scuffed-code/icu4c/source/i18n/cpdtrans.cpp
2001-03-28 01:39:30 +00:00

407 lines
13 KiB
C++

/*
**********************************************************************
* Copyright (C) 1999, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/17/99 aliu Creation.
**********************************************************************
*/
#include "unicode/cpdtrans.h"
#include "unicode/unifilt.h"
#include "unicode/unifltlg.h"
/**
* Constructs a new compound transliterator given an array of
* transliterators. The array of transliterators may be of any
* length, including zero or one, however, useful compound
* transliterators have at least two components.
* @param transliterators array of <code>Transliterator</code>
* objects
* @param transliteratorCount The number of
* <code>Transliterator</code> objects in transliterators.
* @param filter the filter. Any character for which
* <tt>filter.contains()</tt> returns <tt>false</tt> will not be
* altered by this transliterator. If <tt>filter</tt> is
* <tt>null</tt> then no filtering is applied.
*/
CompoundTransliterator::CompoundTransliterator(
Transliterator* const transliterators[],
int32_t transliteratorCount,
UnicodeFilter* adoptedFilter) :
Transliterator(joinIDs(transliterators, transliteratorCount), adoptedFilter),
trans(0), filters(0), count(0) {
setTransliterators(transliterators, transliteratorCount);
}
/**
* Splits an ID of the form "ID;ID;..." into a compound using each
* of the IDs.
* @param id of above form
* @param forward if false, does the list in reverse order, and
* takes the inverse of each ID.
*/
CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
UTransDirection direction,
UnicodeFilter* adoptedFilter,
UErrorCode& status) :
Transliterator(id, 0), // set filter to 0 here!
trans(0), filters(0) {
init(id, direction, adoptedFilter, status);
}
CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
UErrorCode& status) :
Transliterator(id, 0), // set filter to 0 here!
trans(0), filters(0) {
init(id, UTRANS_FORWARD, 0, status);
}
void CompoundTransliterator::init(const UnicodeString& id,
UTransDirection direction,
UnicodeFilter* adoptedFilter,
UErrorCode& status) {
if (U_FAILURE(status))
return;
UnicodeString* list = split(id, ID_DELIM, &count);
trans = new Transliterator*[count];
for (int32_t i = 0; i < count; ++i) {
trans[i] = createInstance(list[direction==UTRANS_FORWARD ? i : (count-1-i)],
direction);
if (trans[i] == NULL) {
while (++i < count)
trans[i] = 0;
status = U_ILLEGAL_ARGUMENT_ERROR;
delete[] list;
delete adoptedFilter;
return;
}
}
delete[] list;
// If the direction is UTRANS_REVERSE then we need to fix
// the ID.
if (direction == UTRANS_REVERSE) {
UnicodeString newID;
for (int32_t i=0; i<count; ++i) {
if (i > 0) {
newID.append(ID_DELIM);
}
newID.append(trans[i]->getID());
}
setID(newID);
}
computeMaximumContextLength();
adoptFilter(adoptedFilter);
}
/**
* Return the IDs of the given list of transliterators, concatenated
* with ID_DELIM delimiting them. Equivalent to the perlish expression
* join(ID_DELIM, map($_.getID(), transliterators).
*/
UnicodeString CompoundTransliterator::joinIDs(Transliterator* const transliterators[],
int32_t transCount) {
UnicodeString id;
for (int32_t i=0; i<transCount; ++i) {
if (i > 0) {
id.append(ID_DELIM);
}
id.append(transliterators[i]->getID());
}
return id; // Return temporary
}
/**
* Splits a string, as in JavaScript
*/
UnicodeString* CompoundTransliterator::split(const UnicodeString& s,
UChar divider,
int32_t* countPtr) {
// changed MED
// see how many there are
*countPtr = 1;
int32_t i;
for (i = 0; i < s.length(); ++i) {
if (s.charAt(i) == divider)
++(*countPtr);
}
// make an array with them
UnicodeString* result = new UnicodeString[*countPtr];
int32_t last = 0;
int32_t current = 0;
for (i = 0; i < s.length(); ++i) {
if (s.charAt(i) == divider) {
s.extractBetween(last, i, result[current++]);
last = i+1;
}
}
s.extractBetween(last, i, result[current]);
return result;
}
/**
* Copy constructor.
