && wasShifted))) {
if(count4 > 0) {
while (count4 >= UCOL_BOT_COUNT4) {
*quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
count4 -= UCOL_BOT_COUNT4;
}
*quads++ = (uint8_t)(UCOL_COMMON_BOT4 + count4);
count4 = 0;
}
/* We are dealing with a variable and we're treating them as shifted */
/* This is a shifted ignorable */
if(primary1 != 0) {
*quads++ = primary1;
}
if(primary2 != 0) {
*quads++ = primary2;
}
wasShifted = TRUE;
} else {
wasShifted = FALSE;
/* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
/* Usually, we'll have non-zero primary1 & primary2, except in cases of LatinOne and friends, when primary2 will */
/* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */
if(primary1 != UCOL_NEW_IGNORABLE) {
*primaries++ = primary1; /* scriptOrder[primary1]; */ /* This is the script ordering thingie */
if(primary2 != UCOL_NEW_IGNORABLE) {
*primaries++ = primary2; /* second part */
}
}
if(secondary > compareSec) {
if(!isFrenchSec) {
/* This is compression code. */
if (secondary == UCOL_COMMON2 && notIsContinuation) {
++count2;
} else {
if (count2 > 0) {
if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
while (count2 >= UCOL_TOP_COUNT2) {
*secondaries++ = UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2;
count2 -= UCOL_TOP_COUNT2;
}
*secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - count2);
} else {
while (count2 >= UCOL_BOT_COUNT2) {
*secondaries++ = UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2;
count2 -= UCOL_BOT_COUNT2;
}
*secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + count2);
}
count2 = 0;
}
*secondaries++ = secondary;
}
} else {
*secondaries++ = secondary;
/* Do the special handling for French secondaries */
/* We need to get continuation elements and do intermediate restore */
/* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */
if(!notIsContinuation) {
if (frenchStartPtr == NULL) {
frenchStartPtr = secondaries - 2;
}
frenchEndPtr = secondaries-1;
} else if (frenchStartPtr != NULL) {
/* reverse secondaries from frenchStartPtr up to frenchEndPtr */
uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
frenchStartPtr = NULL;
}
}
}
if(doCase) {
if (caseShift == 0) {
*cases++ = 0x80;
caseShift = 7;
}
if(tertiary != 0) {
*(cases-1) |= (caseBit!=0) << (caseShift--);
} else {
caseShift--;
}
}
if(tertiary > compareTer) {
/* This is compression code. */
/* sequence size check is included in the if clause */
if (tertiary == UCOL_COMMON3 && notIsContinuation) {
++count3;
} else {
if(tertiary > UCOL_COMMON3) {
tertiary |= UCOL_FLAG_BIT_MASK;
}
if (count3 > 0) {
if (tertiary > UCOL_COMMON3) {
while (count3 >= UCOL_TOP_COUNT3) {
*tertiaries++ = UCOL_COMMON_TOP3 - UCOL_TOP_COUNT3;
count3 -= UCOL_TOP_COUNT3;
}
*tertiaries++ = (uint8_t)(UCOL_COMMON_TOP3 - count3);
} else {
while (count3 >= UCOL_BOT_COUNT3) {
*tertiaries++ = UCOL_COMMON_BOT3 + UCOL_BOT_COUNT3;
count3 -= UCOL_BOT_COUNT3;
}
*tertiaries++ = (uint8_t)(UCOL_COMMON_BOT3 + count3);
}
count3 = 0;
}
*tertiaries++ = tertiary;
}
}
if(shifted && notIsContinuation) {
count4++;
}
}
if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
int32_t sks = sortKeySize+(primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)+(cases-caseStart)+(quads-quadStart);
if(allocatePrimary == FALSE) { /* need to save our butts if we cannot reallocate */
resultOverflow = TRUE;
sortKeySize = ucol_getSortKeySize(coll, &s, sks, strength, len);
*status = U_MEMORY_ALLOCATION_ERROR;
finished = TRUE;
break;
} else { /* It's much nicer if we can actually reallocate */
uint8_t *newStart;
newStart = (uint8_t *)uprv_realloc(primStart, 2*sks);
if(primStart == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
finished = TRUE;
break;
}
primaries=newStart+(primaries-primStart);
resultLength = 2*sks;
primStart = *result = newStart;
primarySafeEnd = primStart + resultLength - 2;
}
}
}
if(finished) {
break;
} else {
prevBuffSize = minBufferSize;
secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, status);
terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, status);
caseStart = reallocateBuffer(&cases, caseStart, cases, &caseSize, status);
quadStart = reallocateBuffer(&quads, quadStart, quads, &quadSize, status);
minBufferSize *= 2;
}
}
if(U_SUCCESS(*status)) {
sortKeySize += (primaries - primStart);
/* we have done all the CE's, now let's put them together to form a key */
if(compareSec == 0) {
if (count2 > 0) {
while (count2 >= UCOL_BOT_COUNT2) {
*secondaries++ = UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2;
count2 -= UCOL_BOT_COUNT2;
}
*secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + count2);
}
uint32_t secsize = secondaries-secStart;
sortKeySize += secsize;
*(primaries++) = UCOL_LEVELTERMINATOR;
if(isFrenchSec) { /* do the reverse copy */
/* If there are any unresolved continuation secondaries, reverse them here so that we can reverse the whole secondary thing */
if(frenchStartPtr != NULL) {
uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
}
/* Need overflow test here */
for(i = 0; i<secsize; i++) {
*(primaries++) = *(secondaries-i-1);
}
} else {
/* Need overflow test here */
uprv_memcpy(primaries, secStart, secsize);
primaries += secsize;
}
}
if(doCase) {
*(primaries++) = UCOL_LEVELTERMINATOR;
uint32_t casesize = cases - caseStart;
sortKeySize += casesize;
/* Need overflow test here */
uprv_memcpy(primaries, caseStart, casesize);
primaries += casesize;
}
if(compareTer == 0) {
if (count3 > 0) {
while (count3 >= UCOL_BOT_COUNT3) {
*tertiaries++ = UCOL_COMMON_BOT3 + UCOL_BOT_COUNT3;
count3 -= UCOL_BOT_COUNT3;
}
*tertiaries++ = (uint8_t)(UCOL_COMMON_BOT3 + count3);
}
*(primaries++) = UCOL_LEVELTERMINATOR;
uint32_t tersize = tertiaries - terStart;
sortKeySize += tersize;
/* Need overflow test here */
uprv_memcpy(primaries, terStart, tersize);
primaries += tersize;
if(compareQuad == 0) {
if(count4 > 0) {
while (count4 >= UCOL_BOT_COUNT4) {
*quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
count4 -= UCOL_BOT_COUNT4;
}
*quads++ = (uint8_t)(UCOL_COMMON_BOT4 + count4);
}
*(primaries++) = UCOL_LEVELTERMINATOR;
uint32_t quadsize = quads - quadStart;
sortKeySize += quadsize;
/* Need overflow test here */
uprv_memcpy(primaries, quadStart, quadsize);
primaries += quadsize;
}
if(compareIdent) {
UChar *ident = s.string;
/* const UChar *ident = source;*/
uint8_t idByte = 0;
sortKeySize += len * sizeof(UChar);
*(primaries++) = UCOL_LEVELTERMINATOR;
if(sortKeySize <= resultLength) {
while(ident < s.len) {
idByte = (uint8_t)((*(ident) >> 8) + utf16fixup[*(ident) >> 11]);
if(idByte < 0x02) {
if(sortKeySize < resultLength) {
*(primaries++) = 0x01;
sortKeySize++;
*(primaries++) = (uint8_t)(idByte + 1);
}
} else {
*(primaries++) = idByte;
}
idByte = (uint8_t)((*(ident) & 0xFF));
if(idByte < 0x02) {
if(sortKeySize < resultLength) {
*(primaries++) = 0x01;
sortKeySize++;
*(primaries++) = (uint8_t)(idByte + 1);
}
} else {
*(primaries++) = idByte;
}
ident++;
}
} else {
while(ident < s.len) {
idByte = (uint8_t)((*(ident) >> 8) + utf16fixup[*(ident) >> 11]);
if(idByte < 0x02) {
sortKeySize++;
}
idByte = (uint8_t)((*(ident) & 0xFF));
if(idByte < 0x02) {
sortKeySize++;
}
ident++;
}
}
}
}
*(primaries++) = '\0';
} else {
/* This is wrong - we should return a key size - not set it to zero */
sortKeySize = 0;
}
if(terStart != tert) {
uprv_free(terStart);
uprv_free(secStart);
uprv_free(caseStart);
uprv_free(quadStart);
}
if(normSource != normBuffer) {
uprv_free(normSource);
}
return sortKeySize;
}
int32_t
ucol_calcSortKeySimpleTertiary(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
uint8_t **result,
int32_t resultLength,
UBool allocatePrimary,
UErrorCode *status)
{
uint32_t i = 0; /* general purpose counter */
/* Stack allocated buffers for buffers we use */
uint8_t second[UCOL_MAX_BUFFER], tert[UCOL_MAX_BUFFER];
uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert;
if(U_FAILURE(*status)) {
return 0;
}
if(primaries == NULL && allocatePrimary == TRUE) {
primaries = *result = (uint8_t *)uprv_malloc(2*UCOL_MAX_BUFFER);
resultLength = 2*UCOL_MAX_BUFFER;
}
uint8_t *primarySafeEnd = primaries + resultLength - 2;
uint32_t secSize = UCOL_MAX_BUFFER, terSize = UCOL_MAX_BUFFER;
int32_t sortKeySize = 3; /* it is always \0 terminated plus separators for secondary and tertiary */
UChar normBuffer[UCOL_NORMALIZATION_GROWTH*UCOL_MAX_BUFFER];
UChar *normSource = normBuffer;
int32_t normSourceLen = UCOL_NORMALIZATION_GROWTH*UCOL_MAX_BUFFER;
int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
collIterate s;
init_collIterate((UChar *)source, len, &s, FALSE);
/* If we need to normalize, we'll do it all at once at the beggining! */
UColAttributeValue normMode = coll->normalizationMode;
if((normMode != UCOL_OFF)
/* && (unorm_quickCheck(source, len, UNORM_NFD, status) != UNORM_YES)
&& (unorm_quickCheck(source, len, UNORM_NFC, status) != UNORM_YES)) */
/* changed by synwee */
&& !checkFCD(source, len, status))
{
normSourceLen = unorm_normalize(source, sourceLength, UNORM_NFD, 0, normSource, normSourceLen, status);
if(U_FAILURE(*status)) {
*status=U_ZERO_ERROR;
normSource = (UChar *) uprv_malloc((normSourceLen+1)*sizeof(UChar));
normSourceLen = unorm_normalize(source, sourceLength, UNORM_NFD, 0, normSource, (normSourceLen+1), status);
}
normSource[normSourceLen] = 0;
s.string = normSource;
s.pos = normSource;
s.len = normSource+normSourceLen;
}
len = s.len-s.pos;
if(resultLength == 0) {
return ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
}
uint32_t minBufferSize = UCOL_MAX_BUFFER;
uint8_t *primStart = primaries;
uint8_t *secStart = secondaries;
uint8_t *terStart = tertiaries;
uint32_t order = 0;
uint32_t ce = 0;
