scuffed-code/icu4c/source/i18n/digitlst.cpp
Steven R. Loomis a1ea70071b ICU-7708 compiler warnings for 4.5.1 (batch 1)
X-SVN-Rev: 28103
2010-05-25 22:17:12 +00:00

853 lines
26 KiB
C++

/*
**********************************************************************
* Copyright (C) 1997-2010, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
*
* File DIGITLST.CPP
*
* Modification History:
*
* Date Name Description
* 03/21/97 clhuang Converted from java.
* 03/21/97 clhuang Implemented with new APIs.
* 03/27/97 helena Updated to pass the simple test after code review.
* 03/31/97 aliu Moved isLONG_MIN to here, and fixed it.
* 04/15/97 aliu Changed MAX_COUNT to DBL_DIG. Changed Digit to char.
* Reworked representation by replacing fDecimalAt
* with fExponent.
* 04/16/97 aliu Rewrote set() and getDouble() to use sprintf/atof
* to do digit conversion.
* 09/09/97 aliu Modified for exponential notation support.
* 08/02/98 stephen Added nearest/even rounding
* Fixed bug in fitsIntoLong
******************************************************************************
*/
#include "digitlst.h"
#if !UCONFIG_NO_FORMATTING
#include "unicode/putil.h"
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "putilimp.h"
#include "uassert.h"
#include <stdlib.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <limits>
// ***************************************************************************
// class DigitList
// A wrapper onto decNumber.
// Used to be standalone.
// ***************************************************************************
/**
* This is the zero digit. The base for the digits returned by getDigit()
*/
#define kZero '0'
static char gDecimal = 0;
/* Only for 32 bit numbers. Ignore the negative sign. */
static const char LONG_MIN_REP[] = "2147483648";
static const char I64_MIN_REP[] = "9223372036854775808";
U_NAMESPACE_BEGIN
// -------------------------------------
// default constructor
DigitList::DigitList()
{
uprv_decContextDefault(&fContext, DEC_INIT_BASE);
fContext.traps = 0;
uprv_decContextSetRounding(&fContext, DEC_ROUND_HALF_EVEN);
fContext.digits = fStorage.getCapacity();
fDecNumber = fStorage.getAlias();
uprv_decNumberZero(fDecNumber);
fDouble = 0.0;
fHaveDouble = TRUE;
}
// -------------------------------------
DigitList::~DigitList()
{
}
// -------------------------------------
// copy constructor
DigitList::DigitList(const DigitList &other)
{
fDecNumber = fStorage.getAlias();
*this = other;
}
// -------------------------------------
// assignment operator
DigitList&
DigitList::operator=(const DigitList& other)
{
if (this != &other)
{
uprv_memcpy(&fContext, &other.fContext, sizeof(decContext));
if (other.fStorage.getCapacity() > fStorage.getCapacity()) {
fDecNumber = fStorage.resize(other.fStorage.getCapacity());
}
// Always reset the fContext.digits, even if fDecNumber was not reallocated,
// because above we copied fContext from other.fContext.
fContext.digits = fStorage.getCapacity();
uprv_decNumberCopy(fDecNumber, other.fDecNumber);
fDouble = other.fDouble;
fHaveDouble = other.fHaveDouble;
}
return *this;
}
// -------------------------------------
// operator == (does not exactly match the old DigitList function)
UBool
DigitList::operator==(const DigitList& that) const
{
if (this == &that) {
return TRUE;
}
decNumber n; // Has space for only a none digit value.
decContext c;
uprv_decContextDefault(&c, DEC_INIT_BASE);
c.digits = 1;
c.traps = 0;
uprv_decNumberCompare(&n, this->fDecNumber, that.fDecNumber, &c);
UBool result = decNumberIsZero(&n);
return result;
}
// -------------------------------------
// comparison function. Returns
// Not Comparable : -2
// < : -1
// == : 0
// > : +1
int32_t DigitList::compare(const DigitList &other) {
decNumber result;
int32_t savedDigits = fContext.digits;
fContext.digits = 1;
uprv_decNumberCompare(&result, this->fDecNumber, other.fDecNumber, &fContext);
fContext.digits = savedDigits;
if (decNumberIsZero(&result)) {
return 0;
} else if (decNumberIsSpecial(&result)) {
return -2;
} else if (result.bits & DECNEG) {
return -1;
} else {
return 1;
}
}
// -------------------------------------
// Reduce - remove trailing zero digits.
