scuffed-code/icu4c/source/i18n/collationbuilder.cpp

1673 lines
70 KiB
C++

/*
*******************************************************************************
* Copyright (C) 2013-2014, International Business Machines
* Corporation and others. All Rights Reserved.
*******************************************************************************
* collationbuilder.cpp
*
* (replaced the former ucol_bld.cpp)
*
* created on: 2013may06
* created by: Markus W. Scherer
*/
#ifdef DEBUG_COLLATION_BUILDER
#include <stdio.h>
#endif
#include "unicode/utypes.h"
#if !UCONFIG_NO_COLLATION
#include "unicode/caniter.h"
#include "unicode/normalizer2.h"
#include "unicode/tblcoll.h"
#include "unicode/parseerr.h"
#include "unicode/uchar.h"
#include "unicode/ucol.h"
#include "unicode/unistr.h"
#include "unicode/usetiter.h"
#include "unicode/utf16.h"
#include "unicode/uversion.h"
#include "cmemory.h"
#include "collation.h"
#include "collationbuilder.h"
#include "collationdata.h"
#include "collationdatabuilder.h"
#include "collationfastlatin.h"
#include "collationroot.h"
#include "collationrootelements.h"
#include "collationruleparser.h"
#include "collationsettings.h"
#include "collationtailoring.h"
#include "collationweights.h"
#include "normalizer2impl.h"
#include "uassert.h"
#include "ucol_imp.h"
#include "utf16collationiterator.h"
U_NAMESPACE_BEGIN
namespace {
class BundleImporter : public CollationRuleParser::Importer {
public:
BundleImporter() {}
virtual ~BundleImporter();
virtual void getRules(
const char *localeID, const char *collationType,
UnicodeString &rules,
const char *&errorReason, UErrorCode &errorCode);
};
BundleImporter::~BundleImporter() {}
void
BundleImporter::getRules(
const char *localeID, const char *collationType,
UnicodeString &rules,
const char *& /*errorReason*/, UErrorCode &errorCode) {
CollationLoader::loadRules(localeID, collationType, rules, errorCode);
}
} // namespace
// RuleBasedCollator implementation ---------------------------------------- ***
// These methods are here, rather than in rulebasedcollator.cpp,
// for modularization:
// Most code using Collator does not need to build a Collator from rules.
// By moving these constructors and helper methods to a separate file,
// most code will not have a static dependency on the builder code.
RuleBasedCollator::RuleBasedCollator()
: data(NULL),
settings(NULL),
tailoring(NULL),
cacheEntry(NULL),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(FALSE) {
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
: data(NULL),
settings(NULL),
tailoring(NULL),
cacheEntry(NULL),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(FALSE) {
internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
UErrorCode &errorCode)
: data(NULL),
settings(NULL),
tailoring(NULL),
cacheEntry(NULL),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(FALSE) {
internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
UColAttributeValue decompositionMode,
UErrorCode &errorCode)
: data(NULL),
settings(NULL),
tailoring(NULL),
cacheEntry(NULL),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(FALSE) {
internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
ECollationStrength strength,
UColAttributeValue decompositionMode,
UErrorCode &errorCode)
: data(NULL),
settings(NULL),
tailoring(NULL),
cacheEntry(NULL),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(FALSE) {
internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
}
RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
UParseError &parseError, UnicodeString &reason,
UErrorCode &errorCode)
: data(NULL),
settings(NULL),
tailoring(NULL),
cacheEntry(NULL),
validLocale(""),
explicitlySetAttributes(0),
actualLocaleIsSameAsValid(FALSE) {
internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
}
void
RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
int32_t strength,
UColAttributeValue decompositionMode,
UParseError *outParseError, UnicodeString *outReason,
UErrorCode &errorCode) {
const CollationTailoring *base = CollationRoot::getRoot(errorCode);
if(U_FAILURE(errorCode)) { return; }
if(outReason != NULL) { outReason->remove(); }
CollationBuilder builder(base, errorCode);
UVersionInfo noVersion = { 0, 0, 0, 0 };
BundleImporter importer;
LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
&importer,
outParseError, errorCode));
if(U_FAILURE(errorCode)) {
const char *reason = builder.getErrorReason();
if(reason != NULL && outReason != NULL) {
*outReason = UnicodeString(reason, -1, US_INV);
}
return;
}
t->actualLocale.setToBogus();
adoptTailoring(t.orphan(), errorCode);
// Set attributes after building the collator,
// to keep the default settings consistent with the rule string.
if(strength != UCOL_DEFAULT) {
setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
}
if(decompositionMode != UCOL_DEFAULT) {
setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
}
}
// CollationBuilder implementation ----------------------------------------- ***
CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
: nfd(*Normalizer2::getNFDInstance(errorCode)),
fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
base(b),
baseData(b->data),
rootElements(b->data->rootElements, b->data->rootElementsLength),
variableTop(0),
dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
errorReason(NULL),
cesLength(0),
rootPrimaryIndexes(errorCode), nodes(errorCode) {
nfcImpl.ensureCanonIterData(errorCode);
if(U_FAILURE(errorCode)) {
errorReason = "CollationBuilder fields initialization failed";
return;
}
if(dataBuilder == NULL) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
dataBuilder->initForTailoring(baseData, errorCode);
if(U_FAILURE(errorCode)) {
errorReason = "CollationBuilder initialization failed";
}
}
CollationBuilder::~CollationBuilder() {
delete dataBuilder;
}
CollationTailoring *
CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
const UVersionInfo rulesVersion,
CollationRuleParser::Importer *importer,
UParseError *outParseError,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return NULL; }
if(baseData->rootElements == NULL) {
errorCode = U_MISSING_RESOURCE_ERROR;
errorReason = "missing root elements data, tailoring not supported";
return NULL;
}
LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
if(tailoring.isNull() || tailoring->isBogus()) {
errorCode = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
CollationRuleParser parser(baseData, errorCode);
if(U_FAILURE(errorCode)) { return NULL; }
// Note: This always bases &[last variable] and &[first regular]
// on the root collator's maxVariable/variableTop.