uint8_t primary1 = 0;
uint8_t primary2 = 0;
uint8_t secondary = 0;
uint8_t tertiary = 0;
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
uint32_t prevBuffSize = 0;
UBool finished = FALSE;
UBool resultOverflow = FALSE;
UBool notIsContinuation = FALSE;
uint32_t count2 = 0, count3 = 0;
for(;;) {
for(i=prevBuffSize; i<minBufferSize; ++i) {
/*order = ucol_getNextCE(coll, &s, status);*/
UCOL_GETNEXTCE(order, coll, s, status);
if(isCEIgnorable(order)) {
continue;
}
if(order == UCOL_NO_MORE_CES) {
finished = TRUE;
break;
}
/* We're saving order in ce, since we will destroy order in order to get primary, secondary, tertiary in order ;)*/
ce = order;
notIsContinuation = !isContinuation(ce);
order ^= caseSwitch;
tertiary = (uint8_t)((order & tertiaryMask)); /* TODO need case bit here this is temporary - removing case bit */
secondary = (uint8_t)((order >>= 8) & 0xFF);
primary2 = (uint8_t)((order >>= 8) & 0xFF);
primary1 = (uint8_t)(order >>= 8);
/* In the code below, every increase in any of buffers is followed by the increase to */
/* sortKeySize - this might look tedious, but it is needed so that we can find out if */
/* we're using too much space and need to reallocate the primary buffer or easily bail */
/* out to ucol_getSortKeySizeNew. */
/* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
/* Usually, we'll have non-zero primary1 & primary2, except in cases of LatinOne and friends, when primary2 will */
/* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */
if(primary1 != UCOL_NEW_IGNORABLE) {
*primaries++ = primary1; /* scriptOrder[primary1]; */ /* This is the script ordering thingie */
if(primary2 != UCOL_NEW_IGNORABLE) {
*primaries++ = primary2; /* second part */
}
}
/* This is compression code. */
if (secondary == UCOL_COMMON2 && notIsContinuation) {
++count2;
} else {
if (count2 > 0) {
if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
while (count2 >= UCOL_TOP_COUNT2) {
*secondaries++ = UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2;
count2 -= UCOL_TOP_COUNT2;
}
*secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - count2);
} else {
while (count2 >= UCOL_BOT_COUNT2) {
*secondaries++ = UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2;
count2 -= UCOL_BOT_COUNT2;
}
*secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + count2);
}
count2 = 0;
}
*secondaries++ = secondary;
}
/* This is compression code. */
/* sequence size check is included in the if clause */
if (tertiary == UCOL_COMMON3 && notIsContinuation) {
++count3;
} else {
if(tertiary > UCOL_COMMON3) {
tertiary |= UCOL_FLAG_BIT_MASK;
}
if (count3 > 0) {
if (tertiary > UCOL_COMMON3) {
while (count3 >= UCOL_TOP_COUNT3) {
*tertiaries++ = UCOL_COMMON_TOP3 - UCOL_TOP_COUNT3;
count3 -= UCOL_TOP_COUNT3;
}
*tertiaries++ = (uint8_t)(UCOL_COMMON_TOP3 - count3);
} else {
while (count3 >= UCOL_BOT_COUNT3) {
*tertiaries++ = UCOL_COMMON_BOT3 + UCOL_BOT_COUNT3;
count3 -= UCOL_BOT_COUNT3;
}
*tertiaries++ = (uint8_t)(UCOL_COMMON_BOT3 + count3);
}
count3 = 0;
}
*tertiaries++ = tertiary;
}
if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
int32_t sks = sortKeySize+(primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart);
if(allocatePrimary == FALSE) { /* need to save our butts if we cannot reallocate */
resultOverflow = TRUE;
sortKeySize = ucol_getSortKeySize(coll, &s, sks, coll->strength, len);
*status = U_MEMORY_ALLOCATION_ERROR;
finished = TRUE;
break;
} else { /* It's much nicer if we can actually reallocate */
uint8_t *newStart;
newStart = (uint8_t *)uprv_realloc(primStart, 2*sks);
if(primStart == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
finished = TRUE;
break;
}
primaries=newStart+(primaries-primStart);
resultLength = 2*sks;
primStart = *result = newStart;
primarySafeEnd = primStart + resultLength - 2;
}
}
}
if(finished) {
break;
} else {
prevBuffSize = minBufferSize;
secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, status);
terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, status);
minBufferSize *= 2;
}
}
if(U_SUCCESS(*status)) {
sortKeySize += (primaries - primStart);
/* we have done all the CE's, now let's put them together to form a key */
if (count2 > 0) {
while (count2 >= UCOL_BOT_COUNT2) {
*secondaries++ = UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2;
count2 -= UCOL_BOT_COUNT2;
}
*secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + count2);
}
uint32_t secsize = secondaries-secStart;
sortKeySize += secsize;
*(primaries++) = UCOL_LEVELTERMINATOR;
/* Need overflow test here */
uprv_memcpy(primaries, secStart, secsize);
primaries += secsize;
if (count3 > 0) {
while (count3 >= UCOL_BOT_COUNT3) {
*tertiaries++ = UCOL_COMMON_BOT3 + UCOL_BOT_COUNT3;
count3 -= UCOL_BOT_COUNT3;
}
*tertiaries++ = (uint8_t)(UCOL_COMMON_BOT3 + count3);
}
*(primaries++) = UCOL_LEVELTERMINATOR;
uint32_t tersize = tertiaries - terStart;
sortKeySize += tersize;
/* Need overflow test here */
uprv_memcpy(primaries, terStart, tersize);
primaries += tersize;
*(primaries++) = '\0';
} else {
/* This is wrong - we should return a key size - not set it to zero */
sortKeySize = 0;
}
if(terStart != tert) {
uprv_free(terStart);
uprv_free(secStart);
}
if(normSource != normBuffer) {
uprv_free(normSource);
}
return sortKeySize;
}
/* This is a trick string compare function that goes in and uses sortkeys to compare */
/* It is used when compare gets in trouble and needs to bail out */
UCollationResult ucol_compareUsingSortKeys(const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER];
uint8_t *sourceKeyP = sourceKey;
uint8_t *targetKeyP = targetKey;
int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER;
sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
if(sourceKeyLen > UCOL_MAX_BUFFER) {
sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t));
sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
}
targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
if(targetKeyLen > UCOL_MAX_BUFFER) {
targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t));
targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
}
int32_t result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP);
if(sourceKeyP != sourceKey) {
uprv_free(sourceKeyP);
}
if(targetKeyP != targetKey) {
uprv_free(targetKeyP);
}
if(result<0) {
return UCOL_LESS;
} else if(result>0) {
return UCOL_GREATER;
} else {
return UCOL_EQUAL;
}
}
/****************************************************************************/
/* Following are the functions that deal with the properties of a collator */
/* there are new APIs and some compatibility APIs */
/****************************************************************************/
void ucol_updateInternalState(UCollator *coll) {
if(coll->caseFirst == UCOL_UPPER_FIRST) {
coll->caseSwitch = UCOL_CASE_SWITCH;
} else {
coll->caseSwitch = UCOL_NO_CASE_SWITCH;
}
if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) {
coll->tertiaryMask = UCOL_REMOVE_CASE;
} else {
coll->tertiaryMask = UCOL_KEEP_CASE;
}
}
/* Attribute setter API */
U_CAPI void ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) {
switch(attr) {
case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
if(value == UCOL_ON) {
coll->frenchCollation = UCOL_ON;
coll->frenchCollationisDefault = FALSE;
} else if (value == UCOL_OFF) {
coll->frenchCollation = UCOL_OFF;
coll->frenchCollationisDefault = FALSE;
} else if (value == UCOL_DEFAULT) {
coll->frenchCollationisDefault = TRUE;
coll->frenchCollation = coll->image->frenchCollation;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
}
break;
case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
if(value == UCOL_SHIFTED) {
coll->alternateHandling = UCOL_SHIFTED;
coll->alternateHandlingisDefault = FALSE;
} else if (value == UCOL_NON_IGNORABLE) {
coll->alternateHandling = UCOL_NON_IGNORABLE;
coll->alternateHandlingisDefault = FALSE;
} else if (value == UCOL_DEFAULT) {
coll->alternateHandlingisDefault = TRUE;
coll->alternateHandling = coll->image->alternateHandling ;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
}
break;
case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
if(value == UCOL_LOWER_FIRST) {
coll->caseFirst = UCOL_LOWER_FIRST;
coll->caseFirstisDefault = FALSE;
} else if (value == UCOL_UPPER_FIRST) {
coll->caseFirst = UCOL_UPPER_FIRST;
coll->caseFirstisDefault = FALSE;
} else if (value == UCOL_OFF) {
coll->caseFirst = UCOL_OFF;
coll->caseFirstisDefault = FALSE;
} else if (value == UCOL_DEFAULT) {
coll->caseFirst = coll->image->caseFirst;
coll->caseFirstisDefault = TRUE;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
}
break;
case UCOL_CASE_LEVEL: /* do we have an extra case level */
if(value == UCOL_ON) {
coll->caseLevel = UCOL_ON;
coll->caseLevelisDefault = FALSE;
} else if (value == UCOL_OFF) {
coll->caseLevel = UCOL_OFF;
coll->caseLevelisDefault = FALSE;
} else if (value == UCOL_DEFAULT) {
coll->caseLevel = coll->image->caseLevel;
coll->caseLevelisDefault = TRUE;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
}
break;
case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
if(value == UCOL_ON) {
coll->normalizationMode = UCOL_ON;
coll->normalizationModeisDefault = FALSE;
} else if (value == UCOL_OFF) {
coll->normalizationMode = UCOL_OFF;
coll->normalizationModeisDefault = FALSE;
} else if (value == UCOL_ON_WITHOUT_HANGUL) {
coll->normalizationMode = UCOL_ON_WITHOUT_HANGUL ;
coll->normalizationModeisDefault = FALSE;
} else if (value == UCOL_DEFAULT) {
coll->normalizationModeisDefault = TRUE;
coll->normalizationMode = coll->image->normalizationMode;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
}
break;
case UCOL_STRENGTH: /* attribute for strength */