void
DigitList::reduce() {
uprv_decNumberReduce(fDecNumber, fDecNumber, &fContext);
}
// -------------------------------------
// trim - remove trailing fraction zero digits.
void
DigitList::trim() {
uprv_decNumberTrim(fDecNumber);
}
// -------------------------------------
// Resets the digit list; sets all the digits to zero.
void
DigitList::clear()
{
uprv_decNumberZero(fDecNumber);
uprv_decContextSetRounding(&fContext, DEC_ROUND_HALF_EVEN);
fDouble = 0.0;
fHaveDouble = TRUE;
}
/**
* Formats a int64_t number into a base 10 string representation, and NULL terminates it.
* @param number The number to format
* @param outputStr The string to output to. Must be at least MAX_DIGITS+2 in length (21),
* to hold the longest int64_t value.
* @return the number of digits written, not including the sign.
*/
static int32_t
formatBase10(int64_t number, char *outputStr) {
// The number is output backwards, starting with the LSD.
// Fill the buffer from the far end. After the number is complete,
// slide the string contents to the front.
const int32_t MAX_IDX = MAX_DIGITS+2;
int32_t destIdx = MAX_IDX;
outputStr[--destIdx] = 0;
int64_t n = number;
if (number < 0) { // Negative numbers are slightly larger than a postive
outputStr[--destIdx] = (char)(-(n % 10) + kZero);
n /= -10;
}
do {
outputStr[--destIdx] = (char)(n % 10 + kZero);
n /= 10;
} while (n > 0);
if (number < 0) {
outputStr[--destIdx] = '-';
}
// Slide the number to the start of the output str
U_ASSERT(destIdx >= 0);
int32_t length = MAX_IDX - destIdx;
uprv_memmove(outputStr, outputStr+MAX_IDX-length, length);
return length;
}
// -------------------------------------
void
DigitList::setRoundingMode(DecimalFormat::ERoundingMode m) {
enum rounding r;
switch (m) {
case DecimalFormat::kRoundCeiling: r = DEC_ROUND_CEILING; break;
case DecimalFormat::kRoundFloor: r = DEC_ROUND_FLOOR; break;
case DecimalFormat::kRoundDown: r = DEC_ROUND_DOWN; break;
case DecimalFormat::kRoundUp: r = DEC_ROUND_UP; break;
case DecimalFormat::kRoundHalfEven: r = DEC_ROUND_HALF_EVEN; break;
case DecimalFormat::kRoundHalfDown: r = DEC_ROUND_HALF_DOWN; break;
case DecimalFormat::kRoundHalfUp: r = DEC_ROUND_HALF_UP; break;
default:
// TODO: how to report the problem?
// Leave existing mode unchanged.
r = uprv_decContextGetRounding(&fContext);
}
uprv_decContextSetRounding(&fContext, r);
}
// -------------------------------------
void
DigitList::setPositive(UBool s) {
if (s) {
fDecNumber->bits &= ~DECNEG;
} else {
fDecNumber->bits |= DECNEG;
}
fHaveDouble = FALSE;
}
// -------------------------------------
void
DigitList::setDecimalAt(int32_t d) {
U_ASSERT((fDecNumber->bits & DECSPECIAL) == 0); // Not Infinity or NaN
U_ASSERT(d-1>-999999999);
U_ASSERT(d-1< 999999999);
int32_t adjustedDigits = fDecNumber->digits;
if (decNumberIsZero(fDecNumber)) {
// Account for difference in how zero is represented between DigitList & decNumber.
adjustedDigits = 0;
}
fDecNumber->exponent = d - adjustedDigits;
fHaveDouble = FALSE;
}
int32_t
DigitList::getDecimalAt() {
U_ASSERT((fDecNumber->bits & DECSPECIAL) == 0); // Not Infinity or NaN
if (decNumberIsZero(fDecNumber) || ((fDecNumber->bits & DECSPECIAL) != 0)) {
return fDecNumber->exponent; // Exponent should be zero for these cases.
