363ee387f6
X-SVN-Rev: 362
263 lines
7.2 KiB
C++
263 lines
7.2 KiB
C++
/*
|
|
**********************************************************************
|
|
* Copyright (C) 1999, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
**********************************************************************
|
|
* Copyright (C) 1999 Alan Liu and others. All rights reserved.
|
|
**********************************************************************
|
|
* Date Name Description
|
|
* 10/22/99 alan Creation. This is an internal header.
|
|
* It should not be exported.
|
|
**********************************************************************
|
|
*/
|
|
|
|
#ifndef UVECTOR_H
|
|
#define UVECTOR_H
|
|
|
|
#include "utypes.h"
|
|
|
|
/**
|
|
* <p>Ultralightweight C++ implementation of a <tt>void*</tt> vector
|
|
* that is (mostly) compatible with java.util.Vector.
|
|
*
|
|
* <p>This is a very simple implementation, written to satisfy an
|
|
* immediate porting need. As such, it is not completely fleshed out,
|
|
* and it aims for simplicity and conformity. Nonetheless, it serves
|
|
* its purpose (porting code from java that uses java.util.Vector)
|
|
* well, and it could be easily made into a more robust vector class.
|
|
*
|
|
* <p><b>Design notes</b>
|
|
*
|
|
* <p>There is index bounds checking, but little is done about it. If
|
|
* indices are out of bounds, either nothing happens, or zero is
|
|
* returned. We <em>do</em> avoid indexing off into the weeds.
|
|
*
|
|
* <p>There is detection of out of memory, but the handling is very
|
|
* coarse-grained -- similar to UnicodeString's protocol, but even
|
|
* coarser. The class contains <em>one static flag</em> that is set
|
|
* when any call to <tt>new</tt> returns zero. This allows the caller
|
|
* to use several vectors and make just one check at the end to see if
|
|
* a memory failure occurred. This is more efficient than making a
|
|
* check after each call on each vector when doing many operations on
|
|
* multiple vectors. The single static flag works best when memory
|
|
* failures are infrequent, and when recovery options are limited or
|
|
* nonexistent.
|
|
*
|
|
* <p>Since we don't have garbage collection, UVector was given the
|
|
* option to <em>own</em>its contents. To employ this, set a deleter
|
|
* function. The deleter is called on a void* pointer when that
|
|
* pointer is released by the vector, either when the vector itself is
|
|
* destructed, or when a call to setElementAt() overwrites an element,
|
|
* or when a call to remove() or one of its variants explicitly
|
|
* removes an element. If no deleter is set, or the deleter is set to
|
|
* zero, then it is assumed that the caller will delete elements as
|
|
* needed.
|
|
*
|
|
* <p>In order to implement methods such as contains() and indexOf(),
|
|
* UVector needs a way to compare objects for equality. To do so, it
|
|
* uses a comparison frunction, or "comparer." If the comparer is not
|
|
* set, or is set to zero, then all such methods will act as if the
|
|
* vector contains no element. That is, indexOf() will always return
|
|
* -1, contains() will always return FALSE, etc.
|
|
*
|
|
* <p><b>To do</b>
|
|
*
|
|
* <p>Improve the handling of index out of bounds errors.
|
|
*
|
|
* @author Alan Liu
|
|
*/
|
|
class U_COMMON_API UVector {
|
|
public:
|
|
typedef void (*Deleter)(void*);
|
|
typedef bool_t (*Comparer)(void*, void*);
|
|
|
|
private:
|
|
int32_t count;
|
|
|
|
int32_t capacity;
|
|
|
|
void** elements;
|
|
|
|
Deleter deleter;
|
|
|
|
Comparer comparer;
|
|
|
|
static bool_t outOfMemory;
|
|
|
|
public:
|
|
UVector(int32_t initialCapacity = 8);
|
|
|
|
UVector(Deleter d, Comparer c, int32_t initialCapacity = 8);
|
|
|
|
~UVector();
|
|
|
|
//------------------------------------------------------------
|
|
// java.util.Vector API
|
|
//------------------------------------------------------------
|
|
|
|
void addElement(void* obj);
|
|
|
|
void setElementAt(void* obj, int32_t index);
|
|
|
|
void insertElementAt(void* obj, int32_t index);
|
|
|
|
void* elementAt(int32_t index) const;
|
|
|
|
void* firstElement() const;
|
|
|
|
void* lastElement() const;
|
|
|
|
int32_t indexOf(void* obj, int32_t startIndex = 0) const;
|
|
|
|
bool_t contains(void* obj) const;
|
|
|
|
void removeElementAt(int32_t index);
|
|
|
|
bool_t removeElement(void* obj);
|
|
|
|
void removeAllElements();
|
|
|
|
int32_t size() const;
|
|
|
|
bool_t isEmpty() const;
|
|
|
|
bool_t ensureCapacity(int32_t minimumCapacity);
|
|
|
|
//------------------------------------------------------------
|
|
// New API
|
|
//------------------------------------------------------------
|
|
|
|
Deleter setDeleter(Deleter d);
|
|
|
|
Comparer setComparer(Comparer c);
|
|
|
|
static bool_t isOutOfMemory();
|
|
|
|
void* operator[](int32_t index) const;
|
|
|
|
/**
|
|
* Removes the element at the given index from this vector and
|
|
* transfer ownership of it to the caller. After this call, the
|
|
* caller owns the result and must delete it and the vector entry
|
|
* at 'index' is removed, shifting all subsequent entries back by
|
|
* one index and shortening the size of the vector by one. If the
|
|
* index is out of range or if there is no item at the given index
|
|
* then 0 is returned and the vector is unchanged.