if (value == UCOL_DEFAULT) {
coll->strengthisDefault = TRUE;
coll->strength = coll->image->strength;
} else if (value <= UCOL_IDENTICAL) {
coll->strengthisDefault = FALSE;
coll->strength = value;
} else {
*status = U_ILLEGAL_ARGUMENT_ERROR ;
}
break;
case UCOL_ATTRIBUTE_COUNT:
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
break;
}
ucol_updateInternalState(coll);
}
U_CAPI UColAttributeValue ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
switch(attr) {
case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
if(coll->frenchCollationisDefault) {
return coll->image->frenchCollation;
} else {
return coll->frenchCollation;
}
break;
case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
if(coll->alternateHandlingisDefault) {
return coll->image->alternateHandling;
} else {
return coll->alternateHandling;
}
break;
case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
if(coll->caseFirstisDefault) {
return coll->image->caseFirst;
} else {
return coll->caseFirst;
}
break;
case UCOL_CASE_LEVEL: /* do we have an extra case level */
if(coll->caseLevelisDefault) {
return coll->image->caseLevel;
} else {
return coll->caseLevel;
}
break;
case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
if(coll->normalizationModeisDefault) {
return coll->image->normalizationMode;
} else {
return coll->normalizationMode;
}
break;
case UCOL_STRENGTH: /* attribute for strength */
if(coll->strengthisDefault) {
return coll->image->strength;
} else {
return coll->strength;
}
break;
case UCOL_ATTRIBUTE_COUNT:
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
break;
}
return UCOL_DEFAULT;
}
U_CAPI void
ucol_setNormalization( UCollator *coll,
UNormalizationMode mode)
{
UErrorCode status = U_ZERO_ERROR;
switch(mode) {
case UCOL_NO_NORMALIZATION:
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_OFF, &status);
break;
case UCOL_DECOMP_CAN:
ucol_setAttribute(coll, UCOL_NORMALIZATION_MODE, UCOL_ON, &status);
break;
default:
/* Shouldn't get here. */
/* This is quite a bad API */
/* deprecate */
/* *status = U_ILLEGAL_ARGUMENT_ERROR; */
return;
}
}
U_CAPI UNormalizationMode
ucol_getNormalization(const UCollator* coll)
{
UErrorCode status = U_ZERO_ERROR;
if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, &status) == UCOL_ON) {
return UCOL_DECOMP_CAN;
} else {
return UCOL_NO_NORMALIZATION;
}
}
U_CAPI void
ucol_setStrength( UCollator *coll,
UCollationStrength strength)
{
UErrorCode status = U_ZERO_ERROR;
ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status);
}
U_CAPI UCollationStrength
ucol_getStrength(const UCollator *coll)
{
UErrorCode status = U_ZERO_ERROR;
return ucol_getAttribute(coll, UCOL_STRENGTH, &status);
}
/****************************************************************************/
/* Following are misc functions */
/* there are new APIs and some compatibility APIs */
/****************************************************************************/
U_CAPI UCollator *
ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status)
{
UCollator * localCollator;
int32_t bufferSizeNeeded = sizeof(UCollator);
if (status == NULL || U_FAILURE(*status)){
return 0;
}
if (!pBufferSize || !coll){
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
if (*pBufferSize == 0){ /* 'preflighting' request - set needed size into *pBufferSize */
*pBufferSize = bufferSizeNeeded;
return 0;
}
if (*pBufferSize < bufferSizeNeeded || stackBuffer == NULL) {
/* allocate one here...*/
int32_t length;
const UChar * rules = ucol_getRules(coll, &length);
localCollator = ucol_openRules(rules,
length,
ucol_getNormalization(coll),
ucol_getStrength(coll),
status);
if (U_SUCCESS(*status))
{
*status = U_SAFECLONE_ALLOCATED_ERROR;
}
} else {
localCollator = (UCollator *)stackBuffer;
memcpy(localCollator, coll, sizeof(UCollator));
localCollator->freeOnClose = FALSE;
}
return localCollator;
}
U_CAPI int32_t
ucol_getRulesEx(const UCollator *coll, UColRuleOption delta, UChar *buffer, int32_t bufferLen) {
int32_t len = 0;
int32_t UCAlen = 0;
const UChar* ucaRules;
const UChar *rules = ucol_getRules(coll, &len);
*buffer=0;
if(delta == UCOL_FULL_RULES) {
UErrorCode status = U_ZERO_ERROR;
/* take the UCA rules and append real rules at the end */
/* UCA rules will be probably coming from the root RB */
ucaRules = ures_getStringByKey(coll->rb,"%%UCARULES",&UCAlen,&status);
}
if(bufferLen >= len + UCAlen) {
u_strcat(buffer, rules);
if(UCAlen >0)
u_strcat(buffer,ucaRules);
} else {
u_strncat(buffer, rules, (bufferLen-UCAlen)*sizeof(UChar));
}
return len+UCAlen;
}
U_CAPI const UChar*
ucol_getRules( const UCollator *coll,
int32_t *length)
{
if(coll->rules != NULL) {
*length = u_strlen(coll->rules);
return coll->rules;
} else {
UErrorCode status = U_ZERO_ERROR;
if(coll->rb != NULL) {
UResourceBundle *collElem = ures_getByKey(coll->rb, "CollationElements", NULL, &status);
if(U_SUCCESS(status)) {
/*Semantic const */
((UCollator *)coll)->rules = ures_getStringByKey(collElem, "Sequence", length, &status);
((UCollator *)coll)->freeRulesOnClose = FALSE;
ures_close(collElem);
return coll->rules;
}
}
*length = 0;
return &coll->zero;
}
}
U_CAPI int32_t
ucol_getDisplayName( const char *objLoc,
const char *dispLoc,
UChar *result,
int32_t resultLength,
UErrorCode *status)
{
if(U_FAILURE(*status)) return -1;
UnicodeString dst(result, resultLength, resultLength);
Collator::getDisplayName(Locale(objLoc), Locale(dispLoc), dst);
int32_t actLen;
T_fillOutputParams(&dst, result, resultLength, &actLen, status);
return actLen;
}
U_CAPI const char*
ucol_getAvailable(int32_t index)
{
return uloc_getAvailable(index);
}
U_CAPI int32_t
ucol_countAvailable()
{
return uloc_countAvailable();
}
U_CAPI void
ucol_getVersion(const UCollator* coll,
UVersionInfo versionInfo)
{
/* RunTime version */
uint8_t rtVersion = UCOL_RUNTIME_VERSION;
/* Builder version*/
uint8_t bdVersion = coll->dataInfo.dataVersion[0];
/* Charset Version. Need to get the version from cnv files
* makeconv should populate cnv files with version and
* an api has to be provided in ucnv.h to obtain this version
*/
uint8_t csVersion = 0;
/* combine the version info */
uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion));
/* Tailoring rules */
versionInfo[0] = (uint8_t)(cmbVersion>>8);
versionInfo[1] = (uint8_t)cmbVersion;
versionInfo[2] = coll->dataInfo.dataVersion[1];
versionInfo[3] = UCA->dataInfo.dataVersion[1];
}
static UBool ucol_unsafeCP(UChar c, const UCollator *coll) {
int32_t hash = c;
uint8_t htbyte;
if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
if (hash >= 0xd800 && hash <= 0xf8ff) {
/* Part of a surrogate, or in private use area. */
/* These are always considered unsafe. */
return TRUE;
}
hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
}
htbyte = coll->unsafeCP[hash>>3];
if (((htbyte >> (hash & 7)) & 1) == 1)
return TRUE;
/* TODO: main UCA table data needs to be merged into tailoring tables, */
/* and this second level of test removed from here. */
if (coll == UCA)
return FALSE;
htbyte = UCA->unsafeCP[hash>>3];
return ((htbyte >> (hash & 7)) & 1) == 1;
}
/****************************************************************************/
/* Following are the string compare functions */
/* */
/****************************************************************************/
/* compare two strings... Can get interesting */
U_CAPI UCollationResult
ucol_strcoll( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
/* check if source and target are valid strings */
if (source==target && sourceLength==targetLength)
{
return UCOL_EQUAL;
}
/*
sourceLength = sourceLength == -1 ? u_strlen(source) : sourceLength;
targetLength = targetLength == -1 ? u_strlen(target) : targetLength;
if(sourceLength == targetLength && uprv_memcmp(source, target, sizeof(UChar)*sourceLength) == 0) {
return UCOL_EQUAL;
}
*/
/* Scan the strings. Find:
/* their length, if not given by caller */
/* The length of any leading portion that is equal */
/* Whether they are exactly equal. (in which case we just return */
const UChar *pSrc = source;
const UChar *pTarg = target;
const UChar *pSrcEnd = source + sourceLength;
const UChar *pTargEnd = target + targetLength;
int32_t equalLength = 0;
// Scan while the strings are bitwise ==, or until one is exhausted.
for (;;) {
if (pSrc == pSrcEnd || pTarg == pTargEnd)
break;
if (*pSrc != *pTarg)
break;
if (*pSrc == 0 && (sourceLength == -1 || targetLength == -1))
break;
equalLength++;
pSrc++;
pTarg++;
}
// If we made it all the way through both strings, we are done. They are ==
if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */
(pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */
return UCOL_EQUAL;
// If we don't know the length of the src string, continue scanning it to get the length..
if (sourceLength == -1) {
while (*pSrc != 0 ) {
pSrc++;
}
sourceLength = pSrc - source;
}
// If we don't know the length of the targ string, continue scanning it to get the length..
if (targetLength == -1) {
while (*pTarg != 0 ) {
pTarg++;
}
targetLength = pTarg - target;
}
if (equalLength > 2) {
/* There is an identical portion at the beginning of the two strings. */
/* If the identical portion ends within a contraction or a comibining */
/* character sequence, back up to the start of that sequence. */
pSrc = source + equalLength; /* point to the first differing chars */
pTarg = target + equalLength;
if (pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll) ||
pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll))
{
// We are stopped in the middle of a contraction.
// Scan backwards through the == part of the string looking for the start of the contraction.