// If we wanted this to change after [maxVariable x], then we would keep
// the tailoring.settings pointer here and read its variableTop when we need it.
// See http://unicode.org/cldr/trac/ticket/6070
variableTop = base->settings->variableTop;
parser.setSink(this);
parser.setImporter(importer);
CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
parser.parse(ruleString, ownedSettings, outParseError, errorCode);
errorReason = parser.getErrorReason();
if(U_FAILURE(errorCode)) { return NULL; }
if(dataBuilder->hasMappings()) {
makeTailoredCEs(errorCode);
closeOverComposites(errorCode);
finalizeCEs(errorCode);
// Copy all of ASCII, and Latin-1 letters, into each tailoring.
optimizeSet.add(0, 0x7f);
optimizeSet.add(0xc0, 0xff);
// Hangul is decomposed on the fly during collation,
// and the tailoring data is always built with HANGUL_TAG specials.
optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
dataBuilder->optimize(optimizeSet, errorCode);
tailoring->ensureOwnedData(errorCode);
if(U_FAILURE(errorCode)) { return NULL; }
if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
dataBuilder->build(*tailoring->ownedData, errorCode);
tailoring->builder = dataBuilder;
dataBuilder = NULL;
} else {
tailoring->data = baseData;
}
if(U_FAILURE(errorCode)) { return NULL; }
ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
tailoring->data, ownedSettings,
ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
tailoring->rules = ruleString;
tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
tailoring->setVersion(base->version, rulesVersion);
return tailoring.orphan();
}
void
CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
const char *&parserErrorReason, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
U_ASSERT(!str.isEmpty());
if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
cesLength = 1;
if(U_FAILURE(errorCode)) { return; }
U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
} else {
// normal reset to a character or string
UnicodeString nfdString = nfd.normalize(str, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the reset position";
return;
}
cesLength = dataBuilder->getCEs(nfdString, ces, 0);
if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
parserErrorReason = "reset position maps to too many collation elements (more than 31)";
return;
}
}
if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
// &[before strength]position
U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
if(U_FAILURE(errorCode)) { return; }
int64_t node = nodes.elementAti(index);
// If the index is for a "weaker" tailored node,
// then skip backwards over this and further "weaker" nodes.
while(strengthFromNode(node) > strength) {
index = previousIndexFromNode(node);
node = nodes.elementAti(index);
}
// Find or insert a node whose index we will put into a temporary CE.
if(strengthFromNode(node) == strength && isTailoredNode(node)) {
// Reset to just before this same-strength tailored node.
index = previousIndexFromNode(node);
} else if(strength == UCOL_PRIMARY) {
// root primary node (has no previous index)
uint32_t p = weight32FromNode(node);
if(p == 0) {
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset primary-before ignorable not possible";
return;
}
if(p <= rootElements.getFirstPrimary()) {
// There is no primary gap between ignorables and the space-first-primary.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset primary-before first non-ignorable not supported";
return;
}
if(p == Collation::FIRST_TRAILING_PRIMARY) {
// We do not support tailoring to an unassigned-implicit CE.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset primary-before [first trailing] not supported";
return;
}
p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
index = findOrInsertNodeForPrimary(p, errorCode);
// Go to the last node in this list:
// Tailor after the last node between adjacent root nodes.
for(;;) {
node = nodes.elementAti(index);
int32_t nextIndex = nextIndexFromNode(node);
if(nextIndex == 0) { break; }
index = nextIndex;
}
} else {
// &[before 2] or &[before 3]
index = findCommonNode(index, UCOL_SECONDARY);
if(strength >= UCOL_TERTIARY) {
index = findCommonNode(index, UCOL_TERTIARY);
}
node = nodes.elementAti(index);
if(strengthFromNode(node) == strength) {
// Found a same-strength node with an explicit weight.
uint32_t weight16 = weight16FromNode(node);
if(weight16 == 0) {
errorCode = U_UNSUPPORTED_ERROR;
if(strength == UCOL_SECONDARY) {
parserErrorReason = "reset secondary-before secondary ignorable not possible";
} else {
parserErrorReason = "reset tertiary-before completely ignorable not possible";
}
return;
}
U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16);
int32_t previousIndex = previousIndexFromNode(node);
if(weight16 == Collation::COMMON_WEIGHT16) {
// Reset to just before this same-strength common-weight node.
index = previousIndex;
} else {
// A non-common weight is only possible from a root CE.
// Find the higher-level weights, which must all be explicit,
// and then find the preceding weight for this level.
uint32_t previousWeight16 = 0;
int32_t previousWeightIndex = -1;
int32_t i = index;
if(strength == UCOL_SECONDARY) {
uint32_t p;
do {
i = previousIndexFromNode(node);
node = nodes.elementAti(i);
if(strengthFromNode(node) == UCOL_SECONDARY && !isTailoredNode(node) &&
previousWeightIndex < 0) {
previousWeightIndex = i;
previousWeight16 = weight16FromNode(node);
}
} while(strengthFromNode(node) > UCOL_PRIMARY);
U_ASSERT(!isTailoredNode(node));
p = weight32FromNode(node);
weight16 = rootElements.getSecondaryBefore(p, weight16);
} else {
uint32_t p, s;
do {
i = previousIndexFromNode(node);
node = nodes.elementAti(i);
if(strengthFromNode(node) == UCOL_TERTIARY && !isTailoredNode(node) &&
previousWeightIndex < 0) {
previousWeightIndex = i;
previousWeight16 = weight16FromNode(node);
}
} while(strengthFromNode(node) > UCOL_SECONDARY);
U_ASSERT(!isTailoredNode(node));
if(strengthFromNode(node) == UCOL_SECONDARY) {
s = weight16FromNode(node);
do {
i = previousIndexFromNode(node);
node = nodes.elementAti(i);
} while(strengthFromNode(node) > UCOL_PRIMARY);
U_ASSERT(!isTailoredNode(node));
} else {
U_ASSERT(!nodeHasBefore2(node));
s = Collation::COMMON_WEIGHT16;
}
p = weight32FromNode(node);
weight16 = rootElements.getTertiaryBefore(p, s, weight16);
U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
}
// Find or insert the new explicit weight before the current one.
