5af5a9293b
X-SVN-Rev: 18107
929 lines
29 KiB
C++
929 lines
29 KiB
C++
/********************************************************************
|
|
* COPYRIGHT:
|
|
* Copyright (c) 2005, International Business Machines Corporation and
|
|
* others. All Rights Reserved.
|
|
********************************************************************/
|
|
/************************************************************************
|
|
* Tests for the UText and UTextIterator text abstraction classses
|
|
*
|
|
************************************************************************/
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unicode/utext.h>
|
|
#include <unicode/utf8.h>
|
|
#include <unicode/ustring.h>
|
|
#include "utxttest.h"
|
|
|
|
static UBool gFailed = FALSE;
|
|
static int gTestNum = 0;
|
|
|
|
|
|
#define TEST_ASSERT(x) \
|
|
{if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
|
|
gFailed = TRUE;\
|
|
}}
|
|
|
|
|
|
#define TEST_SUCCESS(status) \
|
|
{if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
|
|
gTestNum, __FILE__, __LINE__, u_errorName(status)); \
|
|
gFailed = TRUE;\
|
|
}}
|
|
|
|
UTextTest::UTextTest() {
|
|
}
|
|
|
|
UTextTest::~UTextTest() {
|
|
}
|
|
|
|
|
|
void
|
|
UTextTest::runIndexedTest(int32_t index, UBool exec,
|
|
const char* &name, char* /*par*/) {
|
|
switch (index) {
|
|
case 0: name = "TextTest";
|
|
if (exec) TextTest(); break;
|
|
case 1: name = "ErrorTest";
|
|
if (exec) ErrorTest(); break;
|
|
default: name = ""; break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Quick and dirty random number generator.
|
|
// (don't use library so that results are portable.
|
|
static uint32_t m_seed = 1;
|
|
static uint32_t m_rand()
|
|
{
|
|
m_seed = m_seed * 1103515245 + 12345;
|
|
return (uint32_t)(m_seed/65536) % 32768;
|
|
}
|
|
|
|
|
|
//
|
|
// TextTest()
|
|
//
|
|
// Top Level function for UText testing.
|
|
// Specifies the strings to be tested, with the acutal testing itself
|
|
// being carried out in another function, TestString().
|
|
//
|
|
void UTextTest::TextTest() {
|
|
int32_t i, j;
|
|
|
|
TestString("abcd\\U00010001xyz");
|
|
TestString("");
|
|
|
|
// Supplementary chars at start or end
|
|
TestString("\\U00010001");
|
|
TestString("abc\\U00010001");
|
|
TestString("\\U00010001abc");
|
|
|
|
// Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
|
|
UnicodeString s;
|
|
for (i=1; i<60; i++) {
|
|
s.truncate(0);
|
|
for (j=0; j<i; j++) {
|
|
if (j+0x30 == 0x5c) {
|
|
// backslash. Needs to be escaped
|
|
s.append((UChar)0x5c);
|
|
}
|
|
s.append(UChar(j+0x30));
|
|
}
|
|
TestString(s);
|
|
}
|
|
|
|
// Test strings with odd-aligned supplementary chars,
|
|
// looking for glitches at buffer boundaries
|
|
for (i=1; i<60; i++) {
|
|
s.truncate(0);
|
|
s.append((UChar)0x41);
|
|
for (j=0; j<i; j++) {
|
|
s.append(UChar32(j+0x11000));
|
|
}
|
|
TestString(s);
|
|
}
|
|
|
|
// String of chars of randomly varying size in utf-8 representation.
|
|
// Exercise the mapping, and the varying sized buffer.
|
|
//
|
|
s.truncate(0);
|
|
UChar32 c1 = 0;
|
|
UChar32 c2 = 0x100;
|
|
UChar32 c3 = 0xa000;
|
|
UChar32 c4 = 0x11000;
|
|
for (i=0; i<1000; i++) {
|
|
int len8 = m_rand()%4 + 1;
|
|
switch (len8) {
|
|
case 1:
|
|
c1 = (c1+1)%0x80;
|
|
// don't put 0 into string (0 terminated strings for some tests)
|
|
// don't put '\', will cause unescape() to fail.