// It doesn't matter which string we scan, since they are the same in this region.
do
{
equalLength--;
pSrc--;
}
while (equalLength>0 && ucol_unsafeCP(*pSrc, coll));
}
source += equalLength;
target += equalLength;
sourceLength -= equalLength;
targetLength -= equalLength;
}
UCollationResult result = UCOL_EQUAL;
UErrorCode status = U_ZERO_ERROR;
UChar normSource[UCOL_MAX_BUFFER], normTarget[UCOL_MAX_BUFFER];
UChar *normSourceP = normSource;
UChar *normTargetP = normTarget;
uint32_t normSourceLength = UCOL_MAX_BUFFER, normTargetLength = UCOL_MAX_BUFFER;
collIterate sColl, tColl;
init_collIterate(source, sourceLength, &sColl, FALSE);
if((coll->normalizationMode == UCOL_ON)
/* && (unorm_quickCheck( sColl.string, sColl.len - sColl.string, UNORM_NFD, &status) != UNORM_YES)
&& (unorm_quickCheck( sColl.string, sColl.len - sColl.string, UNORM_NFC, &status) != UNORM_YES)) */
/* changed by synwee */
&& !checkFCD(sColl.string, sColl.len - sColl.string, &status))
{
normSourceLength = unorm_normalize(source, sourceLength, UNORM_NFD, 0, normSource, normSourceLength, &status);
/* if we don't have enough space in buffers, we'll recursively call strcoll, so that we have single point */
/* of exit - to free buffers we allocated. Otherwise, returns from strcoll are in various places and it */
/* would be hard to track all the exit points. */
if(U_FAILURE(status)) { /* This would be buffer overflow */
UColAttributeValue mode = coll->normalizationMode;
normSourceP = (UChar *)uprv_malloc((normSourceLength+1)*sizeof(UChar));
status = U_ZERO_ERROR;
normSourceLength = unorm_normalize(source, sourceLength, UNORM_NFD, 0, normSourceP, normSourceLength+1, &status);
normTargetLength = unorm_normalize(target, targetLength, UNORM_NFD, 0, normTargetP, normTargetLength, &status);
if(U_FAILURE(status)) { /* This would be buffer overflow */
normTargetP = (UChar *)uprv_malloc((normTargetLength+1)*sizeof(UChar));
status = U_ZERO_ERROR;
normTargetLength = unorm_normalize(target, targetLength, UNORM_NFD, 0, normTargetP, normTargetLength+1, &status);
}
((UCollator *)coll)->normalizationMode = UCOL_OFF;
UCollationResult result = ucol_strcoll(coll, normSourceP, normSourceLength, normTargetP, normTargetLength);
((UCollator *)coll)->normalizationMode = mode;
uprv_free(normSourceP);
if(normTargetP != normTarget) {
uprv_free(normTargetP);
}
return result;
}
init_collIterate(normSource, normSourceLength, &sColl, TRUE);
}
init_collIterate(target, targetLength, &tColl, FALSE);
if((coll->normalizationMode == UCOL_ON)
/* && (unorm_quickCheck(tColl.string, tColl.len - tColl.string, UNORM_NFD, &status) != UNORM_YES)
&& (unorm_quickCheck(tColl.string, tColl.len - tColl.string, UNORM_NFC, &status) != UNORM_YES)) */
/* changed by synwee */
&& !checkFCD(tColl.string, tColl.len - tColl.string, &status))
{
normTargetLength = unorm_normalize(target, targetLength, UNORM_NFD, 0, normTarget, normTargetLength, &status);
if(U_FAILURE(status)) { /* This would be buffer overflow */
UColAttributeValue mode = coll->normalizationMode;
normTargetP = (UChar *)uprv_malloc((normTargetLength+1)*sizeof(UChar));
status = U_ZERO_ERROR;
normTargetLength = unorm_normalize(target, targetLength, UNORM_NFD, 0, normTargetP, normTargetLength+1, &status);
((UCollator *)coll)->normalizationMode = UCOL_OFF;
UCollationResult result = ucol_strcoll(coll, normSourceP, normSourceLength, normTargetP, normTargetLength);
((UCollator *)coll)->normalizationMode = mode;
uprv_free(normTargetP);
return result;
}
init_collIterate(normTarget, normTargetLength, &tColl, TRUE);
}
if (U_FAILURE(status))
{
return UCOL_EQUAL;
}
UColAttributeValue strength = coll->strength;
UBool initialCheckSecTer = (strength >= UCOL_SECONDARY);
UBool checkSecTer = initialCheckSecTer;
UBool checkTertiary = (strength >= UCOL_TERTIARY);
UBool checkQuad = (strength >= UCOL_QUATERNARY);
UBool checkIdent = (strength == UCOL_IDENTICAL);
UBool checkCase = (coll->caseLevel == UCOL_ON);
UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer;
UBool upperFirst = (coll->caseFirst == UCOL_UPPER_FIRST) && checkTertiary;
UBool shifted = (coll->alternateHandling == UCOL_SHIFTED) && checkQuad;
uint32_t sCEsArray[512], tCEsArray[512];
uint32_t *sCEs = sCEsArray, *tCEs = tCEsArray;
uint32_t *sCEend = sCEs+512, *tCEend = tCEs+512;
uint8_t caseSwitch = coll->caseSwitch;
uint8_t tertiaryMask = coll->tertiaryMask;
uint32_t LVT = shifted*((coll->variableMax1)<<24 | (coll->variableMax2)<<16);
uint32_t secS = 0, secT = 0;
uint32_t sOrder=0, tOrder=0;
if(!shifted) {
for(;;) {
if(sCEs == sCEend || tCEs == tCEend) {
return ucol_compareUsingSortKeys(coll, source, sourceLength, target, targetLength);
}
/* Get the next collation element in each of the strings, unless */
/* we've been requested to skip it. */
while(sOrder == 0) {
/*UCOL_GETNEXTCE(sOrder, coll, sColl, &status);*/
sOrder = ucol_getNextCE(coll, &sColl, &status);
sOrder ^= caseSwitch;
*(sCEs++) = sOrder;
sOrder &= 0xFFFF0000;
}
while(tOrder == 0) {
/*UCOL_GETNEXTCE(tOrder, coll, tColl, &status);*/
tOrder = ucol_getNextCE(coll, &tColl, &status);
tOrder ^= caseSwitch;
*(tCEs++) = tOrder;
tOrder &= 0xFFFF0000;
}
if(sOrder == tOrder) {
if(sOrder == 0x00010000) {
break;
} else {
sOrder = 0; tOrder = 0;
continue;
}
} else if(sOrder < tOrder) {
return UCOL_LESS;
} else {
return UCOL_GREATER;
}
} /* no primary difference... do the rest from the buffers */
} else { /* shifted - do a slightly more complicated processing */
for(;;) {
UBool sInShifted = FALSE;
UBool tInShifted = FALSE;
if(sCEs == sCEend || tCEs == tCEend) {
return ucol_compareUsingSortKeys(coll, source, sourceLength, target, targetLength);
}
/* This is where abridged version for shifted should go */
for(;;) {
/*UCOL_GETNEXTCE(sOrder, coll, sColl, &status);*/
sOrder = ucol_getNextCE(coll, &sColl, &status);
if(sOrder == UCOL_NO_MORE_CES) {
*(sCEs++) = sOrder;
break;
} else if((sOrder & 0xFFFFFFBF) == 0) {
continue;
} else if(isContinuation(sOrder)) {
if((sOrder & 0xFFFF0000) > 0) { /* There is primary value */
if(sInShifted) {
sOrder &= 0xFFFF0000;
*(sCEs++) = sOrder;
continue;
} else {
sOrder ^= caseSwitch;
*(sCEs++) = sOrder;
break;
}
} else { /* Just lower level values */
if(sInShifted) {
continue;
} else {
sOrder ^= caseSwitch;
*(sCEs++) = sOrder;
continue;
}
}
} else { /* regular */
if(sOrder > LVT) {
*(sCEs++) = sOrder;
break;
} else {
if((sOrder & 0xFFFF0000) > 0) {
sInShifted = TRUE;
sOrder &= 0xFFFF0000;
*(sCEs++) = sOrder;
continue;
} else {
sOrder ^= caseSwitch;
*(sCEs++) = sOrder;
continue;
}
}
}
}
sOrder &= 0xFFFF0000;
sInShifted = FALSE;
for(;;) {
/*UCOL_GETNEXTCE(tOrder, coll, tColl, &status);*/
tOrder = ucol_getNextCE(coll, &tColl, &status);
if(tOrder == UCOL_NO_MORE_CES) {
*(tCEs++) = tOrder;
break;
} else if((tOrder & 0xFFFFFFBF) == 0) {
continue;
} else if(isContinuation(tOrder)) {
if((tOrder & 0xFFFF0000) > 0) { /* There is primary value */
if(tInShifted) {
tOrder &= 0xFFFF0000;
*(tCEs++) = tOrder;
continue;
} else {
tOrder ^= caseSwitch;
*(tCEs++) = tOrder;
break;
}
} else { /* Just lower level values */
if(tInShifted) {
continue;
} else {
tOrder ^= caseSwitch;
*(tCEs++) = tOrder;
continue;
}
}
} else { /* regular */
if(tOrder > LVT) {
*(tCEs++) = tOrder;
break;
} else {
if((tOrder & 0xFFFF0000) > 0) {
tInShifted = TRUE;
tOrder &= 0xFFFF0000;
*(tCEs++) = tOrder;
continue;
} else {
tOrder ^= caseSwitch;
*(tCEs++) = tOrder;
continue;
}
}
}
}
tOrder &= 0xFFFF0000;
tInShifted = FALSE;
if(sOrder == tOrder) {
if(sOrder == 0x00010000) {
break;
} else {
sOrder = 0; tOrder = 0;
continue;
}
} else if(sOrder < tOrder) {
return UCOL_LESS;
} else {
return UCOL_GREATER;
}
} /* no primary difference... do the rest from the buffers */
}
/* now, we're gonna reexamine collected CEs */
sCEend = sCEs;
tCEend = tCEs;
/* This is the secondary level of comparison */
if(checkSecTer) {
if(!isFrenchSec) { /* normal */
sCEs = sCEsArray;
tCEs = tCEsArray;
for(;;) {
while (secS == 0) {
secS = *(sCEs++) & 0xFF00;
}
while(secT == 0) {
secT = *(tCEs++) & 0xFF00;
}
if(secS == secT) {
if(secS == 0x0100) {
break;
} else {
secS = 0; secT = 0;
continue;
}
} else if(secS < secT) {
return UCOL_LESS;
} else {
return UCOL_GREATER;
}
}
} else { /* do the French */
uint32_t *sCESave = NULL;
uint32_t *tCESave = NULL;
sCEs = sCEend-2; /* this could also be sCEs-- if needs to be optimized */
tCEs = tCEend-2;
for(;;) {
while (secS == 0 && sCEs >= sCEsArray) {
if(sCESave == 0) {
secS = *(sCEs--) & 0xFF80;
if(isContinuation(secS)) {
while(isContinuation(secS = *(sCEs--) & 0xFF80));
/* after this, secS has the start of continuation, and sCEs points before that */
sCESave = sCEs; /* we save it, so that we know where to come back AND that we need to go forward */
sCEs+=2; /* need to point to the first continuation CP */
/* However, now you can just continue doing stuff */
}
} else {
secS = *(sCEs++) & 0xFF80;
if(!isContinuation(secS)) { /* This means we have finished with this cont */
sCEs = sCESave; /* reset the pointer to before continuation */
sCESave = 0;
continue;
}
}