}
return fDecNumber->exponent + fDecNumber->digits;
}
void
DigitList::setCount(int32_t c) {
U_ASSERT(c <= fContext.digits);
if (c == 0) {
// For a value of zero, DigitList sets all fields to zero, while
// decNumber keeps one digit (with that digit being a zero)
c = 1;
fDecNumber->lsu[0] = 0;
}
fDecNumber->digits = c;
fHaveDouble = FALSE;
}
int32_t
DigitList::getCount() const {
if (decNumberIsZero(fDecNumber) && fDecNumber->exponent==0) {
// The extra test for exponent==0 is needed because parsing sometimes appends
// zero digits. It's bogus, decimalFormatter parsing needs to be cleaned up.
return 0;
} else {
return fDecNumber->digits;
}
}
void
DigitList::setDigit(int32_t i, char v) {
int32_t count = fDecNumber->digits;
U_ASSERT(i<count);
U_ASSERT(v>='0' && v<='9');
v &= 0x0f;
fDecNumber->lsu[count-i-1] = v;
fHaveDouble = FALSE;
}
char
DigitList::getDigit(int32_t i) {
int32_t count = fDecNumber->digits;
U_ASSERT(i<count);
return fDecNumber->lsu[count-i-1] + '0';
}
// -------------------------------------
// Appends the digit to the digit list if it's not out of scope.
// Ignores the digit, otherwise.
//
// This function is horribly inefficient to implement with decNumber because
// the digits are stored least significant first, which requires moving all
// existing digits down one to make space for the new one to be appended.
//
void
DigitList::append(char digit)
{
U_ASSERT(digit>='0' && digit<='9');
// Ignore digits which exceed the precision we can represent
// And don't fix for larger precision. Fix callers instead.
if (decNumberIsZero(fDecNumber)) {
// Zero needs to be special cased because of the difference in the way
// that the old DigitList and decNumber represent it.
// digit cout was zero for digitList, is one for decNumber
fDecNumber->lsu[0] = digit & 0x0f;
fDecNumber->digits = 1;
fDecNumber->exponent--; // To match the old digit list implementation.
} else {
int32_t nDigits = fDecNumber->digits;
if (nDigits < fContext.digits) {
int i;
for (i=nDigits; i>0; i--) {
fDecNumber->lsu[i] = fDecNumber->lsu[i-1];
}
fDecNumber->lsu[0] = digit & 0x0f;
fDecNumber->digits++;
// DigitList emulation - appending doesn't change the magnitude of existing
// digits. With decNumber's decimal being after the
// least signficant digit, we need to adjust the exponent.
fDecNumber->exponent--;
}
}
fHaveDouble = FALSE;
}
// -------------------------------------
/**
* Currently, getDouble() depends on atof() to do its conversion.
*
* WARNING!!
* This is an extremely costly function. ~1/2 of the conversion time
* can be linked to this function.
*/
double
DigitList::getDouble() const
{
// TODO: fix thread safety. Can probably be finessed some by analyzing
// what public const functions can see which DigitLists.
// Like precompute fDouble for DigitLists coming in from a parse
// or from a Formattable::set(), but not for any others.
if (fHaveDouble) {
return fDouble;
}
DigitList *nonConstThis = const_cast<DigitList *>(this);
if (gDecimal == 0) {
char rep[MAX_DIGITS];
// For machines that decide to change the decimal on you,
// and try to be too smart with localization.
// This normally should be just a '.'.
sprintf(rep, "%+1.1f", 1.0);
gDecimal = rep[2];
}
if (isZero()) {
nonConstThis->fDouble = 0.0;
if (decNumberIsNegative(fDecNumber)) {
nonConstThis->fDouble /= -1;
}
} else if (isInfinite()) {
if (std::numeric_limits<double>::has_infinity) {
nonConstThis->fDouble = std::numeric_limits<double>::infinity();
} else {
nonConstThis->fDouble = std::numeric_limits<double>::max();
}
if (!isPositive()) {
nonConstThis->fDouble = -fDouble;
}
} else {
MaybeStackArray<char, MAX_DBL_DIGITS+18> s;
// Note: 14 is a magic constant from the decNumber library documentation,
// the max number of extra characters beyond the number of digits
// needed to represent the number in string form. Add a few more
// for the additional digits we retain.
// Round down to appx. double precision, if the number is longer than that.
