scuffed-code/icu4c/source/common/uprops.c
2004-05-04 18:52:35 +00:00

628 lines
22 KiB
C

/*
*******************************************************************************
*
* Copyright (C) 2002-2004, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: uprops.h
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002feb24
* created by: Markus W. Scherer
*
* Implementations for mostly non-core Unicode character properties
* stored in uprops.icu.
*/
#include "unicode/utypes.h"
#include "unicode/uchar.h"
#include "unicode/uscript.h"
#include "cstring.h"
#include "unormimp.h"
#include "uprops.h"
#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
#ifdef DEBUG
#include <stdio.h>
#endif
/**
* Get the next non-ignorable ASCII character from a property name
* and lowercases it.
* @return ((advance count for the name)<<8)|character
*/
static U_INLINE int32_t
getASCIIPropertyNameChar(const char *name) {
int32_t i;
char c;
/* Ignore delimiters '-', '_', and ASCII White_Space */
for(i=0;
(c=name[i++])==0x2d || c==0x5f ||
c==0x20 || (0x09<=c && c<=0x0d);
) {}
if(c!=0) {
return (i<<8)|(uint8_t)uprv_asciitolower((char)c);
} else {
return i<<8;
}
}
/**
* Get the next non-ignorable EBCDIC character from a property name
* and lowercases it.
* @return ((advance count for the name)<<8)|character
*/
static U_INLINE int32_t
getEBCDICPropertyNameChar(const char *name) {
int32_t i;
char c;
/* Ignore delimiters '-', '_', and EBCDIC White_Space */
for(i=0;
(c=name[i++])==0x60 || c==0x6d ||
c==0x40 || c==0x05 || c==0x15 || c==0x25 || c==0x0b || c==0x0c || c==0x0d;
) {}
if(c!=0) {
return (i<<8)|(uint8_t)uprv_ebcdictolower((char)c);
} else {
return i<<8;
}
}
/**
* Unicode property names and property value names are compared
* "loosely". Property[Value]Aliases.txt say:
* "With loose matching of property names, the case distinctions, whitespace,
* and '_' are ignored."
*
* This function does just that, for (char *) name strings.
* It is almost identical to ucnv_compareNames() but also ignores
* C0 White_Space characters (U+0009..U+000d, and U+0085 on EBCDIC).
*
* @internal
*/
U_CAPI int32_t U_EXPORT2
uprv_compareASCIIPropertyNames(const char *name1, const char *name2) {
int32_t rc, r1, r2;
for(;;) {
r1=getASCIIPropertyNameChar(name1);
r2=getASCIIPropertyNameChar(name2);
/* If we reach the ends of both strings then they match */
if(((r1|r2)&0xff)==0) {
return 0;
}
/* Compare the lowercased characters */
if(r1!=r2) {
rc=(r1&0xff)-(r2&0xff);
if(rc!=0) {
return rc;
}
}
name1+=r1>>8;
name2+=r2>>8;
}
}
U_CAPI int32_t U_EXPORT2
uprv_compareEBCDICPropertyNames(const char *name1, const char *name2) {
int32_t rc, r1, r2;
for(;;) {
r1=getEBCDICPropertyNameChar(name1);
r2=getEBCDICPropertyNameChar(name2);
/* If we reach the ends of both strings then they match */
if(((r1|r2)&0xff)==0) {
return 0;
}
/* Compare the lowercased characters */
if(r1!=r2) {
rc=(r1&0xff)-(r2&0xff);
if(rc!=0) {
return rc;
}
}
name1+=r1>>8;
name2+=r2>>8;
}
}
/* API functions ------------------------------------------------------------ */
U_CAPI void U_EXPORT2
u_charAge(UChar32 c, UVersionInfo versionArray) {
if(versionArray!=NULL) {
uint32_t version=u_getUnicodeProperties(c, 0)>>UPROPS_AGE_SHIFT;
versionArray[0]=(uint8_t)(version>>4);
versionArray[1]=(uint8_t)(version&0xf);
versionArray[2]=versionArray[3]=0;
}
}
U_CAPI UScriptCode U_EXPORT2
uscript_getScript(UChar32 c, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return 0;
}
if((uint32_t)c>0x10ffff) {
*pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
return (UScriptCode)(u_getUnicodeProperties(c, 0)&UPROPS_SCRIPT_MASK);
}
U_CAPI UBlockCode U_EXPORT2
ublock_getCode(UChar32 c) {
return (UBlockCode)((u_getUnicodeProperties(c, 0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT);
}
static const struct {
int32_t column;
uint32_t mask;
} binProps[UCHAR_BINARY_LIMIT]={
/*
* column and mask values for binary properties from u_getUnicodeProperties().