|
|
if (c1==0x5c || c1==0) {
|
|
c1++;
|
|
}
|
|
s.append(c1);
|
|
break;
|
|
case 2:
|
|
s.append(c2++);
|
|
break;
|
|
case 3:
|
|
s.append(c3++);
|
|
break;
|
|
case 4:
|
|
s.append(c4++);
|
|
break;
|
|
}
|
|
}
|
|
TestString(s);
|
|
}
|
|
|
|
|
|
//
|
|
// TestString() Run a suite of UText tests on a string.
|
|
// The test string is unescaped before use.
|
|
//
|
|
void UTextTest::TestString(const UnicodeString &s) {
|
|
int32_t i;
|
|
int32_t j;
|
|
UChar32 c;
|
|
int32_t cpCount = 0;
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText *ut = NULL;
|
|
int32_t saLen;
|
|
|
|
UnicodeString sa = s.unescape();
|
|
saLen = sa.length();
|
|
|
|
//
|
|
// Build up a mapping between code points and UTF-16 code unit indexes.
|
|
//
|
|
m *cpMap = new m[sa.length() + 1];
|
|
j = 0;
|
|
for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
|
|
c = sa.char32At(i);
|
|
cpMap[j].nativeIdx = i;
|
|
cpMap[j].cp = c;
|
|
j++;
|
|
cpCount++;
|
|
}
|
|
cpMap[j].nativeIdx = i; // position following the last char in utf-16 string.
|
|
|
|
|
|
// UChar * test, null terminated
|
|
status = U_ZERO_ERROR;
|
|
UChar *buf = new UChar[saLen+1];
|
|
sa.extract(buf, saLen+1, status);
|
|
TEST_SUCCESS(status);
|
|
ut = utext_openUChars(NULL, buf, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
TestAccess(sa, ut, cpCount, cpMap);
|
|
utext_close(ut);
|
|
delete [] buf;
|
|
|
|
// UChar * test, with length
|
|
status = U_ZERO_ERROR;
|
|
buf = new UChar[saLen+1];
|
|
sa.extract(buf, saLen+1, status);
|
|
TEST_SUCCESS(status);
|
|
ut = utext_openUChars(NULL, buf, saLen, &status);
|
|
TEST_SUCCESS(status);
|
|
TestAccess(sa, ut, cpCount, cpMap);
|
|
utext_close(ut);
|
|
delete [] buf;
|
|
|
|
|
|
// UnicodeString test
|
|
status = U_ZERO_ERROR;
|
|
ut = utext_openUnicodeString(NULL, &sa, &status);
|
|
TEST_SUCCESS(status);
|
|
TestAccess(sa, ut, cpCount, cpMap);
|
|
TestCMR(sa, ut, cpCount, cpMap, cpMap);
|
|
utext_close(ut);
|
|
|
|
|
|
// Const UnicodeString test
|
|
status = U_ZERO_ERROR;
|
|
ut = utext_openConstUnicodeString(NULL, &sa, &status);
|
|
TEST_SUCCESS(status);
|
|
TestAccess(sa, ut, cpCount, cpMap);
|
|
utext_close(ut);
|
|
|
|
|
|
// Replaceable test. (UnicodeString inherits Replaceable)
|
|
status = U_ZERO_ERROR;
|
|
ut = utext_openReplaceable(NULL, &sa, &status);
|
|
TEST_SUCCESS(status);
|
|
TestAccess(sa, ut, cpCount, cpMap);
|
|
TestCMR(sa, ut, cpCount, cpMap, cpMap);
|
|
utext_close(ut);
|
|
|
|
|
|
//
|
|
// UTF-8 test
|
|
//
|
|
|
|
// Convert the test string from UnicodeString to (char *) in utf-8 format
|
|
int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
|
|
char *u8String = new char[u8Len + 1];
|
|
sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
|
|
|
|
// Build up the map of code point indices in the utf-8 string
|
|
m * u8Map = new m[sa.length() + 1];
|
|
i = 0; // native utf-8 index
|
|
for (j=0; j<cpCount ; j++) { // code point number
|
|
u8Map[j].nativeIdx = i;
|
|
U8_NEXT(u8String, i, u8Len, c)
|
|
u8Map[j].cp = c;
|
|
}
|
|
u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string.