// Copy the number first, so that we don't modify the original.
if (getCount() > MAX_DBL_DIGITS + 3) {
DigitList numToConvert(*this);
numToConvert.reduce(); // Removes any trailing zeros, so that digit count is good.
numToConvert.round(MAX_DBL_DIGITS+3);
uprv_decNumberToString(numToConvert.fDecNumber, s);
// TODO: how many extra digits should be included for an accurate conversion?
} else {
uprv_decNumberToString(this->fDecNumber, s);
}
U_ASSERT(uprv_strlen(&s[0]) < MAX_DBL_DIGITS+18);
if (gDecimal != '.') {
char *decimalPt = strchr(s, '.');
if (decimalPt != NULL) {
*decimalPt = gDecimal;
}
}
char *end = NULL;
nonConstThis->fDouble = uprv_strtod(s, &end);
}
nonConstThis->fHaveDouble = TRUE;
return fDouble;
}
// -------------------------------------
/**
* convert this number to an int32_t. Round if there is a fractional part.
* Return zero if the number cannot be represented.
*/
int32_t DigitList::getLong() /*const*/
{
int32_t result = 0;
if (fDecNumber->digits + fDecNumber->exponent > 10) {
// Overflow, absolute value too big.
return result;
}
if (fDecNumber->exponent != 0) {
// Force to an integer, with zero exponent, rounding if necessary.
// (decNumberToInt32 will only work if the exponent is exactly zero.)
DigitList copy(*this);
DigitList zero;
uprv_decNumberQuantize(copy.fDecNumber, copy.fDecNumber, zero.fDecNumber, &fContext);
result = uprv_decNumberToInt32(copy.fDecNumber, &fContext);
} else {
result = uprv_decNumberToInt32(fDecNumber, &fContext);
}
return result;
}
/**
* convert this number to an int64_t. Round if there is a fractional part.
* Return zero if the number cannot be represented.
*/
int64_t DigitList::getInt64() /*const*/ {
// Round if non-integer. (Truncate or round?)
// Return 0 if out of range.
// Range of in64_t is -9223372036854775808 to 9223372036854775807 (19 digits)
//
if (fDecNumber->digits + fDecNumber->exponent > 19) {
// Overflow, absolute value too big.
return 0;
}
decNumber *workingNum = fDecNumber;
if (fDecNumber->exponent != 0) {
// Force to an integer, with zero exponent, rounding if necessary.
DigitList copy(*this);
DigitList zero;
uprv_decNumberQuantize(copy.fDecNumber, copy.fDecNumber, zero.fDecNumber, &fContext);
workingNum = copy.fDecNumber;
}
uint64_t value = 0;
int32_t numDigits = workingNum->digits;
for (int i = numDigits-1; i>=0 ; --i) {
int v = workingNum->lsu[i];
value = value * (uint64_t)10 + (uint64_t)v;
}
if (decNumberIsNegative(workingNum)) {
value = ~value;
value += 1;
}
int64_t svalue = (int64_t)value;
// Check overflow. It's convenient that the MSD is 9 only on overflow, the amount of
// overflow can't wrap too far. The test will also fail -0, but
// that does no harm; the right answer is 0.
if (numDigits == 19) {
if (( decNumberIsNegative(fDecNumber) && svalue>0) ||
(!decNumberIsNegative(fDecNumber) && svalue<0)) {
svalue = 0;
}
}
return svalue;
}
/**
* Return a string form of this number.
* Format is as defined by the decNumber library, for interchange of
* decimal numbers.
*/
void DigitList::getDecimal(CharString &str, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
// A decimal number in string form can, worst case, be 14 characters longer
// than the number of digits. So says the decNumber library doc.
int32_t maxLength = fDecNumber->digits + 14;
int32_t capacity = 0;
char *buffer = str.clear().getAppendBuffer(maxLength, 0, capacity, status);
if (U_FAILURE(status)) {
return; // Memory allocation error on growing the string.
}
U_ASSERT(capacity >= maxLength);
uprv_decNumberToString(this->fDecNumber, buffer);
U_ASSERT((int32_t)uprv_strlen(buffer) <= maxLength);
str.append(buffer, -1, status);
}
/**
* Return true if this is an integer value that can be held
* by an int32_t type.