* Must be in order of corresponding UProperty,
* and there must be exacly one entry per binary UProperty.
*/
{ 1, U_MASK(UPROPS_ALPHABETIC) },
{ 1, U_MASK(UPROPS_ASCII_HEX_DIGIT) },
{ 1, U_MASK(UPROPS_BIDI_CONTROL) },
{ -1, U_MASK(UPROPS_MIRROR_SHIFT) },
{ 1, U_MASK(UPROPS_DASH) },
{ 1, U_MASK(UPROPS_DEFAULT_IGNORABLE_CODE_POINT) },
{ 1, U_MASK(UPROPS_DEPRECATED) },
{ 1, U_MASK(UPROPS_DIACRITIC) },
{ 1, U_MASK(UPROPS_EXTENDER) },
{ 0, 0 }, /* UCHAR_FULL_COMPOSITION_EXCLUSION */
{ 1, U_MASK(UPROPS_GRAPHEME_BASE) },
{ 1, U_MASK(UPROPS_GRAPHEME_EXTEND) },
{ 1, U_MASK(UPROPS_GRAPHEME_LINK) },
{ 1, U_MASK(UPROPS_HEX_DIGIT) },
{ 1, U_MASK(UPROPS_HYPHEN) },
{ 1, U_MASK(UPROPS_ID_CONTINUE) },
{ 1, U_MASK(UPROPS_ID_START) },
{ 1, U_MASK(UPROPS_IDEOGRAPHIC) },
{ 1, U_MASK(UPROPS_IDS_BINARY_OPERATOR) },
{ 1, U_MASK(UPROPS_IDS_TRINARY_OPERATOR) },
{ 1, U_MASK(UPROPS_JOIN_CONTROL) },
{ 1, U_MASK(UPROPS_LOGICAL_ORDER_EXCEPTION) },
{ 1, U_MASK(UPROPS_LOWERCASE) },
{ 1, U_MASK(UPROPS_MATH) },
{ 1, U_MASK(UPROPS_NONCHARACTER_CODE_POINT) },
{ 1, U_MASK(UPROPS_QUOTATION_MARK) },
{ 1, U_MASK(UPROPS_RADICAL) },
{ 1, U_MASK(UPROPS_SOFT_DOTTED) },
{ 1, U_MASK(UPROPS_TERMINAL_PUNCTUATION) },
{ 1, U_MASK(UPROPS_UNIFIED_IDEOGRAPH) },
{ 1, U_MASK(UPROPS_UPPERCASE) },
{ 1, U_MASK(UPROPS_WHITE_SPACE) },
{ 1, U_MASK(UPROPS_XID_CONTINUE) },
{ 1, U_MASK(UPROPS_XID_START) },
{ -1, U_MASK(UPROPS_CASE_SENSITIVE_SHIFT) },
{ 2, U_MASK(UPROPS_V2_S_TERM) },
{ 2, U_MASK(UPROPS_V2_VARIATION_SELECTOR) },
{ 0, 0 }, /* UCHAR_NFD_INERT */
{ 0, 0 }, /* UCHAR_NFKD_INERT */
{ 0, 0 }, /* UCHAR_NFC_INERT */
{ 0, 0 }, /* UCHAR_NFKC_INERT */
{ 0, 0 } /* UCHAR_SEGMENT_STARTER */
};
U_CAPI UBool U_EXPORT2
u_hasBinaryProperty(UChar32 c, UProperty which) {
/* c is range-checked in the functions that are called from here */
if(which<UCHAR_BINARY_START || UCHAR_BINARY_LIMIT<=which) {
/* not a known binary property */
} else {
uint32_t mask=binProps[which].mask;
if(mask!=0) {
/* systematic, directly stored properties */
return (u_getUnicodeProperties(c, binProps[which].column)&mask)!=0;
} else {
#if !UCONFIG_NO_NORMALIZATION
/* normalization properties from unorm.icu */
switch(which) {
case UCHAR_FULL_COMPOSITION_EXCLUSION:
return unorm_internalIsFullCompositionExclusion(c);
case UCHAR_NFD_INERT:
case UCHAR_NFKD_INERT:
case UCHAR_NFC_INERT:
case UCHAR_NFKC_INERT:
return unorm_isNFSkippable(c, (UNormalizationMode)(which-UCHAR_NFD_INERT)+UNORM_NFD);
case UCHAR_SEGMENT_STARTER:
return unorm_isCanonSafeStart(c);
default:
break;
}
#endif
}
}
return FALSE;
}
U_CAPI UBool U_EXPORT2
u_isUAlphabetic(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_ALPHABETIC);
}
U_CAPI UBool U_EXPORT2
u_isULowercase(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_LOWERCASE);
}
U_CAPI UBool U_EXPORT2
u_isUUppercase(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_UPPERCASE);
}
U_CAPI UBool U_EXPORT2
u_isUWhiteSpace(UChar32 c) {
return u_hasBinaryProperty(c, UCHAR_WHITE_SPACE);
}
U_CAPI UBool U_EXPORT2
uprv_isRuleWhiteSpace(UChar32 c) {
/* "white space" in the sense of ICU rule parsers
This is a FIXED LIST that is NOT DEPENDENT ON UNICODE PROPERTIES.