|
|
|
|
// Do the test itself
|
|
status = U_ZERO_ERROR;
|
|
ut = utext_openUTF8(NULL, u8String, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
TestAccess(sa, ut, cpCount, u8Map);
|
|
utext_close(ut);
|
|
|
|
|
|
|
|
delete []cpMap;
|
|
delete []u8Map;
|
|
delete []u8String;
|
|
}
|
|
|
|
// TestCMR test Copy, Move and Replace operations.
|
|
// us UnicodeString containing the test text.
|
|
// ut UText containing the same test text.
|
|
// cpCount number of code points in the test text.
|
|
// nativeMap Mapping from code points to native indexes for the UText.
|
|
// u16Map Mapping from code points to UTF-16 indexes, for use with teh UnicodeString.
|
|
//
|
|
// This function runs a whole series of opertions on each incoming UText.
|
|
// The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
|
|
//
|
|
void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
|
|
TEST_ASSERT(utext_isWritable(ut) == TRUE);
|
|
|
|
int srcLengthType; // Loop variables for selecting the postion and length
|
|
int srcPosType; // of the block to operate on within the source text.
|
|
int destPosType;
|
|
|
|
int srcIndex = 0; // Code Point indexes of the block to operate on for
|
|
int srcLength = 0; // a specific test.
|
|
|
|
int destIndex = 0; // Code point index of the destination for a copy/move test.
|
|
|
|
int32_t nativeStart = 0; // Native unit indexes for a test.
|
|
int32_t nativeLimit = 0;
|
|
int32_t nativeDest = 0;
|
|
|
|
int32_t u16Start = 0; // UTF-16 indexes for a test.
|
|
int32_t u16Limit = 0; // used when performing the same operation in a Unicode String
|
|
int32_t u16Dest = 0;
|
|
|
|
// Iterate over a whole series of source index, length and a target indexes.
|
|
// This is done with code point indexes; these will be later translated to native
|
|
// indexes using the cpMap.
|
|
for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
|
|
switch (srcLengthType) {
|
|
case 1: srcLength = 1; break;
|
|
case 2: srcLength = 5; break;
|
|
case 3: srcLength = cpCount / 3;
|
|
}
|
|
for (srcPosType=1; srcPosType<=5; srcPosType++) {
|
|
switch (srcPosType) {
|
|
case 1: srcIndex = 0; break;
|
|
case 2: srcIndex = 1; break;
|
|
case 3: srcIndex = cpCount - srcLength; break;
|
|
case 4: srcIndex = cpCount - srcLength - 1; break;
|
|
case 5: srcIndex = cpCount / 2; break;
|
|
}
|
|
if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
|
|
// filter out bogus test cases -
|
|
// those with a source range that falls of an edge of the string.
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Copy and move tests.
|
|
// iterate over a variety of destination positions.
|
|
//
|
|
for (destPosType=1; destPosType<=4; destPosType++) {
|
|
switch (destPosType) {
|
|
case 1: destIndex = 0; break;
|
|
case 2: destIndex = 1; break;
|
|
case 3: destIndex = srcIndex - 1; break;
|
|
case 4: destIndex = srcIndex + srcLength + 1; break;
|
|
case 5: destIndex = cpCount-1; break;
|
|
case 6: destIndex = cpCount; break;
|
|
}
|
|
if (destIndex<0 || destIndex>cpCount) {
|
|
// filter out bogus test cases.
