scuffed-code/icu4c/source/i18n/rbt_pars.cpp
2001-09-26 18:04:13 +00:00

1350 lines
47 KiB
C++

/*
**********************************************************************
* Copyright (C) 1999-2001, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* Date Name Description
* 11/17/99 aliu Creation.
**********************************************************************
*/
#include "cstring.h"
#include "hash.h"
#include "quant.h"
#include "rbt_data.h"
#include "rbt_pars.h"
#include "rbt_rule.h"
#include "strmatch.h"
#include "symtable.h"
#include "unirange.h"
#include "unicode/parseerr.h"
#include "unicode/parsepos.h"
#include "unicode/putil.h"
#include "unicode/rbt.h"
#include "unicode/uchar.h"
#include "unicode/ustring.h"
#include "unicode/uniset.h"
// Operators
#define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
#define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
#define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
#define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op
// Other special characters
#define QUOTE ((UChar)0x0027) /*'*/
#define ESCAPE ((UChar)0x005C) /*\*/
#define END_OF_RULE ((UChar)0x003B) /*;*/
#define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
#define SEGMENT_OPEN ((UChar)0x0028) /*(*/
#define SEGMENT_CLOSE ((UChar)0x0029) /*)*/
#define CONTEXT_ANTE ((UChar)0x007B) /*{*/
#define CONTEXT_POST ((UChar)0x007D) /*}*/
#define SET_OPEN ((UChar)0x005B) /*[*/
#define SET_CLOSE ((UChar)0x005D) /*]*/
#define CURSOR_POS ((UChar)0x007C) /*|*/
#define CURSOR_OFFSET ((UChar)0x0040) /*@*/
#define ANCHOR_START ((UChar)0x005E) /*^*/
#define KLEENE_STAR ((UChar)0x002A) /***/
#define ONE_OR_MORE ((UChar)0x002B) /*+*/
#define ZERO_OR_ONE ((UChar)0x003F) /*?*/
// By definition, the ANCHOR_END special character is a
// trailing SymbolTable.SYMBOL_REF character.
// private static final char ANCHOR_END = '$';
static const UChar gOPERATORS[] = {
0x3D, 0x3E, 0x3C, 0 // "=><"
};
// These are also used in Transliterator::toRules()
static const int32_t ID_TOKEN_LEN = 2;
static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':'
//----------------------------------------------------------------------
// BEGIN ParseData
//----------------------------------------------------------------------
/**
* This class implements the SymbolTable interface. It is used
* during parsing to give UnicodeSet access to variables that
* have been defined so far. Note that it uses variablesVector,
* _not_ data.setVariables.
*/
class ParseData : public SymbolTable {
public:
const TransliterationRuleData* data; // alias
const UVector* variablesVector; // alias
ParseData(const TransliterationRuleData* data = 0,
const UVector* variablesVector = 0);
virtual const UnicodeString* lookup(const UnicodeString& s) const;
virtual const UnicodeSet* lookupSet(UChar32 ch) const;
virtual UnicodeString parseReference(const UnicodeString& text,
ParsePosition& pos, int32_t limit) const;
};
ParseData::ParseData(const TransliterationRuleData* d,
const UVector* sets) :
data(d), variablesVector(sets) {}
/**
* Implement SymbolTable API.
*/
const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
return (const UnicodeString*) data->variableNames->get(name);
}
/**
* Implement SymbolTable API.
*/
const UnicodeSet* ParseData::lookupSet(UChar32 ch) const {
// Note that we cannot use data.lookupSet() because the
// set array has not been constructed yet.
const UnicodeSet* set = NULL;
int32_t i = ch - data->variablesBase;
if (i >= 0 && i < variablesVector->size()) {
int32_t i = ch - data->variablesBase;
set = (i < variablesVector->size()) ?
(UnicodeSet*) variablesVector->elementAt(i) : 0;
}
return set;
}
/**
* Implement SymbolTable API. Parse out a symbol reference
* name.