if(previousWeightIndex >= 0 && weight16 == previousWeight16) {
// Tailor after the last node between adjacent root nodes.
index = previousIndex;
} else {
node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
index = insertNodeBetween(previousIndex, index, node, errorCode);
}
}
} else {
// Found a stronger node with implied strength-common weight.
int64_t hasBefore3 = 0;
if(strength == UCOL_SECONDARY) {
U_ASSERT(!nodeHasBefore2(node));
// Move the HAS_BEFORE3 flag from the parent node
// to the new secondary common node.
hasBefore3 = node & HAS_BEFORE3;
node = (node & ~(int64_t)HAS_BEFORE3) | HAS_BEFORE2;
} else {
U_ASSERT(!nodeHasBefore3(node));
node |= HAS_BEFORE3;
}
nodes.setElementAt(node, index);
int32_t nextIndex = nextIndexFromNode(node);
// Insert default nodes with weights 02 and 05, reset to the 02 node.
node = nodeFromWeight16(BEFORE_WEIGHT16) | nodeFromStrength(strength);
index = insertNodeBetween(index, nextIndex, node, errorCode);
node = nodeFromWeight16(Collation::COMMON_WEIGHT16) | hasBefore3 |
nodeFromStrength(strength);
insertNodeBetween(index, nextIndex, node, errorCode);
}
// Strength of the temporary CE = strength of its reset position.
// Code above raises an error if the before-strength is stronger.
strength = ceStrength(ces[cesLength - 1]);
}
if(U_FAILURE(errorCode)) {
parserErrorReason = "inserting reset position for &[before n]";
return;
}
ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
}
int64_t
CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
const char *&parserErrorReason, UErrorCode &errorCode) {
U_ASSERT(str.length() == 2);
int64_t ce;
int32_t strength = UCOL_PRIMARY;
UBool isBoundary = FALSE;
UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
switch(pos) {
case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
// Quaternary CEs are not supported.
// Non-zero quaternary weights are possible only on tertiary or stronger CEs.
return 0;
case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
return 0;
case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
// Look for a tailored tertiary node after [0, 0, 0].
int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
int64_t node = nodes.elementAti(index);
if((index = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(index);
U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
}
}
return rootElements.getFirstTertiaryCE();
// No need to look for nodeHasAnyBefore() on a tertiary node.
}
case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
ce = rootElements.getLastTertiaryCE();
strength = UCOL_TERTIARY;
break;
case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
// Look for a tailored secondary node after [0, 0, *].
int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
int64_t node = nodes.elementAti(index);
while((index = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(index);
strength = strengthFromNode(node);
if(strength < UCOL_SECONDARY) { break; }
if(strength == UCOL_SECONDARY) {
if(isTailoredNode(node)) {
if(nodeHasBefore3(node)) {
index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
U_ASSERT(isTailoredNode(nodes.elementAti(index)));
}
return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
} else {
break;
}
}
}
ce = rootElements.getFirstSecondaryCE();
strength = UCOL_SECONDARY;
break;
}
case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
ce = rootElements.getLastSecondaryCE();
strength = UCOL_SECONDARY;
break;
case CollationRuleParser::FIRST_VARIABLE:
ce = rootElements.getFirstPrimaryCE();
isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
break;
case CollationRuleParser::LAST_VARIABLE:
ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
break;
case CollationRuleParser::FIRST_REGULAR:
ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
break;
case CollationRuleParser::LAST_REGULAR:
// Use the Hani-first-primary rather than the actual last "regular" CE before it,
// for backward compatibility with behavior before the introduction of
// script-first-primary CEs in the root collator.
ce = rootElements.firstCEWithPrimaryAtLeast(
baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
break;
case CollationRuleParser::FIRST_IMPLICIT:
ce = baseData->getSingleCE(0x4e00, errorCode);
break;
case CollationRuleParser::LAST_IMPLICIT:
// We do not support tailoring to an unassigned-implicit CE.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "reset to [last implicit] not supported";
return 0;
case CollationRuleParser::FIRST_TRAILING:
ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
isBoundary = TRUE; // trailing first primary (there is no mapping for it)
break;
case CollationRuleParser::LAST_TRAILING:
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
parserErrorReason = "LDML forbids tailoring to U+FFFF";
return 0;
default:
U_ASSERT(FALSE);
return 0;
}
int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
int64_t node = nodes.elementAti(index);
if((pos & 1) == 0) {
// even pos = [first xyz]
if(!nodeHasAnyBefore(node) && isBoundary) {
// A <group> first primary boundary is artificially added to FractionalUCA.txt.
// It is reachable via its special contraction, but is not normally used.