|
|
continue;
|
|
}
|
|
|
|
nativeStart = nativeMap[srcIndex].nativeIdx;
|
|
nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
|
|
nativeDest = nativeMap[destIndex].nativeIdx;
|
|
|
|
u16Start = u16Map[srcIndex].nativeIdx;
|
|
u16Limit = u16Map[srcIndex+srcLength].nativeIdx;
|
|
u16Dest = u16Map[destIndex].nativeIdx;
|
|
|
|
gFailed = FALSE;
|
|
TestCopyMove(us, ut, FALSE,
|
|
nativeStart, nativeLimit, nativeDest,
|
|
u16Start, u16Limit, u16Dest);
|
|
|
|
TestCopyMove(us, ut, TRUE,
|
|
nativeStart, nativeLimit, nativeDest,
|
|
u16Start, u16Limit, u16Dest);
|
|
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Replace tests.
|
|
//
|
|
UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
|
|
for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
|
|
UnicodeString repStr(fullRepString, 0, replStrLen);
|
|
TestReplace(us, ut,
|
|
nativeStart, nativeLimit,
|
|
u16Start, u16Limit,
|
|
repStr);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
// TestCopyMove run a single test case for utext_copy.
|
|
// Test cases are created in TestCMR and dispatched here for execution.
|
|
//
|
|
void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
|
|
int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
|
|
int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText *targetUT = NULL;
|
|
gTestNum++;
|
|
gFailed = FALSE;
|
|
|
|
//
|
|
// clone the UText. The test will be run in the cloned copy
|
|
// so that we don't alter the original.
|
|
//
|
|
targetUT = utext_clone(NULL, ut, TRUE, &status);
|
|
TEST_SUCCESS(status);
|
|
UnicodeString targetUS(us); // And copy the reference string.
|
|
|
|
// do the test operation first in the reference
|
|
targetUS.copy(u16Start, u16Limit, u16Dest);
|
|
if (move) {
|
|
// delete out the source range.
|
|
if (u16Limit < u16Dest) {
|
|
targetUS.removeBetween(u16Start, u16Limit);
|
|
} else {
|
|
int32_t amtCopied = u16Limit - u16Start;
|
|
targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
|
|
}
|
|
}
|
|
|
|
// Do the same operation in the UText under test
|
|
utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
|
|
if (nativeDest > nativeStart && nativeDest < nativeLimit) {
|
|
TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
|
|
} else {
|
|
TEST_SUCCESS(status);
|
|
|
|
// Compare the results of the two parallel tests
|
|
int32_t usi = 0; // UnicodeString postion, utf-16 index.
|
|
int32_t uti = 0; // UText position, native index.
|
|
int32_t cpi; // char32 position (code point index)
|
|
UChar32 usc; // code point from Unicode String
|
|
UChar32 utc; // code point from UText
|
|
utext_setNativeIndex(targetUT, 0);
|
|
for (cpi=0; ; cpi++) {
|
|
usc = targetUS.char32At(usi);
|
|
utc = utext_next32(targetUT);
|
|
if (utc < 0) {
|
|
break;
|
|
}
|
|
TEST_ASSERT(uti == usi);
|
|
TEST_ASSERT(utc == usc);
|
|
usi = targetUS.moveIndex32(usi, 1);
|
|
uti = utext_getNativeIndex(targetUT);
|
|
if (gFailed) {
|
|
goto cleanupAndReturn;
|
|
}
|
|
}
|
|
int32_t expectedNativeLength = utext_nativeLength(ut);
|
|
if (move == FALSE) {
|
|
expectedNativeLength += nativeLimit - nativeStart;
|
|
}
|
|
uti = utext_getNativeIndex(targetUT);
|
|
TEST_ASSERT(uti == expectedNativeLength);
|
|
}
|
|
|
|
cleanupAndReturn:
|
|
utext_close(targetUT);
|
|
}
|
|
|
|
|
|
//
|
|
// TestReplace Test a single Replace operation.