secS &= 0xFF00; /* remove the continuation bit */
}
while(secT == 0 && tCEs >= tCEsArray) {
if(tCESave == 0) {
secT = *(tCEs--) & 0xFF80;
if(isContinuation(secT)) {
while(isContinuation(secT = *(tCEs--) & 0xFF80));
/* after this, secS has the start of continuation, and sCEs points before that */
tCESave = tCEs; /* we save it, so that we know where to come back AND that we need to go forward */
tCEs+=2; /* need to point to the first continuation CP */
/* However, now you can just continue doing stuff */
}
} else {
secT = *(tCEs++) & 0xFF80;
if(!isContinuation(secT)) { /* This means we have finished with this cont */
tCEs = tCESave; /* reset the pointer to before continuation */
tCESave = 0;
continue;
}
}
secT &= 0xFF00; /* remove the continuation bit */
}
if(secS == secT) {
if(secS == 0x0100 || (sCEs < sCEsArray && tCEs < tCEsArray)) {
break;
} else {
secS = 0; secT = 0;
continue;
}
} else if(secS < secT) {
return UCOL_LESS;
} else {
return UCOL_GREATER;
}
}
}
}
/* doing the case bit */
if(checkCase) {
sCEs = sCEsArray;
tCEs = tCEsArray;
for(;;) {
while((secS & UCOL_REMOVE_CASE) == 0) {
secS = *(sCEs++) & UCOL_TERT_CASE_MASK;
}
while((secT & UCOL_REMOVE_CASE) == 0) {
secT = *(tCEs++) & UCOL_TERT_CASE_MASK;
}
if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) {
return UCOL_LESS;
} else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) {
return UCOL_GREATER;
}
if((secS & UCOL_REMOVE_CASE) == 0x01 || (secT & UCOL_REMOVE_CASE) == 0x01 ) {
break;
} else {
secS = 0;
secT = 0;
}
}
}
/* Tertiary level */
if(checkTertiary) {
secS = 0;
secT = 0;
sCEs = sCEsArray;
tCEs = tCEsArray;
for(;;) {
while((secS & UCOL_REMOVE_CASE) == 0) {
secS = *(sCEs++) & tertiaryMask;
}
while((secT & UCOL_REMOVE_CASE) == 0) {
secT = *(tCEs++) & tertiaryMask;
}
if(secS == secT) {
if((secS & UCOL_REMOVE_CASE) == 1) {
break;
} else {
secS = 0; secT = 0;
continue;
}
} else if(secS < secT) {
return UCOL_LESS;
} else {
return UCOL_GREATER;
}
}
}
if(shifted) {
UBool sInShifted = TRUE;
UBool tInShifted = TRUE;
secS = 0;
secT = 0;
sCEs = sCEsArray;
tCEs = tCEsArray;
for(;;) {
while(secS == 0 && secS != 0x00010101 || (isContinuation(secS) && !sInShifted)) {
secS = *(sCEs++);
if(isContinuation(secS) && !sInShifted) {
continue;
}
if(secS > LVT || (secS & 0xFFFF0000) == 0) {
secS = 0xFFFF0000;
sInShifted = FALSE;
} else {
sInShifted = TRUE;
}
}
secS &= 0xFFFF0000;
while(secT == 0 && secT != 0x00010101 || (isContinuation(secT) && !tInShifted)) {
secT = *(tCEs++);
if(isContinuation(secT) && !tInShifted) {
continue;
}
if(secT > LVT || (secT & 0xFFFF0000) == 0) {
secT = 0xFFFF0000;
tInShifted = FALSE;
} else {
tInShifted = TRUE;
}
}
secT &= 0xFFFF0000;
if(secS == secT) {
if(secS == 0x00010000) {
break;
} else {
secS = 0; secT = 0;
continue;
}
} else if(secS < secT) {
return UCOL_LESS;
} else {
return UCOL_GREATER;
}
}
}
/* For IDENTICAL comparisons, we use a bitwise character comparison */
/* as a tiebreaker if all else is equal */
/* NOTE: The java code compares result with 0, and */
/* puts the result of the string comparison directly into result */
/* if (result == UCOL_EQUAL && strength == UCOL_IDENTICAL) */
if(checkIdent)
{
UnicodeString sourceDecomp, targetDecomp;
int8_t comparison;
Normalizer::normalize(UnicodeString(source, sourceLength), ((RuleBasedCollator *)coll)->getDecomposition(),
0, sourceDecomp, status);
Normalizer::normalize(UnicodeString(target, targetLength), ((RuleBasedCollator *)coll)->getDecomposition(),
0, targetDecomp, status);
comparison = sourceDecomp.compare(targetDecomp);
if (comparison < 0)
{
result = UCOL_LESS;
}
else if (comparison == 0)
{
result = UCOL_EQUAL;
}
else
{
result = UCOL_GREATER;
}
}
return result;
}
void init_incrementalContext(UCharForwardIterator *source, void *sourceContext, incrementalContext *s) {
s->len = s->stringP = s->stackString ;
s->capacity = s->stackString+UCOL_MAX_BUFFER;
s->CEpos = s->toReturn = s->CEs;
s->source = source;
s->sourceContext = sourceContext;
s->currentChar = 0xFFFF;
s->lastChar = 0xFFFF;
s->panic = FALSE;
}
/* This is the new function */
/* This is the incremental function */
U_CAPI UCollationResult ucol_strcollinc(const UCollator *coll,
UCharForwardIterator *source, void *sourceContext,
UCharForwardIterator *target, void *targetContext)
{
UCollationResult result = UCOL_EQUAL;
UErrorCode status = U_ZERO_ERROR;
incrementalContext sColl, tColl;
init_incrementalContext(source, sourceContext, &sColl);
init_incrementalContext(target, targetContext, &tColl);
/* WEIVTODO: this should not be here :) */
return alternateIncrementalProcessing(coll, &sColl, &tColl);
if(coll->normalizationMode != UCOL_OFF) { /* run away screaming!!!! */
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
if (U_FAILURE(status))
{
return UCOL_EQUAL;
}
UColAttributeValue strength = coll->strength;
uint32_t sOrder=UCOL_NO_MORE_CES, tOrder=UCOL_NO_MORE_CES;
uint32_t pSOrder, pTOrder;
UBool gets = TRUE, gett = TRUE;
UBool initialCheckSecTer = (strength >= UCOL_SECONDARY);
UBool checkSecTer = initialCheckSecTer;
UBool checkTertiary = (strength >= UCOL_TERTIARY);
UBool checkQuad = (strength >= UCOL_QUATERNARY);
//UBool checkIdent = (strength == UCOL_IDENTICAL);
UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer;
//UBool upperFirst = (coll->caseFirst == UCOL_UPPER_FIRST);
UBool shifted = (coll->alternateHandling == UCOL_SHIFTED) && checkQuad;
if(!isFrenchSec) {
for(;;)
{
/* Get the next collation element in each of the strings, unless */
/* we've been requested to skip it. */
if (gets)
{
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
}
gets = TRUE;
if (gett)
{
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
}
gett = TRUE;
/* If we've hit the end of one of the strings, jump out of the loop */
if ((sOrder == UCOL_NO_MORE_CES)||
(tOrder == UCOL_NO_MORE_CES)) {
if(sColl.panic == TRUE || tColl.panic == TRUE) {
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
break;
}
/* If there's no difference at this position, we can skip to the */
/* next one. */
if (sOrder == tOrder)
{
continue;
}
/* Compare primary differences first. */
pSOrder = UCOL_PRIMARYORDER(sOrder);
pTOrder = UCOL_PRIMARYORDER(tOrder);
if (pSOrder != pTOrder)
{
if (sOrder == UCOL_IGNORABLE)
{
/* The entire source element is ignorable. */
/* Skip to the next source element, but don't fetch another target element. */
gett = FALSE;
continue;
}
if (tOrder == UCOL_IGNORABLE)
{
gets = FALSE;
continue;
}
/* The source and target elements aren't ignorable, but it's still possible */
/* for the primary component of one of the elements to be ignorable.... */
if (pSOrder == UCOL_PRIMIGNORABLE || (shifted && pSOrder < coll->variableMax1) ) /* primary order in source is ignorable */
{
/* The source's primary is ignorable, but the target's isn't. We treat ignorables */
/* as a secondary difference, so remember that we found one. */
if (checkSecTer)
{
result = UCOL_GREATER; /* (strength is SECONDARY) - still need to check for tertiary or quad */
checkSecTer = FALSE;
}
/* Skip to the next source element, but don't fetch another target element. */
gett = FALSE;
}
else if (pTOrder == UCOL_PRIMIGNORABLE || (shifted && pSOrder < coll->variableMax1))
{
/* record differences - see the comment above. */
if (checkSecTer)
{
result = UCOL_LESS; /* (strength is SECONDARY) - still need to check for tertiary or quad */
checkSecTer = FALSE;
}
/* Skip to the next target element, but don't fetch another source element. */
gets = FALSE;
}
else
{
/* Neither of the orders is ignorable, and we already know that the primary */
/* orders are different because of the (pSOrder != pTOrder) test above. */
/* Record the difference and stop the comparison. */
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
if (pSOrder < pTOrder)
{
return UCOL_LESS; /* (strength is PRIMARY) */
}
return UCOL_GREATER; /* (strength is PRIMARY) */
}
} else { /* else of if ( pSOrder != pTOrder ) */
/* primary order is the same, but complete order is different. So there */
/* are no base elements at this point, only ignorables (Since the strings are */
/* normalized) */
if (checkSecTer) {
/* a secondary or tertiary difference may still matter */
uint32_t secSOrder = UCOL_SECONDARYORDER(sOrder);
uint32_t secTOrder = UCOL_SECONDARYORDER(tOrder);
if (secSOrder != secTOrder) {
/* there is a secondary difference */
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
/* (strength is SECONDARY) */
checkSecTer = FALSE;
} else {
if (checkTertiary) {
/* a tertiary difference may still matter */
uint32_t terSOrder = UCOL_TERTIARYORDER(sOrder);
uint32_t terTOrder = UCOL_TERTIARYORDER(tOrder);
if (terSOrder != terTOrder) {
/* there is a tertiary difference */
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
/* (strength is TERTIARY) */
checkTertiary = FALSE;
} else if(checkQuad && shifted) { /* try shifted & stuff */
uint32_t quadSOrder = (pSOrder < coll->variableMax1)?pSOrder:0xFFFF;
uint32_t quadTOrder = (pTOrder < coll->variableMax1)?pTOrder:0xFFFF;
if(quadSOrder != quadTOrder) {
result = (quadSOrder < quadTOrder) ? UCOL_LESS : UCOL_GREATER;