See UTR #31: http://www.unicode.org/reports/tr31/.
U+0009..U+000D, U+0020, U+0085, U+200E..U+200F, and U+2028..U+2029
*/
return (c >= 0x0009 && c <= 0x2029 &&
(c <= 0x000D || c == 0x0020 || c == 0x0085 ||
c == 0x200E || c == 0x200F || c >= 0x2028));
}
static const UChar _PATTERN[] = {
/* "[[:Cf:][:WSpace:]]" */
91, 91, 58, 67, 102, 58, 93, 91, 58, 87,
83, 112, 97, 99, 101, 58, 93, 93, 0
};
U_CAPI USet* U_EXPORT2
uprv_openRuleWhiteSpaceSet(UErrorCode* ec) {
return uset_openPattern(_PATTERN,
sizeof(_PATTERN)/sizeof(_PATTERN[0])-1, ec);
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyValue(UChar32 c, UProperty which) {
UErrorCode errorCode;
if(which<UCHAR_BINARY_START) {
return 0; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return (int32_t)u_hasBinaryProperty(c, which);
} else if(which<UCHAR_INT_START) {
return 0; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)u_charDirection(c);
case UCHAR_BLOCK:
return (int32_t)ublock_getCode(c);
case UCHAR_CANONICAL_COMBINING_CLASS:
#if !UCONFIG_NO_NORMALIZATION
return u_getCombiningClass(c);
#else
return 0;
#endif
case UCHAR_DECOMPOSITION_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_DT_MASK);
case UCHAR_EAST_ASIAN_WIDTH:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)u_charType(c);
case UCHAR_JOINING_GROUP:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT;
case UCHAR_JOINING_TYPE:
return (int32_t)(u_getUnicodeProperties(c, 2)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT;
case UCHAR_LINE_BREAK:
return (int32_t)(u_getUnicodeProperties(c, 0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
case UCHAR_NUMERIC_TYPE:
return (int32_t)GET_NUMERIC_TYPE(u_getUnicodeProperties(c, -1));
case UCHAR_SCRIPT:
errorCode=U_ZERO_ERROR;
return (int32_t)uscript_getScript(c, &errorCode);
case UCHAR_HANGUL_SYLLABLE_TYPE:
/* purely algorithmic; hardcode known characters, check for assigned new ones */
if(c<JAMO_L_BASE) {
/* U_HST_NOT_APPLICABLE */
} else if(c<=0x11ff) {
/* Jamo range */
if(c<=0x115f) {
/* Jamo L range, HANGUL CHOSEONG ... */
if(c==0x115f || c<=0x1159 || u_charType(c)==U_OTHER_LETTER) {
return U_HST_LEADING_JAMO;
}
} else if(c<=0x11a7) {
/* Jamo V range, HANGUL JUNGSEONG ... */
if(c<=0x11a2 || u_charType(c)==U_OTHER_LETTER) {
return U_HST_VOWEL_JAMO;
}
} else {
/* Jamo T range */
if(c<=0x11f9 || u_charType(c)==U_OTHER_LETTER) {
return U_HST_TRAILING_JAMO;
}
}
} else if((c-=HANGUL_BASE)<0) {
/* U_HST_NOT_APPLICABLE */
} else if(c<HANGUL_COUNT) {
/* Hangul syllable */
return c%JAMO_T_COUNT==0 ? U_HST_LV_SYLLABLE : U_HST_LVT_SYLLABLE;
}
return U_HST_NOT_APPLICABLE;
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return (int32_t)unorm_getQuickCheck(c, (UNormalizationMode)(which-UCHAR_NFD_QUICK_CHECK)+UNORM_NFD);
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
return unorm_getFCD16FromCodePoint(c)>>8;
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return unorm_getFCD16FromCodePoint(c)&0xff;
default:
return 0; /* undefined */
}
} else if(which==UCHAR_GENERAL_CATEGORY_MASK) {
return U_MASK(u_charType(c));
} else {
return 0; /* undefined */
}
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMinValue(UProperty which) {
return 0; /* all binary/enum/int properties have a minimum value of 0 */
}
U_CAPI int32_t U_EXPORT2
u_getIntPropertyMaxValue(UProperty which) {