|
|
//
|
|
void UTextTest::TestReplace(
|
|
const UnicodeString &us, // reference UnicodeString in which to do the replace
|
|
UText *ut, // UnicodeText object under test.
|
|
int32_t nativeStart, // Range to be replaced, in UText native units.
|
|
int32_t nativeLimit,
|
|
int32_t u16Start, // Range to be replaced, in UTF-16 units
|
|
int32_t u16Limit, // for use in the reference UnicodeString.
|
|
const UnicodeString &repStr) // The replacement string
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText *targetUT = NULL;
|
|
gTestNum++;
|
|
gFailed = FALSE;
|
|
|
|
//
|
|
// clone the target UText. The test will be run in the cloned copy
|
|
// so that we don't alter the original.
|
|
//
|
|
targetUT = utext_clone(NULL, ut, TRUE, &status);
|
|
TEST_SUCCESS(status);
|
|
UnicodeString targetUS(us); // And copy the reference string.
|
|
|
|
//
|
|
// Do the replace operation in the Unicode String, to
|
|
// produce a reference result.
|
|
//
|
|
targetUS.replace(u16Start, u16Limit-u16Start, repStr);
|
|
|
|
//
|
|
// Do the replace on the UText under test
|
|
//
|
|
const UChar *rs = repStr.getBuffer();
|
|
int32_t rsLen = repStr.length();
|
|
int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
|
|
int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
|
|
TEST_ASSERT(actualDelta == expectedDelta);
|
|
|
|
//
|
|
// Compare the results
|
|
//
|
|
int32_t usi = 0; // UnicodeString postion, utf-16 index.
|
|
int32_t uti = 0; // UText position, native index.
|
|
int32_t cpi; // char32 position (code point index)
|
|
UChar32 usc; // code point from Unicode String
|
|
UChar32 utc; // code point from UText
|
|
int32_t expectedNativeLength = 0;
|
|
utext_setNativeIndex(targetUT, 0);
|
|
for (cpi=0; ; cpi++) {
|
|
usc = targetUS.char32At(usi);
|
|
utc = utext_next32(targetUT);
|
|
if (utc < 0) {
|
|
break;
|
|
}
|
|
TEST_ASSERT(uti == usi);
|
|
TEST_ASSERT(utc == usc);
|
|
usi = targetUS.moveIndex32(usi, 1);
|
|
uti = utext_getNativeIndex(targetUT);
|
|
if (gFailed) {
|
|
goto cleanupAndReturn;
|
|
}
|
|
}
|
|
expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
|
|
uti = utext_getNativeIndex(targetUT);
|
|
TEST_ASSERT(uti == expectedNativeLength);
|
|
|
|
cleanupAndReturn:
|
|
utext_close(targetUT);
|
|
}
|
|
|
|
//
|
|
// TestAccess() Test the read only access functions on a UText.
|
|
// The text is accessed in a variety of ways, and compared with
|
|
// the reference UnicodeString.
|
|
//
|
|
void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
gTestNum++;
|
|
|
|
//
|
|
// Check the length from the UText
|
|
//
|
|
int expectedLen = cpMap[cpCount].nativeIdx;
|
|
int utlen = ut->nativeLength(ut);
|
|
TEST_ASSERT(expectedLen == utlen);
|
|
|
|
//
|
|
// Iterate forwards, verify that we get the correct code points
|
|
// at the correct native offsets.