*/
UBool
DigitList::fitsIntoLong(UBool ignoreNegativeZero) /*const*/
{
if (decNumberIsSpecial(this->fDecNumber)) {
// NaN or Infinity. Does not fit in int32.
return FALSE;
}
uprv_decNumberTrim(this->fDecNumber);
if (fDecNumber->exponent < 0) {
// Number contains fraction digits.
return FALSE;
}
if (decNumberIsZero(this->fDecNumber) && !ignoreNegativeZero &&
(fDecNumber->bits & DECNEG) != 0) {
// Negative Zero, not ingored. Cannot represent as a long.
return FALSE;
}
if (fDecNumber->digits + fDecNumber->exponent < 10) {
// The number is 9 or fewer digits.
// The max and min int32 are 10 digts, so this number fits.
// This is the common case.
return TRUE;
}
// TODO: Should cache these constants; construction is relatively costly.
// But not of huge consequence; they're only needed for 10 digit ints.
UErrorCode status = U_ZERO_ERROR;
DigitList min32; min32.set("-2147483648", status);
if (this->compare(min32) < 0) {
return FALSE;
}
DigitList max32; max32.set("2147483647", status);
if (this->compare(max32) > 0) {
return FALSE;
}
if (U_FAILURE(status)) {
return FALSE;
}
return true;
}
/**
* Return true if the number represented by this object can fit into
* a long.
*/
UBool
DigitList::fitsIntoInt64(UBool ignoreNegativeZero) /*const*/
{
if (decNumberIsSpecial(this->fDecNumber)) {
// NaN or Infinity. Does not fit in int32.
return FALSE;
}
uprv_decNumberTrim(this->fDecNumber);
if (fDecNumber->exponent < 0) {
// Number contains fraction digits.
return FALSE;
}
if (decNumberIsZero(this->fDecNumber) && !ignoreNegativeZero &&
(fDecNumber->bits & DECNEG) != 0) {
// Negative Zero, not ingored. Cannot represent as a long.
return FALSE;
}
if (fDecNumber->digits + fDecNumber->exponent < 19) {
// The number is 18 or fewer digits.
// The max and min int64 are 19 digts, so this number fits.
// This is the common case.
return TRUE;
}
// TODO: Should cache these constants; construction is relatively costly.
// But not of huge consequence; they're only needed for 19 digit ints.
UErrorCode status = U_ZERO_ERROR;
DigitList min64; min64.set("-9223372036854775808", status);
if (this->compare(min64) < 0) {
return FALSE;
}
DigitList max64; max64.set("9223372036854775807", status);
if (this->compare(max64) > 0) {
return FALSE;
}
if (U_FAILURE(status)) {
return FALSE;
}
return true;
}
// -------------------------------------
void
DigitList::set(int32_t source)
{
set((int64_t)source);
fDouble = source;
fHaveDouble = TRUE;
}
// -------------------------------------
/**
* @param maximumDigits The maximum digits to be generated. If zero,
* there is no maximum -- generate all digits.
*/
void
DigitList::set(int64_t source)
{
char str[MAX_DIGITS+2]; // Leave room for sign and trailing nul.
formatBase10(source, str);
U_ASSERT(uprv_strlen(str) < sizeof(str));
uprv_decNumberFromString(fDecNumber, str, &fContext);
fDouble = (double)source;
fHaveDouble = TRUE;
}
// -------------------------------------
/**
* Set the DigitList from a decimal number string.
*
* The incoming string _must_ be nul terminated, even though it is arriving
* as a StringPiece because that is what the decNumber library wants.
* We can get away with this for an internal function; it would not
* be acceptable for a public API.
*/
void
DigitList::set(const StringPiece &source, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
// Figure out a max number of digits to use during the conversion, and
// resize the number up if necessary.
int32_t numDigits = source.length();
if (numDigits > fContext.digits) {
// fContext.digits == fStorage.getCapacity()
decNumber *t = fStorage.resize(numDigits, fStorage.getCapacity());
if (t == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
fDecNumber = t;
fContext.digits = numDigits;
}
fContext.status = 0;
uprv_decNumberFromString(fDecNumber, source.data(), &fContext);
if ((fContext.status & DEC_Conversion_syntax) != 0) {
status = U_DECIMAL_NUMBER_SYNTAX_ERROR;
}
fHaveDouble = FALSE;
}
/**
* Set the digit list to a representation of the given double value.