// Find the first character tailored after the boundary CE,
// or the first real root CE after it.
if((index = nextIndexFromNode(node)) != 0) {
// If there is a following node, then it must be tailored
// because there are no root CEs with a boundary primary
// and non-common secondary/tertiary weights.
node = nodes.elementAti(index);
U_ASSERT(isTailoredNode(node));
ce = tempCEFromIndexAndStrength(index, strength);
} else {
U_ASSERT(strength == UCOL_PRIMARY);
uint32_t p = (uint32_t)(ce >> 32);
int32_t pIndex = rootElements.findPrimary(p);
UBool isCompressible = baseData->isCompressiblePrimary(p);
p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
ce = Collation::makeCE(p);
index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
node = nodes.elementAti(index);
}
}
if(nodeHasAnyBefore(node)) {
// Get the first node that was tailored before this one at a weaker strength.
if(nodeHasBefore2(node)) {
index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
node = nodes.elementAti(index);
}
if(nodeHasBefore3(node)) {
index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
}
U_ASSERT(isTailoredNode(nodes.elementAti(index)));
ce = tempCEFromIndexAndStrength(index, strength);
}
} else {
// odd pos = [last xyz]
// Find the last node that was tailored after the [last xyz]
// at a strength no greater than the position's strength.
for(;;) {
int32_t nextIndex = nextIndexFromNode(node);
if(nextIndex == 0) { break; }
int64_t nextNode = nodes.elementAti(nextIndex);
if(strengthFromNode(nextNode) < strength) { break; }
index = nextIndex;
node = nextNode;
}
// Do not make a temporary CE for a root node.
// This last node might be the node for the root CE itself,
// or a node with a common secondary or tertiary weight.
if(isTailoredNode(node)) {
ce = tempCEFromIndexAndStrength(index, strength);
}
}
return ce;
}
void
CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
const UnicodeString &str, const UnicodeString &extension,
const char *&parserErrorReason, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
UnicodeString nfdPrefix;
if(!prefix.isEmpty()) {
nfd.normalize(prefix, nfdPrefix, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the relation prefix";
return;
}
}
UnicodeString nfdString = nfd.normalize(str, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the relation string";
return;
}
// The runtime code decomposes Hangul syllables on the fly,
// with recursive processing but without making the Jamo pieces visible for matching.
// It does not work with certain types of contextual mappings.
int32_t nfdLength = nfdString.length();
if(nfdLength >= 2) {
UChar c = nfdString.charAt(0);
if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
// While handling a Hangul syllable, contractions starting with Jamo L or V
// would not see the following Jamo of that syllable.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
return;
}
c = nfdString.charAt(nfdLength - 1);
if(Hangul::isJamoL(c) ||
(Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
// A contraction ending with Jamo L or L+V would require
// generating Hangul syllables in addTailComposites() (588 for a Jamo L),
// or decomposing a following Hangul syllable on the fly, during contraction matching.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
return;
}
// A Hangul syllable completely inside a contraction is ok.
}
// Note: If there is a prefix, then the parser checked that
// both the prefix and the string beging with NFC boundaries (not Jamo V or T).
// Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
// (While handling a Hangul syllable, prefixes on Jamo V or T
// would not see the previous Jamo of that syllable.)
if(strength != UCOL_IDENTICAL) {
// Find the node index after which we insert the new tailored node.
int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
U_ASSERT(cesLength > 0);
int64_t ce = ces[cesLength - 1];
if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
// There is no primary gap between ignorables and the space-first-primary.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "tailoring primary after ignorables not supported";
return;
}
if(strength == UCOL_QUATERNARY && ce == 0) {
// The CE data structure does not support non-zero quaternary weights
// on tertiary ignorables.
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
return;
}
// Insert the new tailored node.
index = insertTailoredNodeAfter(index, strength, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "modifying collation elements";
return;
}
// Strength of the temporary CE:
// The new relation may yield a stronger CE but not a weaker one.
int32_t tempStrength = ceStrength(ce);
if(strength < tempStrength) { tempStrength = strength; }
ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
}
setCaseBits(nfdString, parserErrorReason, errorCode);
if(U_FAILURE(errorCode)) { return; }
int32_t cesLengthBeforeExtension = cesLength;
if(!extension.isEmpty()) {
UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "normalizing the relation extension";
return;
}
cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
errorCode = U_ILLEGAL_ARGUMENT_ERROR;
parserErrorReason =
"extension string adds too many collation elements (more than 31 total)";
return;
}
}
uint32_t ce32 = Collation::UNASSIGNED_CE32;
if((prefix != nfdPrefix || str != nfdString) &&
!ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
// Map from the original input to the CEs.
// We do this in case the canonical closure is incomplete,
// so that it is possible to explicitly provide the missing mappings.
ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
}
addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "writing collation elements";
return;
}
cesLength = cesLengthBeforeExtension;
}
int32_t
CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
// Find the last CE that is at least as "strong" as the requested difference.
// Note: Stronger is smaller (UCOL_PRIMARY=0).
int64_t ce;
for(;; --cesLength) {
if(cesLength == 0) {
ce = ces[0] = 0;
cesLength = 1;
break;
} else {
ce = ces[cesLength - 1];
}
if(ceStrength(ce) <= strength) { break; }
}
if(isTempCE(ce)) {
// No need to findCommonNode() here for lower levels
// because insertTailoredNodeAfter() will do that anyway.
return indexFromTempCE(ce);
}
// root CE
if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
errorCode = U_UNSUPPORTED_ERROR;
parserErrorReason = "tailoring relative to an unassigned code point not supported";
return 0;
}
return findOrInsertNodeForRootCE(ce, strength, errorCode);
}
int32_t
CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
// Find or insert the node for each of the root CE's weights,
// down to the requested level/strength.
// Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
U_ASSERT((ce & 0xc0) == 0);
int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32) , errorCode);
if(strength >= UCOL_SECONDARY) {
uint32_t lower32 = (uint32_t)ce;
index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
if(strength >= UCOL_TERTIARY) {
index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
UCOL_TERTIARY, errorCode);
}
}
return index;
}
namespace {
/**
* Like Java Collections.binarySearch(List, key, Comparator).