|
|
//
|
|
int i = 0;
|
|
int index;
|
|
int expectedIndex = 0;
|
|
int foundIndex = 0;
|
|
UChar32 expectedC;
|
|
UChar32 foundC;
|
|
int32_t len;
|
|
|
|
for (i=0; i<cpCount; i++) {
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(expectedIndex == foundIndex);
|
|
expectedC = cpMap[i].cp;
|
|
foundC = utext_next32(ut);
|
|
TEST_ASSERT(expectedC == foundC);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
foundC = utext_next32(ut);
|
|
TEST_ASSERT(foundC == U_SENTINEL);
|
|
|
|
// Repeat above, using macros
|
|
utext_setNativeIndex(ut, 0);
|
|
for (i=0; i<cpCount; i++) {
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(expectedIndex == foundIndex);
|
|
expectedC = cpMap[i].cp;
|
|
foundC = UTEXT_NEXT32(ut);
|
|
TEST_ASSERT(expectedC == foundC);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
foundC = utext_next32(ut);
|
|
TEST_ASSERT(foundC == U_SENTINEL);
|
|
|
|
//
|
|
// Forward iteration (above) should have left index at the
|
|
// end of the input, which should == length().
|
|
//
|
|
len = utext_nativeLength(ut);
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(len == foundIndex);
|
|
|
|
//
|
|
// Iterate backwards over entire test string
|
|
//
|
|
len = utext_getNativeIndex(ut);
|
|
utext_setNativeIndex(ut, len);
|
|
for (i=cpCount-1; i>=0; i--) {
|
|
expectedC = cpMap[i].cp;
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
foundC = utext_previous32(ut);
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(expectedIndex == foundIndex);
|
|
TEST_ASSERT(expectedC == foundC);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Backwards iteration, above, should have left our iterator
|
|
// position at zero, and continued backwards iterationshould fail.
|
|
//
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(foundIndex == 0);
|
|
|
|
foundC = utext_previous32(ut);
|
|
TEST_ASSERT(foundC == U_SENTINEL);
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(foundIndex == 0);
|
|
|
|
|
|
// And again, with the macros
|
|
utext_setNativeIndex(ut, len);
|
|
for (i=cpCount-1; i>=0; i--) {
|
|
expectedC = cpMap[i].cp;
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
foundC = UTEXT_PREVIOUS32(ut);
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(expectedIndex == foundIndex);
|
|
TEST_ASSERT(expectedC == foundC);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Backwards iteration, above, should have left our iterator
|
|
// position at zero, and continued backwards iterationshould fail.
|
|
//
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(foundIndex == 0);
|
|
|
|
foundC = utext_previous32(ut);
|
|
TEST_ASSERT(foundC == U_SENTINEL);
|
|
foundIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(foundIndex == 0);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// next32From(), prevous32From(), Iterate in a somewhat random order.
|
|
//
|
|
int cpIndex = 0;
|
|
for (i=0; i<cpCount; i++) {
|
|
cpIndex = (cpIndex + 9973) % cpCount;
|
|
index = cpMap[cpIndex].nativeIdx;
|
|
expectedC = cpMap[cpIndex].cp;
|
|
foundC = utext_next32From(ut, index);
|
|
TEST_ASSERT(expectedC == foundC);
|
|
TEST_ASSERT(expectedIndex == foundIndex);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
cpIndex = 0;
|
|
for (i=0; i<cpCount; i++) {
|
|
cpIndex = (cpIndex + 9973) % cpCount;
|
|
index = cpMap[cpIndex+1].nativeIdx;
|
|
expectedC = cpMap[cpIndex].cp;
|
|
foundC = utext_previous32From(ut, index);
|
|
TEST_ASSERT(expectedC == foundC);
|
|
TEST_ASSERT(expectedIndex == foundIndex);
|
|
if (gFailed) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// moveIndex(int32_t delta);
|
|
//
|
|
|
|
// Walk through frontwards, incrementing by one
|
|
utext_setNativeIndex(ut, 0);
|
|
for (i=1; i<=cpCount; i++) {
|
|
utext_moveIndex32(ut, 1);
|
|
index = utext_getNativeIndex(ut);
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
TEST_ASSERT(expectedIndex == index);
|
|
}
|
|
|
|
// Walk through frontwards, incrementing by two
|
|
utext_setNativeIndex(ut, 0);
|
|
for (i=2; i<cpCount; i+=2) {
|
|
utext_moveIndex32(ut, 2);
|
|
index = utext_getNativeIndex(ut);
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
TEST_ASSERT(expectedIndex == index);
|
|
}
|
|
|
|
// walk through the string backwards, decrementing by one.