*/
CompoundTransliterator::CompoundTransliterator(const CompoundTransliterator& t) :
Transliterator(t), trans(0), filters(0), count(0) {
*this = t;
}
/**
* Destructor
*/
CompoundTransliterator::~CompoundTransliterator() {
freeTransliterators();
}
void CompoundTransliterator::freeTransliterators(void) {
for (int32_t i=0; i<count; ++i) {
if (trans != 0) {
delete trans[i];
}
if (filters != 0) {
delete filters[i];
}
}
delete[] trans;
delete[] filters;
trans = 0;
filters = 0;
count = 0;
}
/**
* Assignment operator.
*/
CompoundTransliterator& CompoundTransliterator::operator=(
const CompoundTransliterator& t) {
Transliterator::operator=(t);
int32_t i;
for (i=0; i<count; ++i) {
delete trans[i];
trans[i] = 0;
if (filters != 0) {
delete filters[i];
filters[i] = 0;
}
}
if (t.count > count) {
delete[] trans;
trans = new Transliterator*[t.count];
delete[] filters;
filters = (t.filter == 0) ? 0 : new UnicodeFilter*[t.count];
}
count = t.count;
for (i=0; i<count; ++i) {
trans[i] = t.trans[i]->clone();
if (t.filters != 0) {
filters[i] = t.filters[i]->clone();
}
}
return *this;
}
/**
* Transliterator API.
*/
Transliterator* CompoundTransliterator::clone(void) const {
return new CompoundTransliterator(*this);
}
/**
* Returns the number of transliterators in this chain.
* @return number of transliterators in this chain.
*/
int32_t CompoundTransliterator::getCount(void) const {
return count;
}
/**
* Returns the transliterator at the given index in this chain.
* @param index index into chain, from 0 to <code>getCount() - 1</code>
* @return transliterator at the given index
*/
const Transliterator& CompoundTransliterator::getTransliterator(int32_t index) const {
return *trans[index];
}
void CompoundTransliterator::setTransliterators(Transliterator* const transliterators[],
int32_t transCount) {
Transliterator** a = new Transliterator*[transCount];
for (int32_t i=0; i<transCount; ++i) {
a[i] = transliterators[i]->clone();
}
adoptTransliterators(a, transCount);
}
void CompoundTransliterator::adoptTransliterators(Transliterator* adoptedTransliterators[],
int32_t transCount) {
// First free trans[] and set count to zero. Once this is done,
// orphan the filter. Set up the new trans[], and call
// adoptFilter() to fix up the filters in trans[].
freeTransliterators();
UnicodeFilter *f = orphanFilter();
trans = adoptedTransliterators;
count = transCount;
computeMaximumContextLength();
adoptFilter(f);
setID(joinIDs(trans, count));
}
/**
* Override Transliterator. Modify the transliterators that make up
* this compound transliterator so their filters are the logical AND
* of this transliterator's filter and their own. Original filters
* are kept in the filters array.
*/
void CompoundTransliterator::adoptFilter(UnicodeFilter* f) {
/**
* If there is a filter F for the compound transliterator as a
* whole, then we need to modify every non-null filter f in
* the chain to be f' = F & f.
*
* There are two possible states:
* 1. getFilter() != 0
* original filters in filters[]
* createAnd() filters in trans[]
* 2. getFilter() == 0
* filters[] either unallocated or empty
* original filters in trans[]
* This method must insure that we stay in one of these states.