checkQuad = FALSE;
}
}
}
}
} /* if (checkSecTer) */
} /* if ( pSOrder != pTOrder ) */
} /* while() */
if (sOrder != UCOL_NO_MORE_CES)
{
/* (tOrder must be CollationElementIterator::NULLORDER, */
/* since this point is only reached when sOrder or tOrder is NULLORDER.) */
/* The source string has more elements, but the target string hasn't. */
do
{
if (UCOL_PRIMARYORDER(sOrder) != UCOL_PRIMIGNORABLE)
{
/* We found an additional non-ignorable base character in the source string. */
/* This is a primary difference, so the source is greater */
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
return UCOL_GREATER; /* (strength is PRIMARY) */
}
if (UCOL_SECONDARYORDER(sOrder) != UCOL_SECIGNORABLE)
{
/* Additional secondary elements mean the source string is greater */
if (checkSecTer)
{
result = UCOL_GREATER; /* (strength is SECONDARY) */
checkSecTer = FALSE;
}
}
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
/*WEIVTODO: What about tertiaries and quads??? recheck */
} while (sOrder != UCOL_NO_MORE_CES);
} else if (tOrder != UCOL_NO_MORE_CES) {
/* The target string has more elements, but the source string hasn't. */
do
{
if (UCOL_PRIMARYORDER(tOrder) != UCOL_PRIMIGNORABLE)
{
/* We found an additional non-ignorable base character in the target string. */
/* This is a primary difference, so the source is less */
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
return UCOL_LESS; /* (strength is PRIMARY) */
}
if (UCOL_SECONDARYORDER(tOrder) != UCOL_SECIGNORABLE)
{
/* Additional secondary elements in the target mean the source string is less */
if (checkSecTer)
{
result = UCOL_LESS; /* (strength is SECONDARY) */
checkSecTer = FALSE;
}
}
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
}
while ( tOrder != UCOL_NO_MORE_CES);
/* while ((tOrder = ucol_getIncrementalCE(coll, &tColl, &status)) != CollationElementIterator::NULLORDER); */
}
} else { /* French */
/* there is a bad situation with French when there is a different number of secondaries... */
/* If that situation arises (when one primary is ignorable with nonignorable secondary and the other primary is not */
/* ignorable */
/* TODO: if the buffer is not big enough, we should use sortkeys */
UBool bufferFrenchSec = FALSE;
uint32_t sourceFrenchSec[UCOL_MAX_BUFFER], targetFrenchSec[UCOL_MAX_BUFFER];
uint32_t *sFSBEnd = sourceFrenchSec+UCOL_MAX_BUFFER;
uint32_t *tFSBEnd = targetFrenchSec+UCOL_MAX_BUFFER;
uint32_t *sFrenchStartPtr = NULL, *sFrenchEndPtr = NULL;
uint32_t *tFrenchStartPtr = NULL, *tFrenchEndPtr = NULL;
for(;;)
{
/* Get the next collation element in each of the strings, unless */
/* we've been requested to skip it. */
if (gets)
{
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
/*WEIVTODO: do the continuation bit here */
if(isContinuation(sOrder)) {
if (sFrenchStartPtr == NULL) {
sFrenchStartPtr = sFSBEnd;
}
sFrenchEndPtr = sFSBEnd-1;
} else if (sFrenchStartPtr != NULL) {
/* reverse secondaries from frenchStartPtr up to frenchEndPtr */
uprv_ucol_reverse_buffer(uint32_t, sFrenchEndPtr, sFrenchStartPtr);
sFrenchStartPtr = NULL;
}
*(--sFSBEnd) = UCOL_SECONDARYORDER(sOrder);
if(sFSBEnd == sourceFrenchSec) { /* overflowing the buffer, bail out */
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
}
gets = TRUE;
if (gett)
{
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
/*WEIVTODO: do the continuation bit here */
if(isContinuation(tOrder)) {
if (tFrenchStartPtr == NULL) {
tFrenchStartPtr = tFSBEnd;
}
tFrenchEndPtr = tFSBEnd-1;
} else if (tFrenchStartPtr != NULL) {
/* reverse secondaries from frenchStartPtr up to frenchEndPtr */
uprv_ucol_reverse_buffer(uint32_t, tFrenchEndPtr, tFrenchStartPtr);
tFrenchStartPtr = NULL;
}
*(--tFSBEnd) = UCOL_SECONDARYORDER(tOrder);
if(tFSBEnd == targetFrenchSec) { /* overflowing the buffer, bail out */
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
}
gett = TRUE;
/* If we've hit the end of one of the strings, jump out of the loop */
if ((sOrder == UCOL_NO_MORE_CES)||
(tOrder == UCOL_NO_MORE_CES)) {
break;
}
/* If there's no difference at this position, we can skip to the */
/* next one. */
if (sOrder == tOrder)
{
continue;
}
/* Compare primary differences first. */
pSOrder = UCOL_PRIMARYORDER(sOrder);
pTOrder = UCOL_PRIMARYORDER(tOrder);
if (pSOrder != pTOrder)
{
if (sOrder == UCOL_IGNORABLE)
{
/* The entire source element is ignorable. */
/* Skip to the next source element, but don't fetch another target element. */
gett = FALSE;
continue;
}
if (tOrder == UCOL_IGNORABLE)
{
gets = FALSE;
continue;
}
/* The source and target elements aren't ignorable, but it's still possible */
/* for the primary component of one of the elements to be ignorable.... */
if (pSOrder == UCOL_PRIMIGNORABLE) /* primary order in source is ignorable */
{
/* The source's primary is ignorable, but the target's isn't. We treat ignorables */
/* as a secondary difference, so remember that we found one. */
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
/* Skip to the next source element, but don't fetch another target element. */
gett = FALSE;
}
else if (pTOrder == UCOL_PRIMIGNORABLE)
{
/* record differences - see the comment above. */
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
/* Skip to the next target element, but don't fetch another source element. */
gets = FALSE;
}
else
{
/* Neither of the orders is ignorable, and we already know that the primary */
/* orders are different because of the (pSOrder != pTOrder) test above. */
/* Record the difference and stop the comparison. */
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
if (pSOrder < pTOrder)
{
return UCOL_LESS; /* (strength is PRIMARY) */
}
return UCOL_GREATER; /* (strength is PRIMARY) */
}
}
else
{ /* else of if ( pSOrder != pTOrder ) */
/* primary order is the same, but complete order is different. So there */
/* are no base elements at this point, only ignorables (Since the strings are */
/* normalized) */
if (checkSecTer)
{
/* a secondary or tertiary difference may still matter */
uint32_t secSOrder = UCOL_SECONDARYORDER(sOrder);
uint32_t secTOrder = UCOL_SECONDARYORDER(tOrder);
if (secSOrder != secTOrder)
{
/* there is a secondary difference */
result = (secSOrder < secTOrder) ? UCOL_LESS : UCOL_GREATER;
/* (strength is SECONDARY) */
checkSecTer = isFrenchSec; /* We still want to track the French secondaries */
/* checkSecTer = FALSE; */
}
else
{
if (checkTertiary)
{
/* a tertiary difference may still matter */
uint32_t terSOrder = UCOL_TERTIARYORDER(sOrder);
uint32_t terTOrder = UCOL_TERTIARYORDER(tOrder);
if (terSOrder != terTOrder)
{
/* there is a tertiary difference */
result = (terSOrder < terTOrder) ? UCOL_LESS : UCOL_GREATER;
/* (strength is TERTIARY) */
checkTertiary = FALSE;
} else if(checkQuad && shifted) { /* try shifted & stuff */
uint32_t quadSOrder = (pSOrder < coll->variableMax1)?pSOrder:0xFFFF;
uint32_t quadTOrder = (pTOrder < coll->variableMax1)?pTOrder:0xFFFF;
if(quadSOrder != quadTOrder) {
result = (quadSOrder < quadTOrder) ? UCOL_LESS : UCOL_GREATER;
checkQuad = FALSE;
}
}
}
}
} /* if (checkSecTer) */
} /* if ( pSOrder != pTOrder ) */
} /* while() */
if (sOrder != UCOL_NO_MORE_CES)
{
/* (tOrder must be CollationElementIterator::NULLORDER, */
/* since this point is only reached when sOrder or tOrder is NULLORDER.) */
/* The source string has more elements, but the target string hasn't. */
do
{
if (UCOL_PRIMARYORDER(sOrder) != UCOL_PRIMIGNORABLE)
{
/* We found an additional non-ignorable base character in the source string. */
/* This is a primary difference, so the source is greater */
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
return UCOL_GREATER; /* (strength is PRIMARY) */
}
if (UCOL_SECONDARYORDER(sOrder) != UCOL_SECIGNORABLE)
{
/* Additional secondary elements mean the source string is greater */
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
}
sOrder = ucol_getIncrementalCE(coll, &sColl, &status);
/*WEIVTODO: do the continuation bit here */
if(isContinuation(sOrder)) {
if (sFrenchStartPtr == NULL) {
sFrenchStartPtr = sFSBEnd;
}
sFrenchEndPtr = sFSBEnd-1;
} else if (sFrenchStartPtr != NULL) {
/* reverse secondaries from frenchStartPtr up to frenchEndPtr */
uprv_ucol_reverse_buffer(uint32_t, sFrenchEndPtr, sFrenchStartPtr);
sFrenchStartPtr = NULL;
}
*(--sFSBEnd) = UCOL_SECONDARYORDER(sOrder);
if(sFSBEnd == sourceFrenchSec) { /* overflowing the buffer, bail out */
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
/*WEIVTODO: What about tertiaries and quads??? recheck */
} while (sOrder != UCOL_NO_MORE_CES);
}
else if (tOrder != UCOL_NO_MORE_CES)
{
/* The target string has more elements, but the source string hasn't. */
do
{
if (UCOL_PRIMARYORDER(tOrder) != UCOL_PRIMIGNORABLE)
{
/* We found an additional non-ignorable base character in the target string. */
/* This is a primary difference, so the source is less */
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
return UCOL_LESS; /* (strength is PRIMARY) */
}
if (UCOL_SECONDARYORDER(tOrder) != UCOL_SECIGNORABLE)
{