int32_t max;
if(which<UCHAR_BINARY_START) {
return -1; /* undefined */
} else if(which<UCHAR_BINARY_LIMIT) {
return 1; /* maximum TRUE for all binary properties */
} else if(which<UCHAR_INT_START) {
return -1; /* undefined */
} else if(which<UCHAR_INT_LIMIT) {
switch(which) {
case UCHAR_BIDI_CLASS:
return (int32_t)U_CHAR_DIRECTION_COUNT-1;
case UCHAR_BLOCK:
max=(uprv_getMaxValues(0)&UPROPS_BLOCK_MASK)>>UPROPS_BLOCK_SHIFT;
return max!=0 ? max : (int32_t)UBLOCK_COUNT-1;
case UCHAR_CANONICAL_COMBINING_CLASS:
case UCHAR_LEAD_CANONICAL_COMBINING_CLASS:
case UCHAR_TRAIL_CANONICAL_COMBINING_CLASS:
return 0xff; /* TODO do we need to be more precise, getting the actual maximum? */
case UCHAR_DECOMPOSITION_TYPE:
max=uprv_getMaxValues(2)&UPROPS_DT_MASK;
return max!=0 ? max : (int32_t)U_DT_COUNT-1;
case UCHAR_EAST_ASIAN_WIDTH:
max=(uprv_getMaxValues(0)&UPROPS_EA_MASK)>>UPROPS_EA_SHIFT;
return max!=0 ? max : (int32_t)U_EA_COUNT-1;
case UCHAR_GENERAL_CATEGORY:
return (int32_t)U_CHAR_CATEGORY_COUNT-1;
case UCHAR_JOINING_GROUP:
max=(uprv_getMaxValues(2)&UPROPS_JG_MASK)>>UPROPS_JG_SHIFT;
return max!=0 ? max : (int32_t)U_JG_COUNT-1;
case UCHAR_JOINING_TYPE:
max=(uprv_getMaxValues(2)&UPROPS_JT_MASK)>>UPROPS_JT_SHIFT;
return max!=0 ? max : (int32_t)U_JT_COUNT-1;
case UCHAR_LINE_BREAK:
max=(uprv_getMaxValues(0)&UPROPS_LB_MASK)>>UPROPS_LB_SHIFT;
return max!=0 ? max : (int32_t)U_LB_COUNT-1;
case UCHAR_NUMERIC_TYPE:
return (int32_t)U_NT_COUNT-1;
case UCHAR_SCRIPT:
max=uprv_getMaxValues(0)&UPROPS_SCRIPT_MASK;
return max!=0 ? max : (int32_t)USCRIPT_CODE_LIMIT-1;
case UCHAR_HANGUL_SYLLABLE_TYPE:
return (int32_t)U_HST_COUNT-1;
case UCHAR_NFD_QUICK_CHECK:
case UCHAR_NFKD_QUICK_CHECK:
return (int32_t)UNORM_YES; /* these are never "maybe", only "no" or "yes" */
case UCHAR_NFC_QUICK_CHECK:
case UCHAR_NFKC_QUICK_CHECK:
return (int32_t)UNORM_MAYBE;
default:
return -1; /* undefined */
}
} else {
return -1; /* undefined */
}
}
/*----------------------------------------------------------------
* Inclusions list
*----------------------------------------------------------------*/
/*
* Return a set of characters for property enumeration.
* The set implicitly contains 0x110000 as well, which is one more than the highest
* Unicode code point.
*
* This set is used as an ordered list - its code points are ordered, and
* consecutive code points (in Unicode code point order) in the set define a range.
* For each two consecutive characters (start, limit) in the set,
* all of the UCD/normalization and related properties for
* all code points start..limit-1 are all the same,
* except for character names and ISO comments.
*
* All Unicode code points U+0000..U+10ffff are covered by these ranges.
* The ranges define a partition of the Unicode code space.
* ICU uses the inclusions set to enumerate properties for generating
* UnicodeSets containing all code points that have a certain property value.
*
* The Inclusion List is generated from the UCD. It is generated
* by enumerating the data tries, and code points for hardcoded properties
* are added as well.
*
* --------------------------------------------------------------------------
*
* The following are ideas for getting properties-unique code point ranges,
* with possible optimizations beyond the current implementation.