*/
UnicodeString ParseData::parseReference(const UnicodeString& text,
ParsePosition& pos, int32_t limit) const {
int32_t start = pos.getIndex();
int32_t i = start;
UnicodeString result;
while (i < limit) {
UChar c = text.charAt(i);
if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
break;
}
++i;
}
if (i == start) { // No valid name chars
return result; // Indicate failure with empty string
}
pos.setIndex(i);
text.extractBetween(start, i, result);
return result;
}
//----------------------------------------------------------------------
// Segments
//----------------------------------------------------------------------
/**
* Segments are parentheses-enclosed regions of the input string.
* These are referenced in the output string using the notation $1,
* $2, etc. Numbering is in order of appearance of the left
* parenthesis. Number is one-based. Segments are defined as start,
* limit pairs. Segments may nest.
*
* During parsing, segment data is encoded in an object of class
* Segments. At runtime, the same data is encoded in compact form as
* an array of integers in a TransliterationRule. The runtime encoding
* must satisfy three goals:
*
* 1. Iterate over the offsets in a pattern, from left to right,
* and indicate all segment boundaries, in order. This is done
* during matching.
*
* 2. Given a reference $n, produce the start and limit offsets
* for that segment. This is done during replacement.
*
* 3. Similar to goal 1, but in addition, indicate whether each
* segment boundary is a start or a limit, in other words, whether
* each is an open paren or a close paren. This is required by
* the toRule() method.
*
* Goal 1 must be satisfied at high speed since this is done during
* matching. Goal 2 is next most important. Goal 3 is not performance
* critical since it is only needed by toRule().
*
* The array of integers is actually two arrays concatenated. The
* first gives the index values of the open and close parentheses in
* the order they appear. The second maps segment numbers to the
* indices of the first array. The two arrays have the same length.
* Iterating over the first array satisfies goal 1. Indexing into the
* second array satisfies goal 2. Goal 3 is satisfied by iterating
* over the second array and constructing the required data when
* needed. This is what toRule() does.
*
* Example: (a b(c d)e f)
* 0 1 2 3 4 5 6
*
* First array: Indices are 0, 2, 4, and 6.
* Second array: $1 is at 0 and 6, and $2 is at 2 and 4, so the
* second array is 0, 3, 1 2 -- these give the indices in the
* first array at which $1:open, $1:close, $2:open, and $2:close
* occur.
*
* The final array is: 2, 7, 0, 2, 4, 6, -1, 2, 5, 3, 4, -1
*
* Each subarray is terminated with a -1, and two leading entries
* give the number of segments and the offset to the first entry
* of the second array. In addition, the second array value are
* all offset by 2 so they index directly into the final array.
* The total array size is 4*segments[0] + 4. The second index is
* 2*segments[0] + 3.
*
* In the output string, a segment reference is indicated by a
* character in a special range, as defined by
* RuleBasedTransliterator.Data.
*
* Most rules have no segments, in which case segments is null, and the
* output string need not be checked for segment reference characters.
*
* See also rbt_rule.h/cpp.
*/
class Segments {
UVector offsets;
UVector isOpenParen;
public:
Segments(UErrorCode &status);
~Segments();
void addParenthesisAt(int32_t offset, UBool isOpenParen, UErrorCode &status);
int32_t getLastParenOffset(UBool& isOpenParen) const;
UBool extractLastParenSubstring(int32_t& start, int32_t& limit);
int32_t* createArray(UErrorCode &status) const;
UBool validate() const;
int32_t count() const; // number of segments
private:
int32_t offset(int32_t i) const;
UBool isOpen(int32_t i) const;
int32_t size() const; // size of the UVectors
};
int32_t Segments::offset(int32_t i) const {
return offsets.elementAti(i);
}
UBool Segments::isOpen(int32_t i) const {
return isOpenParen.elementAti(i) != 0;
}
int32_t Segments::size() const {
// assert(offset.size() == isOpenParen.size());
return offsets.size();
}
Segments::Segments(UErrorCode &status)
: offsets(status),
isOpenParen(status)
{}
Segments::~Segments() {}
void Segments::addParenthesisAt(int32_t offset, UBool isOpen, UErrorCode &status) {
offsets.addElement(offset, status);
isOpenParen.addElement(isOpen ? 1 : 0, status);
}
int32_t Segments::getLastParenOffset(UBool& isOpenParen) const {
if (size() == 0) {
return -1;
}
isOpenParen = isOpen(size()-1);
return offset(size()-1);
}
// Remove the last (rightmost) segment. Store its offsets in start
// and limit, and then convert all offsets at or after start to be
// equal to start. Upon failure, return FALSE. Assume that the
// caller has already called getLastParenOffset() and validated that
// there is at least one parenthesis and that the last one is a close
// paren.