/* Additional secondary elements in the target mean the source string is less */
if (checkSecTer)
{
bufferFrenchSec = TRUE;
}
}
tOrder = ucol_getIncrementalCE(coll, &tColl, &status);
/*WEIVTODO: do the continuation bit here */
if(isContinuation(tOrder)) {
if (tFrenchStartPtr == NULL) {
tFrenchStartPtr = tFSBEnd;
}
tFrenchEndPtr = tFSBEnd-1;
} else if (tFrenchStartPtr != NULL) {
/* reverse secondaries from frenchStartPtr up to frenchEndPtr */
uprv_ucol_reverse_buffer(uint32_t, tFrenchEndPtr, tFrenchStartPtr);
tFrenchStartPtr = NULL;
}
*(--tFSBEnd) = UCOL_SECONDARYORDER(tOrder);
if(tFSBEnd == targetFrenchSec) { /* overflowing the buffer, bail out */
return alternateIncrementalProcessing(coll, &sColl, &tColl);
}
/*WEIVTODO: What about tertiaries and quads??? recheck */
} while ( tOrder != UCOL_NO_MORE_CES);
}
if(bufferFrenchSec) {
while(sFSBEnd < sourceFrenchSec+UCOL_MAX_BUFFER && tFSBEnd < targetFrenchSec+UCOL_MAX_BUFFER) {
if(*sFSBEnd == *tFSBEnd) {
sFSBEnd++;
tFSBEnd++;
} else if(*sFSBEnd < *tFSBEnd) {
result = UCOL_LESS;
break;
} else {
result = UCOL_GREATER;
break;
}
}
}
}
/* For IDENTICAL comparisons, we use a bitwise character comparison */
/* as a tiebreaker if all else is equal */
/* NOTE: The java code compares result with 0, and */
/* puts the result of the string comparison directly into result */
if (result == UCOL_EQUAL && strength == UCOL_IDENTICAL)
{
UnicodeString sourceDecomp, targetDecomp;
int8_t comparison;
Normalizer::normalize(UnicodeString(sColl.stringP, sColl.len-sColl.stringP-1), ((RuleBasedCollator *)coll)->getDecomposition(),
0, sourceDecomp, status);
Normalizer::normalize(UnicodeString(tColl.stringP, tColl.len-tColl.stringP-1), ((RuleBasedCollator *)coll)->getDecomposition(),
0, targetDecomp, status);
comparison = sourceDecomp.compare(targetDecomp);
if (comparison < 0)
{
result = UCOL_LESS;
}
else if (comparison == 0)
{
result = UCOL_EQUAL;
}
else
{
result = UCOL_GREATER;
}
}
incctx_cleanUpContext(&sColl);
incctx_cleanUpContext(&tColl);
return result;
}
/* convenience function for comparing strings */
U_CAPI UBool
ucol_greater( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
== UCOL_GREATER);
}
/* convenience function for comparing strings */
U_CAPI UBool
ucol_greaterOrEqual( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
!= UCOL_LESS);
}
/* convenience function for comparing strings */
U_CAPI UBool
ucol_equal( const UCollator *coll,
const UChar *source,
int32_t sourceLength,
const UChar *target,
int32_t targetLength)
{
return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
== UCOL_EQUAL);
}
int32_t ucol_getIncrementalCE(const UCollator *coll, incrementalContext *ctx, UErrorCode *status) {
uint32_t order;
if (U_FAILURE(*status) /*|| (ctx->CEpos <= ctx->toReturn)*/) {
return UCOL_NO_MORE_CES;
}
if (ctx->CEpos > ctx->toReturn) {
return(*(ctx->toReturn++));
}
ctx->CEpos = ctx->toReturn = ctx->CEs;
/* Hmmm, I forgot what this was for :) */
/* but it looks like ctx->currentChar is used around */
if(ctx->lastChar == 0xFFFF) {
ctx->currentChar = ctx->source(ctx->sourceContext);
incctx_appendChar(ctx, ctx->currentChar);
if(ctx->currentChar == 0xFFFF) {
return UCOL_NO_MORE_CES;
}
} else {
ctx->currentChar = ctx->lastChar;
ctx->lastChar = 0xFFFF;
}
UChar ch = ctx->currentChar;
if(ch < 0xFF) { /* if it's Latin One, we'll try to fast track it */
order = coll->latinOneMapping[ch]; /* by looking in up in an array */
} else { /* otherwise, */
order = ucmp32_get(coll->mapping, ch); /* we'll go for slightly slower trie */
}
if(order > UCOL_NOT_FOUND) { /* do special processing */
*(ctx->CEpos) = order;
order = ucol_getIncrementalSpecialCE(coll, ctx, status);
} else if(order == UCOL_NOT_FOUND) { /* do the UCA processing */
order = ucol_getIncrementalUCA(ch, ctx, status);
}
return(order);
}
/* This function tries to get a CE from UCA, which should be always around */
/* UChar is passed in in order to speed things up */
/* here is also the generation of implicit CEs */
uint32_t ucol_getIncrementalUCA(UChar ch, incrementalContext *collationSource, UErrorCode *status) {
uint32_t order;
if(ch < 0xFF) { /* so we'll try to find it in the UCA */
order = UCA->latinOneMapping[ch];
} else {
order = ucmp32_get(UCA->mapping, ch);
}
if(order >= UCOL_NOT_FOUND) { /* UCA also gives us a special CE */
order = ucol_getIncrementalSpecialCE(UCA, collationSource, status);
}
if(order == UCOL_NOT_FOUND) { /* This is where we have to resort to algorithmical generation */
/* We have to check if ch is possibly a first surrogate - then we need to take the next code unit */
/* and make a bigger CE */
#if 0
UChar nextChar;
if(UTF_IS_FIRST_SURROGATE(ch) && (collationSource->pos<collationSource->len) &&
UTF_IS_SECOND_SURROGATE((nextChar=*(collationSource->pos+1)))) {
uint32_t cp = (((ch)<<10UL)+(nextChar)-((0xd800<<10UL)+0xdc00));
collationSource->pos++;
/* This is a code point minus 0x10000, that's what algorithm requires */
order = 0xE0800303 | (cp & 0xF0000) << 8 | (cp & 0xFE00) << 7;
*(collationSource->CEpos++) = 0xF0040000 | (cp & 0x1FF) << 19;
} else {
#endif
/* otherwise */
/* Make up an artifical CE from code point as per UCA */
order = 0xD08004F1;
/*order = 0xD01004F1;*/
order |= ((uint32_t)ch & 0xF000)<<12;
order |= ((uint32_t)ch & 0x0FFF)<<11;
// }
}
return order; /* return the CE */
}
int32_t ucol_getIncrementalSpecialCE(const UCollator *coll, incrementalContext *ctx, UErrorCode *status) {
if(U_FAILURE(*status)) return -1;
return 0;
/* Still needs to be implemented */
#if 0
int32_t i = 0; /* general counter */
uint32_t CE = *source->CEpos;
while (TRUE) {
const uint32_t *CEOffset = NULL;
const UChar *UCharOffset = NULL;
UChar schar, tchar;
uint32_t size = 0;
switch(getCETag(CE)) {
case NOT_FOUND_TAG:
/* This one is not found, and we'll let somebody else bother about it... no more games */
return CE;
break;
case SURROGATE_TAG:
/* pending surrogate discussion with Markus and Mark */
return UCOL_NOT_FOUND;
break;
case THAI_TAG:
/* Thai/Lao reordering */
if(source->isThai == TRUE) { /* if we encountered Thai prevowel & the string is not yet touched */
source->isThai = FALSE; /* We will touch the string */
if((source->len - source->pos) > UCOL_WRITABLE_BUFFER_SIZE) {
/* Problematic part - if the stack buffer is too small, we need to allocate */
/* However, somebody needs to keep track of that allocated space */
/* And context structure is not good for that */
/* allocate a new buffer - This is unfortunate and should be way smarter */
/*source->writableBuffer = (UChar *)ucol_getABuffer(coll, (source->len - source->pos)*sizeof(UChar));*/
}
UChar *sourceCopy = source->pos;
UChar *targetCopy = source->writableBuffer;
while(sourceCopy < source->len) {
if(UCOL_ISTHAIPREVOWEL(*(sourceCopy)) && /* This is the combination that needs to be swapped */
UCOL_ISTHAIBASECONSONANT(*(sourceCopy+1))) {
*(targetCopy) = *(sourceCopy+1);
*(targetCopy+1) = *(sourceCopy);
targetCopy+=2;
sourceCopy+=2;
} else {
*(targetCopy++) = *(sourceCopy++);
}
}
source->pos = source->writableBuffer;
source->len = targetCopy;
source->CEpos = source->toReturn = source->CEs;
CE = UCOL_IGNORABLE;
} else { /* we have already played with the string, so treat Thai as a length one expansion */
CEOffset = coll->expansion+getExpansionOffset(CE); /* find the offset to expansion table */
CE = *CEOffset++;
}
break;
case CONTRACTION_TAG:
/* This should handle contractions */
for(;;) {
/* First we position ourselves at the begining of contraction sequence */
const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
/* we need to convey the notion of having a backward search - most probably through the context object */
/* if (backwardsSearch) offset += contractionUChars[(int16_t)offset]; else UCharOffset++; */
UCharOffset++; /* skip the backward offset, see above */
if (source->pos>=source->len) { /* this is the end of string */
CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex)); /* So we'll pick whatever we have at the point... */
source->pos--; /* I think, since we'll advance in the getCE */
break;
}
schar = *(++source->pos);
while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
UCharOffset++;
}
if(schar != tchar) { /* we didn't find the correct codepoint. We can use either the first or the last CE */
if(tchar != 0xFFFF) {
UCharOffset = ContractionStart; /* We're not at the end, bailed out in the middle. Better use starting CE */
}
source->pos--; /* Spit out the last char of the string, wasn't tasty enough */
}
CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
if(!isContraction(CE)) {
/* Maybe not */
/*source->pos--;*/ /* I think, since we'll advance in the getCE */
break;
}
}
break;
case EXPANSION_TAG:
/* This should handle expansion. */
/* NOTE: we can encounter both continuations and expansions in an expansion! */
/* I have to decide where continuations are going to be dealt with */
CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
size = getExpansionCount(CE);
CE = *CEOffset++;
if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