* This method supports both fixed-point and exponential notation.
* @param source Value to be converted.
*/
void
DigitList::set(double source)
{
// for now, simple implementation; later, do proper IEEE stuff
char rep[MAX_DIGITS + 8]; // Extra space for '+', '.', e+NNN, and '\0' (actually +8 is enough)
// Generate a representation of the form /[+-][0-9]+e[+-][0-9]+/
sprintf(rep, "%+1.*e", MAX_DBL_DIGITS - 1, source);
U_ASSERT(uprv_strlen(rep) < sizeof(rep));
// Create a decNumber from the string.
uprv_decNumberFromString(fDecNumber, rep, &fContext);
uprv_decNumberTrim(fDecNumber);
fDouble = source;
fHaveDouble = TRUE;
}
// -------------------------------------
/*
* Multiply
* The number will be expanded if need be to retain full precision.
* In practice, for formatting, multiply is by 10, 100 or 1000, so more digits
* will not be required for this use.
*/
void
DigitList::mult(const DigitList &other, UErrorCode &status) {
fContext.status = 0;
int32_t requiredDigits = this->digits() + other.digits();
if (requiredDigits > fContext.digits) {
reduce(); // Remove any trailing zeros
int32_t requiredDigits = this->digits() + other.digits();
ensureCapacity(requiredDigits, status);
}
uprv_decNumberMultiply(fDecNumber, fDecNumber, other.fDecNumber, &fContext);
fHaveDouble = FALSE;
}
// -------------------------------------
/*
* Divide
* The number will _not_ be expanded for inexact results.
* TODO: probably should expand some, for rounding increments that
* could add a few digits, e.g. .25, but not expand arbitrarily.
*/
void
DigitList::div(const DigitList &other, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
uprv_decNumberDivide(fDecNumber, fDecNumber, other.fDecNumber, &fContext);
fHaveDouble = FALSE;
}
// -------------------------------------
/*
* ensureCapacity. Grow the digit storage for the number if it's less than the requested
* amount. Never reduce it. Available size is kept in fContext.digits.
*/
void
DigitList::ensureCapacity(int32_t requestedCapacity, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (requestedCapacity <= 0) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (requestedCapacity > DEC_MAX_DIGITS) {
// Don't report an error for requesting too much.
// Arithemetic Results will be rounded to what can be supported.
// At 999,999,999 max digits, exceeding the limit is not too likely!
requestedCapacity = DEC_MAX_DIGITS;
}
if (requestedCapacity > fContext.digits) {
decNumber *newBuffer = fStorage.resize(requestedCapacity, fStorage.getCapacity());
if (newBuffer == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
fContext.digits = requestedCapacity;
fDecNumber = newBuffer;
}
}
// -------------------------------------
/**
* Round the representation to the given number of digits.
* @param maximumDigits The maximum number of digits to be shown.
* Upon return, count will be less than or equal to maximumDigits.
*/
void
DigitList::round(int32_t maximumDigits)
{
int32_t savedDigits = fContext.digits;
fContext.digits = maximumDigits;
uprv_decNumberPlus(fDecNumber, fDecNumber, &fContext);
fContext.digits = savedDigits;
uprv_decNumberTrim(fDecNumber);
fHaveDouble = FALSE;
}
void
DigitList::roundFixedPoint(int32_t maximumFractionDigits) {
trim(); // Remove trailing zeros.
if (fDecNumber->exponent >= -maximumFractionDigits) {
return;
}
decNumber scale; // Dummy decimal number, but with the desired number of
uprv_decNumberZero(&scale); // fraction digits.
scale.exponent = -maximumFractionDigits;
scale.lsu[0] = 1;
uprv_decNumberQuantize(fDecNumber, fDecNumber, &scale, &fContext);
trim();
fHaveDouble = FALSE;
}
// -------------------------------------
void
DigitList::toIntegralValue() {
uprv_decNumberToIntegralValue(fDecNumber, fDecNumber, &fContext);
}
// -------------------------------------
UBool
DigitList::isZero() const
{
return decNumberIsZero(fDecNumber);
}
U_NAMESPACE_END
#endif // #if !UCONFIG_NO_FORMATTING
//eof