* These optimizations would require more code and be more fragile.
* The current implementation generates one single list (set) for all properties.
*
* To enumerate properties efficiently, one needs to know ranges of
* repetitive values, so that the value of only each start code point
* can be applied to the whole range.
* This information is in principle available in the uprops.icu/unorm.icu data.
*
* There are two obstacles:
*
* 1. Some properties are computed from multiple data structures,
* making it necessary to get repetitive ranges by intersecting
* ranges from multiple tries.
*
* 2. It is not economical to write code for getting repetitive ranges
* that are precise for each of some 50 properties.
*
* Compromise ideas:
*
* - Get ranges per trie, not per individual property.
* Each range contains the same values for a whole group of properties.
* This would generate currently five range sets, two for uprops.icu tries
* and three for unorm.icu tries.
*
* - Combine sets of ranges for multiple tries to get sufficient sets
* for properties, e.g., the uprops.icu main and auxiliary tries
* for all non-normalization properties.
*
* Ideas for representing ranges and combining them:
*
* - A UnicodeSet could hold just the start code points of ranges.
* Multiple sets are easily combined by or-ing them together.
*
* - Alternatively, a UnicodeSet could hold each even-numbered range.
* All ranges could be enumerated by using each start code point
* (for the even-numbered ranges) as well as each limit (end+1) code point
* (for the odd-numbered ranges).
* It should be possible to combine two such sets by xor-ing them,
* but no more than two.
*
* The second way to represent ranges may(?!) yield smaller UnicodeSet arrays,
* but the first one is certainly simpler and applicable for combining more than
* two range sets.
*
* It is possible to combine all range sets for all uprops/unorm tries into one
* set that can be used for all properties.
* As an optimization, there could be less-combined range sets for certain
* groups of properties.
* The relationship of which less-combined range set to use for which property
* depends on the implementation of the properties and must be hardcoded
* - somewhat error-prone and higher maintenance but can be tested easily
* by building property sets "the simple way" in test code.
*
* ---
*
* Do not use a UnicodeSet pattern because that causes infinite recursion;
* UnicodeSet depends on the inclusions set.
*/
#ifdef DEBUG
static uint32_t
strrch(const char* source,uint32_t sourceLen,char find){
const char* tSourceEnd =source + (sourceLen-1);
while(tSourceEnd>= source){
if(*tSourceEnd==find){
return (uint32_t)(tSourceEnd-source);
}
tSourceEnd--;
}
return (uint32_t)(tSourceEnd-source);
}
#endif
U_CAPI void U_EXPORT2
uprv_getInclusions(USet* set, UErrorCode *pErrorCode) {
if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
return;
}
uset_clear(set);
#if !UCONFIG_NO_NORMALIZATION
unorm_addPropertyStarts(set, pErrorCode);
#endif
uchar_addPropertyStarts(set, pErrorCode);
#ifdef DEBUG
{
UChar* result=NULL;
int32_t resultCapacity=0;
int32_t bufLen = uset_toPattern(set,result,resultCapacity,TRUE,pErrorCode);
char* resultChars = NULL;
if(*pErrorCode == U_BUFFER_OVERFLOW_ERROR){
uint32_t len = 0, add=0;
char *buf=NULL, *current = NULL;
*pErrorCode = U_ZERO_ERROR;
resultCapacity = bufLen;
result = (UChar*) uprv_malloc(resultCapacity * U_SIZEOF_UCHAR);
bufLen = uset_toPattern(set,result,resultCapacity,TRUE,pErrorCode);
resultChars = (char*) uprv_malloc(len+1);
u_UCharsToChars(result,resultChars,bufLen);
resultChars[bufLen] = 0;
buf = resultChars;
/*printf(resultChars);*/
while(len < bufLen){
add = 70-5/* for ", +\n */;
current = buf +len;
if (add < (bufLen-len)) {
uint32_t index = strrch(current,add,'\\');
if (index > add) {
index = add;
} else {
int32_t num =index-1;
uint32_t seqLen;
while(num>0){
if(current[num]=='\\'){
num--;
}else{
break;
}
}
if ((index-num)%2==0) {
index--;
}
seqLen = (current[index+1]=='u') ? 6 : 2;
if ((add-index) < seqLen) {
add = index + seqLen;
}
}
}
fwrite("\"",1,1,stdout);
if(len+add<bufLen){
fwrite(current,1,add,stdout);
fwrite("\" +\n",1,4,stdout);
}else{
fwrite(current,1,bufLen-len,stdout);
}
len+=add;
}
}
uprv_free(result);
uprv_free(resultChars);
}
#endif
}