for(i = 1; i<size; i++) {
*(source->CEpos++) = *CEOffset++;
}
} else { /* else, we do */
while(*CEOffset != 0) {
*(source->CEpos++) = *CEOffset++;
}
}
/*source->toReturn++;*/
return CE;
break;
case CHARSET_TAG:
/* probably after 1.8 */
return UCOL_NOT_FOUND;
break;
default:
*status = U_INTERNAL_PROGRAM_ERROR;
CE=0;
break;
}
if (CE <= UCOL_NOT_FOUND) break;
}
return CE;
#endif
#if 0
if (order == UCOL_UNMAPPED) {
/* Returned an "unmapped" flag and save the character so it can be */
/* returned next time this method is called. */
if (ctx->currentChar == 0x0000) return ctx->currentChar; /* \u0000 is not valid in C++'s UnicodeString */
/* *(ctx->CEpos++) = UCOL_UNMAPPEDCHARVALUE; */
order = UCOL_UNMAPPEDCHARVALUE;
*(ctx->CEpos++) = ctx->currentChar<<16;
} else {
/* Contraction sequence start... */
if (order >= UCOL_CONTRACTCHARINDEX) {
UChar key[1024];
uint32_t posKey = 0;
VectorOfPToContractElement* list = ((RuleBasedCollator *)coll)->data->contractTable->at(order-UCOL_CONTRACTCHARINDEX);
/* The upper line obtained a list of contracting sequences. */
if (list != NULL) {
EntryPair *pair = (EntryPair *)list->at(0); /* Taking out the first one. */
order = pair->value; /* This got us mapping for just the first element - the one that signalled a contraction. */
key[posKey++] = ctx->currentChar;
/* This tries to find the longes common match for the data in contraction table... */
/* and needs to be rewritten, especially the test down there! */
int32_t i;
int32_t listSize = list->size();
UBool foundSmaller = TRUE;
UBool endOfString = FALSE;
/* *(ctx->len++) = ctx->lastChar; */
incctx_appendChar(ctx, ctx->lastChar);
while(!endOfString && foundSmaller) {
endOfString = ((ctx->lastChar = ctx->source(ctx->sourceContext)) == 0xFFFF);
key[posKey++] = ctx->lastChar;
foundSmaller = FALSE;
i = 0;
while(i<listSize && !foundSmaller) {
pair = list->at(i);
if ((pair != NULL) && (pair->fwd == TRUE /*fwd*/) && (pair->equalTo(key, posKey))) {
order = pair->value;
/* *(ctx->len++) = ctx->lastChar; */
incctx_appendChar(ctx, ctx->lastChar);
foundSmaller = TRUE;
}
i++;
}
}
}
}
/* Expansion sequence start... */
if (order >= UCOL_EXPANDCHARINDEX) {
VectorOfInt *v = ((RuleBasedCollator *)coll)->data->expandTable->at(order-UCOL_EXPANDCHARINDEX);
if(v != NULL) {
int32_t expandindex=0;
int32_t vSize = v->size();
order = v->at(expandindex++); /* first character.... */
while(expandindex < vSize) {
*(ctx->CEpos++) = v->at(expandindex++);
}
}
}
/* Thai/Lao reordering */
/* This is gonna be way too goofy - so we're gonna bail out and let others do the work... */
if (UCOL_ISTHAIPREVOWEL(ctx->currentChar)) {
ctx->panic = TRUE;
return UCOL_NO_MORE_CES;
}
}
return order;
#endif
}
void incctx_cleanUpContext(incrementalContext *ctx) {
if(ctx->stringP != ctx->stackString) {
uprv_free(ctx->stringP);
}
}
UChar incctx_appendChar(incrementalContext *ctx, UChar c) {
if(ctx->len == ctx->capacity) { /* bother, said Pooh, we need to reallocate */
UChar *newStuff;
if(ctx->stringP == ctx->stackString) { /* we haven't allocated before, need to allocate */
newStuff = (UChar *)uprv_malloc(2*(ctx->capacity - ctx->stringP)*sizeof(UChar));
if(newStuff == NULL) {
/*freak out*/
}
uprv_memcpy(newStuff, ctx->stringP, (ctx->capacity - ctx->stringP)*sizeof(UChar));
} else { /* we have already allocated, need to reallocate */
newStuff = (UChar *)uprv_realloc(ctx->stringP, 2*(ctx->capacity - ctx->stringP)*sizeof(UChar));
if(newStuff == NULL) {
/*freak out*/
}
}
ctx->len=newStuff+(ctx->len - ctx->stringP);
ctx->capacity = newStuff+2*(ctx->capacity - ctx->stringP);
ctx->stringP = newStuff;
}
*(ctx->len++) = c;
return c;
}
UCollationResult alternateIncrementalProcessing(const UCollator *coll, incrementalContext *srcCtx, incrementalContext *trgCtx) {
if(srcCtx->stringP == srcCtx->len || *(srcCtx->len-1) != 0xFFFF) {
while(incctx_appendChar(srcCtx, srcCtx->source(srcCtx->sourceContext)) != 0xFFFF);
}
if(trgCtx->stringP == trgCtx->len || *(trgCtx->len-1) != 0xFFFF) {
while(incctx_appendChar(trgCtx, trgCtx->source(trgCtx->sourceContext)) != 0xFFFF);
}
UCollationResult result = ucol_strcoll(coll, srcCtx->stringP, srcCtx->len-srcCtx->stringP-1, trgCtx->stringP, trgCtx->len-trgCtx->stringP-1);
incctx_cleanUpContext(srcCtx);
incctx_cleanUpContext(trgCtx);
return result;
}
#if 0
/* This is the old implementation, which should be removed... */
inline void *ucol_getABuffer(const UCollatorOld *coll, uint32_t size) {
return ((RuleBasedCollator *)coll)->getSomeMemory(size);
}
int32_t getComplicatedCE(const UCollatorOld *coll, collIterate *source, UErrorCode *status) {
if (*(source->CEpos) == UCOL_UNMAPPED) {
/* Returned an "unmapped" flag and save the character so it can be */
/* returned next time this method is called. */
if (*(source->pos) == 0x0000) return *(source->pos++); /* \u0000 is not valid in C++'s UnicodeString */
*(source->CEpos++) = UCOL_UNMAPPEDCHARVALUE;
*(source->CEpos++) = *(source->pos)<<16;
} else {
/* Contraction sequence start... */
if (*(source->CEpos) >= UCOL_CONTRACTCHARINDEX) {
UChar key[1024];
uint32_t posKey = 0;
VectorOfPToContractElement* list = ((RuleBasedCollator *)coll)->data->contractTable->at(*(source->CEpos)-UCOL_CONTRACTCHARINDEX);
/* The upper line obtained a list of contracting sequences. */
if (list != NULL) {
EntryPair *pair = (EntryPair *)list->at(0); /* Taking out the first one. */
int32_t order = pair->value; /* This got us mapping for just the first element - the one that signalled a contraction. */
key[posKey++] = *(source->pos++);
/* This tries to find the longes common match for the data in contraction table... */
/* and needs to be rewritten, especially the test down there! */
int32_t i;
int32_t listSize = list->size();
UBool foundSmaller = TRUE;
while(source->pos<source->len && foundSmaller) {
key[posKey++] = *source->pos;
foundSmaller = FALSE;
i = 0;
while(i<listSize && !foundSmaller) {
pair = list->at(i);
if ((pair != NULL) && (pair->fwd == TRUE /*fwd*/) && (pair->equalTo(key, posKey))) {
/* Found a matching contraction sequence */
order = pair->value; /* change the CE value */
source->pos++; /* consume another char from the source */
foundSmaller = TRUE;
}
i++;
}
}
source->pos--; /* spit back the last char - it wasn't part of the sequence */
*(source->CEpos) = order;
}
}
/* Expansion sequence start... */
if (*(source->CEpos) >= UCOL_EXPANDCHARINDEX) {
VectorOfInt *v = ((RuleBasedCollator *)coll)->data->expandTable->at(*(source->CEpos)-UCOL_EXPANDCHARINDEX);
if(v != NULL) {
int32_t expandindex=0;
int32_t vSize = v->size();
while(expandindex < vSize) {
*(source->CEpos++) = v->at(expandindex++);
}
}
}
/* Thai/Lao reordering */
if (UCOL_ISTHAIPREVOWEL(*(source->pos)) &&
UCOL_ISTHAIBASECONSONANT(*(source->pos+1))) {
if(source->isThai == TRUE) {
source->isThai = FALSE;
if((source->len - source->pos) > UCOL_WRITABLE_BUFFER_SIZE) {
/* allocate a new buffer */
source->writableBuffer = (UChar *)ucol_getABuffer(coll, (source->len - source->pos)*sizeof(UChar));
}
UChar *sourceCopy = source->pos;
UChar *targetCopy = source->writableBuffer;
while(sourceCopy < source->len) {
if(UCOL_ISTHAIPREVOWEL(*(sourceCopy)) &&
UCOL_ISTHAIBASECONSONANT(*(sourceCopy+1))) {
*(targetCopy) = *(sourceCopy+1);
*(targetCopy+1) = *(sourceCopy);
targetCopy+=2;
sourceCopy+=2;
} else {
*(targetCopy++) = *(sourceCopy++);
}
}
source->pos = source->writableBuffer;
source->len = targetCopy;
source->CEpos = source->toReturn = source->CEs;
return UCOL_IGNORABLE;
}
}
}
source->pos++;
return (*(source->toReturn++));
}
#endif
#if 0
/* This is abridged version of the loop */
/* should work the same, but it's harder to understand */
for(;;) {
/*UCOL_GETNEXTCE(sOrder, coll, sColl, &status);*/
sOrder = ucol_getNextCE(coll, &sColl, &status);
sOrder ^= caseSwitch;
if(sOrder == 0x00010101) {
*(sCEs++) = sOrder;
break;
} else if((sOrder & 0xFFFFFFBF) == 0) {
continue;
} else if(isContinuation(sOrder)) {
if((sOrder & 0xFFFF0000) > 0) { /* There is primary value */
if(sInShifted) {
sOrder &= 0xFFFF0000;
} else {
*(sCEs++) = sOrder;
break;
}
} else { /* Just lower level values */
if(sInShifted) {
continue;
}
}
} else { /* regular */
if(sOrder > LVT) {
*(sCEs++) = sOrder;
break;
} else {
if((sOrder & 0xFFFF0000) > 0) {
sInShifted = TRUE;
sOrder &= 0xFFFF0000;
}
}
}
*(sCEs++) = sOrder;
}
sOrder &= 0xFFFF0000;
sInShifted = FALSE;
for(;;) {
/*UCOL_GETNEXTCE(tOrder, coll, tColl, &status);*/
tOrder = ucol_getNextCE(coll, &tColl, &status);*/
tOrder ^= caseSwitch;
if(tOrder == 0x00010101) {
*(tCEs++) = tOrder;
break;
} else if((tOrder & 0xFFFFFFBF) == 0) {
continue;
} else if(isContinuation(tOrder)) {
if((tOrder & 0xFFFF0000) > 0) { /* There is primary value */
if(tInShifted) {
tOrder &= 0xFFFF0000;
} else {
*(tCEs++) = tOrder;
break;
}
} else { /* Just lower level values */
if(tInShifted) {
continue;
}
}
} else { /* regular */
if(tOrder > LVT) {
*(tCEs++) = tOrder;
break;
} else {
if((tOrder & 0xFFFF0000) > 0) {
tInShifted = TRUE;
tOrder &= 0xFFFF0000;
}
}
}
*(tCEs++) = tOrder;
}
tOrder &= 0xFFFF0000;
tInShifted = FALSE;
#endif