*
* @return the index>=0 where the item was found,
* or the index<0 for inserting the string at ~index in sorted order
* (index into rootPrimaryIndexes)
*/
int32_t
binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
const int64_t *nodes, uint32_t p) {
if(length == 0) { return ~0; }
int32_t start = 0;
int32_t limit = length;
for (;;) {
int32_t i = (start + limit) / 2;
int64_t node = nodes[rootPrimaryIndexes[i]];
uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
if (p == nodePrimary) {
return i;
} else if (p < nodePrimary) {
if (i == start) {
return ~start; // insert s before i
}
limit = i;
} else {
if (i == start) {
return ~(start + 1); // insert s after i
}
start = i;
}
}
}
} // namespace
int32_t
CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
int32_t rootIndex = binarySearchForRootPrimaryNode(
rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
if(rootIndex >= 0) {
return rootPrimaryIndexes.elementAti(rootIndex);
} else {
// Start a new list of nodes with this primary.
int32_t index = nodes.size();
nodes.addElement(nodeFromWeight32(p), errorCode);
rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
return index;
}
}
int32_t
CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(0 <= index && index < nodes.size());
U_ASSERT(weight16 == 0 || weight16 >= Collation::COMMON_WEIGHT16);
// Only reset-before inserts common weights.
if(weight16 == Collation::COMMON_WEIGHT16) {
return findCommonNode(index, level);
}
// Find the root CE's weight for this level.
// Postpone insertion if not found:
// Insert the new root node before the next stronger node,
// or before the next root node with the same strength and a larger weight.
int64_t node = nodes.elementAti(index);
int32_t nextIndex;
while((nextIndex = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(nextIndex);
int32_t nextStrength = strengthFromNode(node);
if(nextStrength <= level) {
// Insert before a stronger node.
if(nextStrength < level) { break; }
// nextStrength == level
if(!isTailoredNode(node)) {
uint32_t nextWeight16 = weight16FromNode(node);
if(nextWeight16 == weight16) {
// Found the node for the root CE up to this level.
return nextIndex;
}
// Insert before a node with a larger same-strength weight.
if(nextWeight16 > weight16) { break; }
}
}
// Skip the next node.
index = nextIndex;
}
node = nodeFromWeight16(weight16) | nodeFromStrength(level);
return insertNodeBetween(index, nextIndex, node, errorCode);
}
int32_t
CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(0 <= index && index < nodes.size());
if(strength >= UCOL_SECONDARY) {
index = findCommonNode(index, UCOL_SECONDARY);
if(strength >= UCOL_TERTIARY) {
index = findCommonNode(index, UCOL_TERTIARY);
}
}
// Postpone insertion:
// Insert the new node before the next one with a strength at least as strong.
int64_t node = nodes.elementAti(index);
int32_t nextIndex;
while((nextIndex = nextIndexFromNode(node)) != 0) {
node = nodes.elementAti(nextIndex);
if(strengthFromNode(node) <= strength) { break; }
// Skip the next node which has a weaker (larger) strength than the new one.
index = nextIndex;
}
node = IS_TAILORED | nodeFromStrength(strength);
return insertNodeBetween(index, nextIndex, node, errorCode);
}
int32_t
CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return 0; }
U_ASSERT(previousIndexFromNode(node) == 0);
U_ASSERT(nextIndexFromNode(node) == 0);
U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
// Append the new node and link it to the existing nodes.
int32_t newIndex = nodes.size();
node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
nodes.addElement(node, errorCode);
if(U_FAILURE(errorCode)) { return 0; }
// nodes[index].nextIndex = newIndex
node = nodes.elementAti(index);
nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
// nodes[nextIndex].previousIndex = newIndex
if(nextIndex != 0) {
node = nodes.elementAti(nextIndex);
nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
}
return newIndex;
}
int32_t
CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
int64_t node = nodes.elementAti(index);
if(strengthFromNode(node) >= strength) {
// The current node is no stronger.
return index;
}
if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
// The current node implies the strength-common weight.
return index;
}
index = nextIndexFromNode(node);
node = nodes.elementAti(index);
U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
weight16FromNode(node) == BEFORE_WEIGHT16);
// Skip to the explicit common node.
do {
index = nextIndexFromNode(node);
node = nodes.elementAti(index);
U_ASSERT(strengthFromNode(node) >= strength);
} while(isTailoredNode(node) || strengthFromNode(node) > strength);
U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
return index;
}
void
CollationBuilder::setCaseBits(const UnicodeString &nfdString,
const char *&parserErrorReason, UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
int32_t numTailoredPrimaries = 0;
for(int32_t i = 0; i < cesLength; ++i) {
if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
}
// We should not be able to get too many case bits because
// cesLength<=31==MAX_EXPANSION_LENGTH.
// 31 pairs of case bits fit into an int64_t without setting its sign bit.
U_ASSERT(numTailoredPrimaries <= 31);
int64_t cases = 0;
if(numTailoredPrimaries > 0) {
const UChar *s = nfdString.getBuffer();
UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
if(U_FAILURE(errorCode)) {
parserErrorReason = "fetching root CEs for tailored string";
return;
}
U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
uint32_t lastCase = 0;
int32_t numBasePrimaries = 0;
for(int32_t i = 0; i < baseCEsLength; ++i) {
int64_t ce = baseCEs.getCE(i);
if((ce >> 32) != 0) {
++numBasePrimaries;
uint32_t c = ((uint32_t)ce >> 14) & 3;
U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
if(numBasePrimaries < numTailoredPrimaries) {
cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
} else if(numBasePrimaries == numTailoredPrimaries) {
lastCase = c;
} else if(c != lastCase) {
// There are more base primary CEs than tailored primaries.
// Set mixed case if the case bits of the remainder differ.
lastCase = 1;
// Nothing more can change.
break;
}
}
}
if(numBasePrimaries >= numTailoredPrimaries) {
cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
}
}
for(int32_t i = 0; i < cesLength; ++i) {
int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
int32_t strength = ceStrength(ce);
if(strength == UCOL_PRIMARY) {
ce |= (cases & 3) << 14;
cases >>= 2;
} else if(strength == UCOL_TERTIARY) {
// Tertiary CEs must have uppercase bits.