UBool Segments::extractLastParenSubstring(int32_t& start, int32_t& limit) {
// assert(offsets.size() > 0);
// assert(isOpenParen.elementAt(isOpenParen.size()-1) == 0);
int32_t i = size() - 1;
int32_t n = 1; // count of close parens we need to match
// Record position of the last close paren
limit = offset(i);
--i; // back up to the one before the last one
while (i >= 0 && n != 0) {
n += isOpen(i) ? -1 : 1;
}
if (n != 0) {
return FALSE;
}
// assert(i>=0);
start = offset(i);
// Reset all segment pairs from i to size() - 1 to [start, start+1).
while (i<size()) {
int32_t o = isOpen(i) ? start : (start+1);
offsets.setElementAt(o, i);
++i;
}
return TRUE;
}
// Assume caller has already gotten a TRUE validate().
int32_t* Segments::createArray(UErrorCode &status) const {
int32_t c = count(); // number of segments
int32_t arrayLen = 4*c + 4;
int32_t *array = new int32_t[arrayLen];
int32_t a2offset = 2*c + 3; // offset to array 2
if (array == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return NULL;
}
array[0] = c;
array[1] = a2offset;
int32_t i;
for (i=0; i<2*c; ++i) {
array[2+i] = offset(i);
}
array[a2offset-1] = -1;
array[arrayLen-1] = -1;
// Now walk through and match up segment numbers with parentheses.
// Number segments from 0. We're going to offset all entries by 2
// to skip the first two elements, array[0] and array[1].
UStack stack(status);
int32_t nextOpen = 0; // seg # of next open, 0-based
if (U_FAILURE(status)) {
return NULL;
}
for (i=0; i<2*c; ++i) {
UBool open = isOpen(i);
// Let seg be the zero-based segment number.
// Open parens are at 2*seg in array 2.
// Close parens are at 2*seg+1 in array 2.
if (open) {
array[a2offset + 2*nextOpen] = 2+i;
stack.push(nextOpen, status);
++nextOpen;
} else {
int32_t nextClose = stack.popi();
array[a2offset + 2*nextClose+1] = 2+i;
}
}
// assert(stack.empty());
// Perform a series of checks on the array. DO NOT COMPILE INTO
// PRODUCTION CODE. Use to debug array building problems.
//
//::if (!stack.empty()) {
//:: __asm int 03;
//::}
//::// check the array
//::if (array[0] < 1) {
//:: __asm int 03;
//::}
//::if (array[1] < 5) {
//:: __asm int 03;
//::}
//::for (i=2; i<2+array[0]*2; ++i) {
//:: if (array[i] < 0) { // array[i] is an offset into the rule
//:: __asm int 03;
//:: }
//::}
//::if (array[2+array[0]*2] != -1) {
//:: __asm int 03;
//::}
//::for (i=array[1]; i<array[1]+array[0]*2; ++i) {
//:: if (array[i] < 2 || array[i] >= (2+2*array[0])) {
//:: __asm int 03;
//:: }
//::}
//::if (array[array[1]+array[0]*2] != -1) {
//:: __asm int 03;
//::}
return array;
}
UBool Segments::validate() const {
// want number of parens >= 2
// want number of parens to be even
// want first paren '('
// want parens to match up in the end
if ((size() < 2) || (size() % 2 != 0) || !isOpen(0)) {
return FALSE;
}
int32_t n = 0;
for (int32_t i=0; i<size(); ++i) {
n += isOpen(i) ? 1 : -1;
if (n < 0) {
return FALSE;
}
}
return n == 0;
}
// Assume caller has already gotten a TRUE validate().
int32_t Segments::count() const {
// assert(validate());
return size() / 2;
}
//----------------------------------------------------------------------
// BEGIN RuleHalf
//----------------------------------------------------------------------
/**
* A class representing one side of a rule. This class knows how to
* parse half of a rule. It is tightly coupled to the method
* RuleBasedTransliterator.Parser.parseRule().