|
|
i = cpMap[cpCount].nativeIdx;
|
|
utext_setNativeIndex(ut, i);
|
|
for (i=cpCount; i>=0; i--) {
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
index = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(expectedIndex == index);
|
|
utext_moveIndex32(ut, -1);
|
|
}
|
|
|
|
|
|
// walk through backwards, decrementing by three
|
|
i = cpMap[cpCount].nativeIdx;
|
|
utext_setNativeIndex(ut, i);
|
|
for (i=cpCount; i>=0; i-=3) {
|
|
expectedIndex = cpMap[i].nativeIdx;
|
|
index = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(expectedIndex == index);
|
|
utext_moveIndex32(ut, -3);
|
|
}
|
|
|
|
|
|
//
|
|
// Extract
|
|
//
|
|
int bufSize = us.length() + 10;
|
|
UChar *buf = new UChar[bufSize];
|
|
status = U_ZERO_ERROR;
|
|
expectedLen = us.length();
|
|
len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(len == expectedLen);
|
|
int compareResult = us.compare(buf, -1);
|
|
TEST_ASSERT(compareResult == 0);
|
|
|
|
status = U_ZERO_ERROR;
|
|
len = utext_extract(ut, 0, utlen, NULL, 0, &status);
|
|
if (utlen == 0) {
|
|
TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
|
|
} else {
|
|
TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
|
|
}
|
|
TEST_ASSERT(len == expectedLen);
|
|
|
|
status = U_ZERO_ERROR;
|
|
u_memset(buf, 0x5555, bufSize);
|
|
len = utext_extract(ut, 0, utlen, buf, 1, &status);
|
|
if (us.length() == 0) {
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(buf[0] == 0);
|
|
} else {
|
|
TEST_ASSERT(buf[0] == us.charAt(0));
|
|
TEST_ASSERT(buf[1] == 0x5555);
|
|
if (us.length() == 1) {
|
|
TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
|
|
} else {
|
|
TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
|
|
}
|
|
}
|
|
|
|
delete buf;
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// ErrorTest() Check various error and edge cases.
|
|
//
|
|
void UTextTest::ErrorTest()
|
|
{
|
|
// Close of an unitialized UText. Shouldn't blow up.
|
|
{
|
|
UText ut;
|
|
memset(&ut, 0, sizeof(UText));
|
|
utext_close(&ut);
|
|
utext_close(NULL);
|
|
}
|
|
|
|
// Double-close of a UText. Shouldn't blow up. UText should still be usable.
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText ut = UTEXT_INITIALIZER;
|
|
UnicodeString s("Hello, World");
|
|
UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(ut2 == &ut);
|
|
|
|
UText *ut3 = utext_close(&ut);
|
|
TEST_ASSERT(ut3 == &ut);
|
|
|
|
UText *ut4 = utext_close(&ut);
|
|
TEST_ASSERT(ut4 == &ut);
|
|
|
|
utext_openUnicodeString(&ut, &s, &status);
|
|
TEST_SUCCESS(status);
|
|
utext_close(&ut);
|
|
}
|
|
|
|
// Re-use of a UText, chaining through each of the types of UText
|
|
// (If it doesn't blow up, and doesn't leak, it's probably working fine)
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText ut = UTEXT_INITIALIZER;
|
|
UText *utp;
|
|
UnicodeString s1("Hello, World");
|
|
UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
|
|
const char *s3 = "\x66\x67\x68";
|
|
|
|
utp = utext_openUnicodeString(&ut, &s1, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(utp == &ut);
|
|
|
|
utp = utext_openConstUnicodeString(&ut, &s1, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(utp == &ut);
|
|
|
|
utp = utext_openUTF8(&ut, s3, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(utp == &ut);
|
|
|
|
utp = utext_openUChars(&ut, s2, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(utp == &ut);
|
|
|
|
utp = utext_close(&ut);
|
|
TEST_ASSERT(utp == &ut);
|
|
|
|
utp = utext_openUnicodeString(&ut, &s1, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(utp == &ut);
|
|
}
|
|
|
|
//
|
|
// UTF-8 with malformed sequences.