// See the LDML spec, and comments in class CollationCompare.
ce |= 0x8000;
}
// Tertiary ignorable CEs must have 0 case bits.
// We set 0 case bits for secondary CEs too
// since currently only U+0345 is cased and maps to a secondary CE,
// and it is lowercase. Other secondaries are uncased.
// See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
ces[i] = ce;
}
}
void
CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
dataBuilder->suppressContractions(set, errorCode);
if(U_FAILURE(errorCode)) {
parserErrorReason = "application of [suppressContractions [set]] failed";
}
}
void
CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
optimizeSet.addAll(set);
}
uint32_t
CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
UErrorCode &errorCode) {
// Map from the NFD input to the CEs.
ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
addTailComposites(nfdPrefix, nfdString, errorCode);
return ce32;
}
uint32_t
CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return ce32; }
// Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
if(nfdPrefix.isEmpty()) {
CanonicalIterator stringIter(nfdString, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
UnicodeString prefix;
for(;;) {
UnicodeString str = stringIter.next();
if(str.isBogus()) { break; }
if(ignoreString(str, errorCode) || str == nfdString) { continue; }
ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
}
} else {
CanonicalIterator prefixIter(nfdPrefix, errorCode);
CanonicalIterator stringIter(nfdString, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
for(;;) {
UnicodeString prefix = prefixIter.next();
if(prefix.isBogus()) { break; }
if(ignorePrefix(prefix, errorCode)) { continue; }
UBool samePrefix = prefix == nfdPrefix;
for(;;) {
UnicodeString str = stringIter.next();
if(str.isBogus()) { break; }
if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
if(U_FAILURE(errorCode)) { return ce32; }
}
stringIter.reset();
}
}
return ce32;
}
void
CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
// Look for the last starter in the NFD string.
UChar32 lastStarter;
int32_t indexAfterLastStarter = nfdString.length();
for(;;) {
if(indexAfterLastStarter == 0) { return; } // no starter at all
lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
if(nfd.getCombiningClass(lastStarter) == 0) { break; }
indexAfterLastStarter -= U16_LENGTH(lastStarter);
}
// No closure to Hangul syllables since we decompose them on the fly.
if(Hangul::isJamoL(lastStarter)) { return; }
// Are there any composites whose decomposition starts with the lastStarter?
// Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
// We might find some more equivalent mappings here if it did.
UnicodeSet composites;
if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
UnicodeString decomp;
UnicodeString newNFDString, newString;
int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
UnicodeSetIterator iter(composites);
while(iter.next()) {
U_ASSERT(!iter.isString());
UChar32 composite = iter.getCodepoint();
nfd.getDecomposition(composite, decomp);
if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
newNFDString, newString, errorCode)) {
continue;
}
int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
// Ignore mappings that we cannot store.
continue;
}
// Note: It is possible that the newCEs do not make use of the mapping
// for which we are adding the tail composites, in which case we might be adding
// unnecessary mappings.
// For example, when we add tail composites for ae^ (^=combining circumflex),
// UCA discontiguous-contraction matching does not find any matches
// for ae_^ (_=any combining diacritic below) *unless* there is also
// a contraction mapping for ae.
// Thus, if there is no ae contraction, then the ae^ mapping is ignored
// while fetching the newCEs for ae_^.
// TODO: Try to detect this effectively.
// (Alternatively, print a warning when prefix contractions are missing.)
// We do not need an explicit mapping for the NFD strings.
// It is fine if the NFD input collates like this via a sequence of mappings.
// It also saves a little bit of space, and may reduce the set of characters with contractions.
uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
if(ce32 != Collation::UNASSIGNED_CE32) {
// was different, was added
addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
}
}
}
UBool
CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
int32_t indexAfterLastStarter,
UChar32 composite, const UnicodeString &decomp,
UnicodeString &newNFDString, UnicodeString &newString,
UErrorCode &errorCode) const {
if(U_FAILURE(errorCode)) { return FALSE; }
U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
int32_t lastStarterLength = decomp.moveIndex32(0, 1);
if(lastStarterLength == decomp.length()) {
// Singleton decompositions should be found by addWithClosure()
// and the CanonicalIterator, so we can ignore them here.
return FALSE;
}
if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
decomp, lastStarterLength, 0x7fffffff) == 0) {
// same strings, nothing new to be found here
return FALSE;
}
// Make new FCD strings that combine a composite, or its decomposition,
// into the nfdString's last starter and the combining marks following it.
// Make an NFD version, and a version with the composite.
newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
// The following is related to discontiguous contraction matching,
// but builds only FCD strings (or else returns FALSE).
int32_t sourceIndex = indexAfterLastStarter;
int32_t decompIndex = lastStarterLength;
// Small optimization: We keep the source character across loop iterations
// because we do not always consume it,
// and then need not fetch it again nor look up its combining class again.
UChar32 sourceChar = U_SENTINEL;
// The cc variables need to be declared before the loop so that at the end
// they are set to the last combining classes seen.
uint8_t sourceCC = 0;
uint8_t decompCC = 0;
for(;;) {
if(sourceChar < 0) {
if(sourceIndex >= nfdString.length()) { break; }
sourceChar = nfdString.char32At(sourceIndex);
sourceCC = nfd.getCombiningClass(sourceChar);
U_ASSERT(sourceCC != 0);
}
// We consume a decomposition character in each iteration.
if(decompIndex >= decomp.length()) { break; }
UChar32 decompChar = decomp.char32At(decompIndex);
decompCC = nfd.getCombiningClass(decompChar);
// Compare the two characters and their combining classes.
if(decompCC == 0) {
// Unable to merge because the source contains a non-zero combining mark
// but the composite's decomposition contains another starter.