|
|
*/
|
|
void* orphanElementAt(int32_t index);
|
|
|
|
private:
|
|
void _init(int32_t initialCapacity);
|
|
|
|
// Disallow
|
|
UVector(const UVector&);
|
|
|
|
// Disallow
|
|
UVector& operator=(const UVector&);
|
|
};
|
|
|
|
|
|
/**
|
|
* <p>Ultralightweight C++ implementation of a <tt>void*</tt> stack
|
|
* that is (mostly) compatible with java.util.Stack. As in java, this
|
|
* is merely a paper thin layer around UVector. See the UVector
|
|
* documentation for further information.
|
|
*
|
|
* <p><b>Design notes</b>
|
|
*
|
|
* <p>The element at index <tt>n-1</tt> is (of course) the top of the
|
|
* stack.
|
|
*
|
|
* <p>The poorly named <tt>empty()</tt> method doesn't empty the
|
|
* stack; it determines if the stack is empty.
|
|
*
|
|
* @author Alan Liu
|
|
*/
|
|
class U_COMMON_API UStack : public UVector {
|
|
public:
|
|
UStack(int32_t initialCapacity = 8);
|
|
|
|
UStack(Deleter d, Comparer c, int32_t initialCapacity = 8);
|
|
|
|
// It's okay not to have a virtual destructor (in UVector)
|
|
// because UStack has no special cleanup to do.
|
|
|
|
bool_t empty() const;
|
|
|
|
void* peek() const;
|
|
|
|
void* pop();
|
|
|
|
void* push(void* obj);
|
|
|
|
int32_t search(void* obj) const;
|
|
|
|
private:
|
|
// Disallow
|
|
UStack(const UStack&);
|
|
|
|
// Disallow
|
|
UStack& operator=(const UStack&);
|
|
};
|
|
|
|
|
|
// UVector inlines
|
|
|
|
inline int32_t UVector::size() const {
|
|
return count;
|
|
}
|
|
|
|
inline bool_t UVector::isEmpty() const {
|
|
return count == 0;
|
|
}
|
|
|
|
inline bool_t UVector::contains(void* obj) const {
|
|
return indexOf(obj) >= 0;
|
|
}
|
|
|
|
inline void* UVector::firstElement() const {
|
|
return elementAt(0);
|
|
}
|
|
|
|
inline void* UVector::lastElement() const {
|
|
return elementAt(count-1);
|
|
}
|
|
|
|
inline void* UVector::operator[](int32_t index) const {
|
|
return elementAt(index);
|
|
}
|
|
|
|
// Dummy implementation - disallowed method
|
|
inline UVector::UVector(const UVector&) {}
|
|
|
|
// Dummy implementation - disallowed method
|
|
inline UVector& UVector::operator=(const UVector&) {
|
|
return *this;
|
|
}
|
|
|
|
|
|
// UStack inlines
|
|
|
|
inline bool_t UStack::empty() const {
|
|
return isEmpty();
|
|
}
|
|
|
|
inline void* UStack::peek() const {
|
|
return lastElement();
|
|
}
|
|
|
|
inline void* UStack::push(void* obj) {
|
|
addElement(obj);
|
|
return obj;
|
|
}
|
|
|
|
// Dummy implementation - disallowed method
|
|
inline UStack::UStack(const UStack&) {}
|
|
|
|
// Dummy implementation - disallowed method
|
|
inline UStack& UStack::operator=(const UStack&) {
|
|
return *this;
|
|
}
|
|
|
|
#endif
|