*/
if (count > 0) {
if (f == 0) {
// Restore original filters
if (getFilter() != 0 && filters != 0) {
for (int32_t i=0; i<count; ++i) {
trans[i]->adoptFilter(filters[i]);
filters[i] = 0;
}
}
} else {
// If the previous filter is 0, then the component filters
// are in trans[i], and need to be pulled out into filters[].
if (getFilter() == 0) {
if (filters == 0) {
filters = new UnicodeFilter*[count];
}
for (int32_t i=0; i<count; ++i) {
filters[i] = trans[i]->orphanFilter();
}
}
for (int32_t i=0; i<count; ++i) {
trans[i]->adoptFilter(UnicodeFilterLogic::createAnd(f, filters[i]));
}
}
}
Transliterator::adoptFilter(f);
}
/**
* Implements {@link Transliterator#handleTransliterate}.
*/
void CompoundTransliterator::handleTransliterate(Replaceable& text, UTransPosition& index,
UBool incremental) const {
/* Call each transliterator with the same start value and
* initial cursor index, but with the limit index as modified
* by preceding transliterators. The cursor index must be
* reset for each transliterator to give each a chance to
* transliterate the text. The initial cursor index is known
* to still point to the same place after each transliterator
* is called because each transliterator will not change the
* text between start and the initial value of cursor.
*
* IMPORTANT: After the first transliterator, each subsequent
* transliterator only gets to transliterate text committed by
* preceding transliterators; that is, the cursor (output
* value) of transliterator i becomes the limit (input value)
* of transliterator i+1. Finally, the overall limit is fixed
* up before we return.
*
* Assumptions we make here:
* (1) start <= cursor <= limit ;cursor valid on entry
* (2) cursor <= cursor' <= limit' ;cursor doesn't move back
* (3) cursor <= limit' ;text before cursor unchanged
* - cursor' is the value of cursor after calling handleKT
* - limit' is the value of limit after calling handleKT
*/
/**
* Example: 3 transliterators. This example illustrates the
* mechanics we need to implement. S, C, and L are the start,
* cursor, and limit. gl is the globalLimit.
*
* 1. h-u, changes hex to Unicode
*
* 4 7 a d 0 4 7 a
* abc/u0061/u => abca/u
* S C L S C L gl=f->a
*
* 2. upup, changes "x" to "XX"
*
* 4 7 a 4 7 a
* abca/u => abcAA/u
* S CL S C
* L gl=a->b
* 3. u-h, changes Unicode to hex
*
* 4 7 a 4 7 a d 0 3
* abcAA/u => abc/u0041/u0041/u
* S C L S C
* L gl=b->15
* 4. return
*
* 4 7 a d 0 3
* abc/u0041/u0041/u
* S C L
*/
if (count < 1) {
return; // Short circuit for empty compound transliterators
}
int32_t i;
int32_t cursor = index.start;
int32_t limit = index.limit;
int32_t globalLimit = limit;
/* globalLimit is the overall limit. We keep track of this
* since we overwrite index.limit with the previous
* index.start. After each transliteration, we update
* globalLimit for insertions or deletions that have happened.
*/
for (i=0; i<count; ++i) {
index.start = cursor; // Reset cursor
index.limit = limit;
trans[i]->handleTransliterate(text, index, incremental);
// Adjust overall limit for insertions/deletions
globalLimit += index.limit - limit;
limit = index.start; // Move limit to end of committed text
}
// Cursor is good where it is -- where the last
// transliterator left it. Limit needs to be put back
// where it was, modulo adjustments for deletions/insertions.
index.limit = globalLimit;
}
/**
* Sets the length of the longest context required by this transliterator.
* This is <em>preceding</em> context.
*/
void CompoundTransliterator::computeMaximumContextLength(void) {
int32_t max = 0;
for (int32_t i=0; i<count; ++i) {
int32_t len = trans[i]->getMaximumContextLength();
if (len > max) {
max = len;
}
}
setMaximumContextLength(max);
}