// The strings would not be equivalent.
return FALSE;
} else if(sourceCC < decompCC) {
// Composite + sourceChar would not be FCD.
return FALSE;
} else if(decompCC < sourceCC) {
newNFDString.append(decompChar);
decompIndex += U16_LENGTH(decompChar);
} else if(decompChar != sourceChar) {
// Blocked because same combining class.
return FALSE;
} else { // match: decompChar == sourceChar
newNFDString.append(decompChar);
decompIndex += U16_LENGTH(decompChar);
sourceIndex += U16_LENGTH(decompChar);
sourceChar = U_SENTINEL;
}
}
// We are at the end of at least one of the two inputs.
if(sourceChar >= 0) { // more characters from nfdString but not from decomp
if(sourceCC < decompCC) {
// Appending the next source character to the composite would not be FCD.
return FALSE;
}
newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
newString.append(nfdString, sourceIndex, 0x7fffffff);
} else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
newNFDString.append(decomp, decompIndex, 0x7fffffff);
}
U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
U_ASSERT(fcd.isNormalized(newString, errorCode));
U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
return TRUE;
}
UBool
CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
// Do not map non-FCD prefixes.
return !isFCD(s, errorCode);
}
UBool
CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
// Do not map non-FCD strings.
// Do not map strings that start with Hangul syllables: We decompose those on the fly.
return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
}
UBool
CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
}
void
CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
if(U_FAILURE(errorCode)) { return; }
// Hangul is decomposed on the fly during collation.
composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
UnicodeString prefix; // empty
UnicodeString nfdString;
UnicodeSetIterator iter(composites);
while(iter.next()) {
U_ASSERT(!iter.isString());
nfd.getDecomposition(iter.getCodepoint(), nfdString);
cesLength = dataBuilder->getCEs(nfdString, ces, 0);
if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
// Too many CEs from the decomposition (unusual), ignore this composite.
// We could add a capacity parameter to getCEs() and reallocate if necessary.
// However, this can only really happen in contrived cases.
continue;
}
const UnicodeString &composite(iter.getString());
addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
}
}
uint32_t
CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return ce32; }
int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
if(ce32 == Collation::UNASSIGNED_CE32) {
ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
}
dataBuilder->addCE32(prefix, str, ce32, errorCode);
}
return ce32;
}
UBool
CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
const int64_t ces2[], int32_t ces2Length) {
if(ces1Length != ces2Length) {
return FALSE;
}
U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
for(int32_t i = 0; i < ces1Length; ++i) {
if(ces1[i] != ces2[i]) { return FALSE; }
}
return TRUE;
}
#ifdef DEBUG_COLLATION_BUILDER
uint32_t
alignWeightRight(uint32_t w) {
if(w != 0) {
while((w & 0xff) == 0) { w >>= 8; }
}
return w;
}
#endif
void
CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
CollationWeights primaries, secondaries, tertiaries;
int64_t *nodesArray = nodes.getBuffer();
for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
int32_t i = rootPrimaryIndexes.elementAti(rpi);
int64_t node = nodesArray[i];
uint32_t p = weight32FromNode(node);
uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
uint32_t t = s;
uint32_t q = 0;
UBool pIsTailored = FALSE;
UBool sIsTailored = FALSE;
UBool tIsTailored = FALSE;
#ifdef DEBUG_COLLATION_BUILDER
printf("\nprimary %lx\n", (long)alignWeightRight(p));
#endif
int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
int32_t nextIndex = nextIndexFromNode(node);
while(nextIndex != 0) {
i = nextIndex;
node = nodesArray[i];
nextIndex = nextIndexFromNode(node);
int32_t strength = strengthFromNode(node);
if(strength == UCOL_QUATERNARY) {
U_ASSERT(isTailoredNode(node));
#ifdef DEBUG_COLLATION_BUILDER
printf(" quat+ ");
#endif
if(q == 3) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
errorReason = "quaternary tailoring gap too small";
return;
}
++q;
} else {
if(strength == UCOL_TERTIARY) {
if(isTailoredNode(node)) {
#ifdef DEBUG_COLLATION_BUILDER
printf(" ter+ ");
#endif
if(!tIsTailored) {
// First tailored tertiary node for [p, s].
int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
UCOL_TERTIARY) + 1;
uint32_t tLimit;
if(t == 0) {
// Gap at the beginning of the tertiary CE range.
t = rootElements.getTertiaryBoundary() - 0x100;
tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
} else if(t == BEFORE_WEIGHT16) {
tLimit = Collation::COMMON_WEIGHT16;
} else if(!pIsTailored && !sIsTailored) {
// p and s are root weights.
tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
} else {
// [p, s] is tailored.
U_ASSERT(t == Collation::COMMON_WEIGHT16);
tLimit = rootElements.getTertiaryBoundary();
}
U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
tertiaries.initForTertiary();
if(!tertiaries.allocWeights(t, tLimit, tCount)) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
errorReason = "tertiary tailoring gap too small";
return;
}
tIsTailored = TRUE;
}
t = tertiaries.nextWeight();
U_ASSERT(t != 0xffffffff);
} else {
t = weight16FromNode(node);
tIsTailored = FALSE;
#ifdef DEBUG_COLLATION_BUILDER
printf(" ter %lx\n", (long)alignWeightRight(t));
#endif
}
} else {
if(strength == UCOL_SECONDARY) {
if(isTailoredNode(node)) {
#ifdef DEBUG_COLLATION_BUILDER
printf(" sec+ ");
#endif
if(!sIsTailored) {
// First tailored secondary node for p.
int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
UCOL_SECONDARY) + 1;
uint32_t sLimit;
if(s == 0) {
// Gap at the beginning of the secondary CE range.
s = rootElements.getSecondaryBoundary() - 0x100;
sLimit = rootElements.getFirstSecondaryCE() >> 16;
} else if(s == BEFORE_WEIGHT16) {
sLimit = Collation::COMMON_WEIGHT16;
} else if(!pIsTailored) {
// p is a root primary.
sLimit = rootElements.getSecondaryAfter(pIndex, s);
} else {
// p is a tailored primary.