|
|
// These should come through as the Unicode replacement char, \ufffd
|
|
//
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText *ut = NULL;
|
|
const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
|
|
UChar32 c;
|
|
|
|
ut = utext_openUTF8(NULL, badUTF8, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
c = utext_char32At(ut, 1);
|
|
TEST_ASSERT(c == 0xfffd);
|
|
c = utext_char32At(ut, 3);
|
|
TEST_ASSERT(c == 0xfffd);
|
|
c = utext_char32At(ut, 5);
|
|
TEST_ASSERT(c == 0xfffd);
|
|
c = utext_char32At(ut, 6);
|
|
TEST_ASSERT(c == 0x43);
|
|
|
|
UChar buf[10];
|
|
int n = utext_extract(ut, 0, 9, buf, 10, &status);
|
|
TEST_SUCCESS(status);
|
|
TEST_ASSERT(n==5);
|
|
TEST_ASSERT(buf[1] == 0xfffd);
|
|
TEST_ASSERT(buf[3] == 0xfffd);
|
|
TEST_ASSERT(buf[2] == 0x42);
|
|
}
|
|
|
|
|
|
//
|
|
// isLengthExpensive - does it make the exptected transitions after
|
|
// getting the length of a nul terminated string?
|
|
//
|
|
{
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UnicodeString sa("Hello, this is a string");
|
|
UBool isExpensive;
|
|
|
|
UChar sb[100];
|
|
memset(sb, 0x20, sizeof(sb));
|
|
sb[99] = 0;
|
|
|
|
UText *uta = utext_openUnicodeString(NULL, &sa, &status);
|
|
TEST_SUCCESS(status);
|
|
isExpensive = utext_isLengthExpensive(uta);
|
|
TEST_ASSERT(isExpensive == FALSE);
|
|
utext_close(uta);
|
|
|
|
UText *utb = utext_openUChars(NULL, sb, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
isExpensive = utext_isLengthExpensive(utb);
|
|
TEST_ASSERT(isExpensive == TRUE);
|
|
int32_t len = utext_nativeLength(utb);
|
|
TEST_ASSERT(len == 99);
|
|
isExpensive = utext_isLengthExpensive(utb);
|
|
TEST_ASSERT(isExpensive == FALSE);
|
|
utext_close(utb);
|
|
}
|
|
|
|
//
|
|
// get/set native index to positions not on code point boundaries.
|
|
//
|
|
{
|
|
const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
|
|
int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9};
|
|
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
|
|
TEST_SUCCESS(status);
|
|
|
|
int32_t i;
|
|
int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t);
|
|
for (i=0; i<startMapLimit; i++) {
|
|
utext_setNativeIndex(ut, i);
|
|
int32_t cpIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(cpIndex == startMap[i]);
|
|
}
|
|
utext_close(ut);
|
|
|
|
// Similar test, with utf16 instead of utf8
|
|
UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000");
|
|
int32_t start16Map[] ={ 0, 1, 1, 3, 4, 4, 6, 6};
|
|
u16str = u16str.unescape();
|
|
status = U_ZERO_ERROR;
|
|
ut = utext_openUnicodeString(NULL, &u16str, &status);
|
|
TEST_SUCCESS(status);
|
|
|
|
startMapLimit = sizeof(start16Map) / sizeof(int32_t);
|
|
for (i=0; i<startMapLimit; i++) {
|
|
utext_setNativeIndex(ut, i);
|
|
int32_t cpIndex = utext_getNativeIndex(ut);
|
|
TEST_ASSERT(cpIndex == start16Map[i]);
|
|
}
|
|
utext_close(ut);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|