U_ASSERT(s == Collation::COMMON_WEIGHT16);
sLimit = rootElements.getSecondaryBoundary();
}
if(s == Collation::COMMON_WEIGHT16) {
// Do not tailor into the getSortKey() range of
// compressed common secondaries.
s = rootElements.getLastCommonSecondary();
}
secondaries.initForSecondary();
if(!secondaries.allocWeights(s, sLimit, sCount)) {
errorCode = U_BUFFER_OVERFLOW_ERROR;
errorReason = "secondary tailoring gap too small";
return;
}
sIsTailored = TRUE;
}
s = secondaries.nextWeight();
U_ASSERT(s != 0xffffffff);
} else {
s = weight16FromNode(node);
sIsTailored = FALSE;
#ifdef DEBUG_COLLATION_BUILDER
printf(" sec %lx\n", (long)alignWeightRight(s));
#endif
}
} else /* UCOL_PRIMARY */ {
U_ASSERT(isTailoredNode(node));
#ifdef DEBUG_COLLATION_BUILDER
printf("pri+ ");
#endif
if(!pIsTailored) {
// First tailored primary node in this list.
int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
UCOL_PRIMARY) + 1;
UBool isCompressible = baseData->isCompressiblePrimary(p);
uint32_t pLimit =
rootElements.getPrimaryAfter(p, pIndex, isCompressible);
primaries.initForPrimary(isCompressible);
if(!primaries.allocWeights(p, pLimit, pCount)) {
errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
errorReason = "primary tailoring gap too small";
return;
}
pIsTailored = TRUE;
}
p = primaries.nextWeight();
U_ASSERT(p != 0xffffffff);
s = Collation::COMMON_WEIGHT16;
sIsTailored = FALSE;
}
t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
tIsTailored = FALSE;
}
q = 0;
}
if(isTailoredNode(node)) {
nodesArray[i] = Collation::makeCE(p, s, t, q);
#ifdef DEBUG_COLLATION_BUILDER
printf("%016llx\n", (long long)nodesArray[i]);
#endif
}
}
}
}
int32_t
CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
int32_t count = 0;
for(;;) {
if(i == 0) { break; }
int64_t node = nodesArray[i];
if(strengthFromNode(node) < strength) { break; }
if(strengthFromNode(node) == strength) {
if(isTailoredNode(node)) {
++count;
} else {
break;
}
}
i = nextIndexFromNode(node);
}
return count;
}
class CEFinalizer : public CollationDataBuilder::CEModifier {
public:
CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
virtual ~CEFinalizer();
virtual int64_t modifyCE32(uint32_t ce32) const {
U_ASSERT(!Collation::isSpecialCE32(ce32));
if(CollationBuilder::isTempCE32(ce32)) {
// retain case bits
return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
} else {
return Collation::NO_CE;
}
}
virtual int64_t modifyCE(int64_t ce) const {
if(CollationBuilder::isTempCE(ce)) {
// retain case bits
return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
} else {
return Collation::NO_CE;
}
}
private:
const int64_t *finalCEs;
};
CEFinalizer::~CEFinalizer() {}
void
CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
if(U_FAILURE(errorCode)) { return; }
LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode), errorCode);
if(U_FAILURE(errorCode)) {
return;
}
newBuilder->initForTailoring(baseData, errorCode);
CEFinalizer finalizer(nodes.getBuffer());
newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
if(U_FAILURE(errorCode)) { return; }
delete dataBuilder;
dataBuilder = newBuilder.orphan();
}
int32_t
CollationBuilder::ceStrength(int64_t ce) {
return
isTempCE(ce) ? strengthFromTempCE(ce) :
(ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
ce != 0 ? UCOL_TERTIARY :
UCOL_IDENTICAL;
}
U_NAMESPACE_END
U_NAMESPACE_USE
U_CAPI UCollator * U_EXPORT2
ucol_openRules(const UChar *rules, int32_t rulesLength,
UColAttributeValue normalizationMode, UCollationStrength strength,
UParseError *parseError, UErrorCode *pErrorCode) {
if(U_FAILURE(*pErrorCode)) { return NULL; }
if(rules == NULL && rulesLength != 0) {
*pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
return NULL;
}
RuleBasedCollator *coll = new RuleBasedCollator();
if(coll == NULL) {
*pErrorCode = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
if(U_FAILURE(*pErrorCode)) {
delete coll;
return NULL;
}
return coll->toUCollator();
}
static const int32_t internalBufferSize = 512;
// The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
// because it calls UnicodeSet "builder" code that depends on all Unicode properties,
// and the rest of the collation "runtime" code only depends on normalization.
// This function is not related to the collation builder,
// but it did not seem worth moving it into its own .cpp file,
// nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
U_CAPI int32_t U_EXPORT2
ucol_getUnsafeSet( const UCollator *coll,
USet *unsafe,
UErrorCode *status)
{
UChar buffer[internalBufferSize];
int32_t len = 0;
uset_clear(unsafe);
// cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
// add chars that fail the fcd check
uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
// add lead/trail surrogates
// (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
// not when testing code *points*)
uset_addRange(unsafe, 0xd800, 0xdfff);
USet *contractions = uset_open(0,0);
int32_t i = 0, j = 0;
ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
int32_t contsSize = uset_size(contractions);
UChar32 c = 0;
// Contraction set consists only of strings
// to get unsafe code points, we need to
// break the strings apart and add them to the unsafe set
for(i = 0; i < contsSize; i++) {
len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
if(len > 0) {
j = 0;
while(j < len) {
U16_NEXT(buffer, j, len, c);
if(j < len) {
uset_add(unsafe, c);
}
}
}
}
uset_close(contractions);
return uset_size(unsafe);
}
#endif // !UCONFIG_NO_COLLATION