*/
class RuleHalf {
public:
UnicodeString text;
int32_t cursor; // position of cursor in text
int32_t ante; // position of ante context marker '{' in text
int32_t post; // position of post context marker '}' in text
// Record the position of the segment substrings and references. A
// given side should have segments or segment references, but not
// both.
Segments* segments;
int32_t maxRef; // index of largest ref ($n) on the right
// Record the offset to the cursor either to the left or to the
// right of the key. This is indicated by characters on the output
// side that allow the cursor to be positioned arbitrarily within
// the matching text. For example, abc{def} > | @@@ xyz; changes
// def to xyz and moves the cursor to before abc. Offset characters
// must be at the start or end, and they cannot move the cursor past
// the ante- or postcontext text. Placeholders are only valid in
// output text.
int32_t cursorOffset; // only nonzero on output side
UBool anchorStart;
UBool anchorEnd;
TransliteratorParser& parser;
//--------------------------------------------------
// Methods
RuleHalf(TransliteratorParser& parser);
~RuleHalf();
/**
* Parse one side of a rule, stopping at either the limit,
* the END_OF_RULE character, or an operator. Return
* the pos of the terminating character (or limit).
*/
int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit);
/**
* Remove context.
*/
void removeContext();
/**
* Create and return an int[] array of segments.
*/
int32_t* createSegments(UErrorCode& status) const;
int syntaxError(UErrorCode code,
const UnicodeString& rule,
int32_t start) {
return parser.syntaxError(code, rule, start);
}
private:
// Disallowed methods; no impl.
RuleHalf(const RuleHalf&);
RuleHalf& operator=(const RuleHalf&);
};
RuleHalf::RuleHalf(TransliteratorParser& p) : parser(p) {
cursor = -1;
ante = -1;
post = -1;
segments = NULL;
maxRef = -1;
cursorOffset = 0;
anchorStart = anchorEnd = FALSE;
}
RuleHalf::~RuleHalf() {
delete segments;
}
/**
* Parse one side of a rule, stopping at either the limit,
* the END_OF_RULE character, or an operator. Return
* the pos of the terminating character (or limit).
*/
int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit) {
int32_t start = pos;
UnicodeString& buf = text;
ParsePosition pp;
int32_t cursorOffsetPos = 0; // Position of first CURSOR_OFFSET on _right_
UnicodeString scratch;
UBool done = FALSE;
int32_t quoteStart = -1; // Most recent 'single quoted string'
int32_t quoteLimit = -1;
int32_t varStart = -1; // Most recent $variableReference
int32_t varLimit = -1;
while (pos < limit && !done) {
UChar c = rule.charAt(pos++);
if (u_isWhitespace(c)) {
// Ignore whitespace. Note that this is not Unicode
// spaces, but Java spaces -- a subset, representing
// whitespace likely to be seen in code.
continue;
}
if (u_strchr(gOPERATORS, c) != NULL) {
--pos; // Backup to point to operator
break;
}
if (anchorEnd) {
// Text after a presumed end anchor is a syntax err
return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start);
}
// Handle escapes
if (c == ESCAPE) {
if (pos == limit) {
return syntaxError(U_TRAILING_BACKSLASH, rule, start);
}
UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
if (escaped == (UChar32) -1) {
return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start);
}
buf.append(escaped);
continue;
}
// Handle quoted matter
if (c == QUOTE) {
int32_t iq = rule.indexOf(QUOTE, pos);
if (iq == pos) {
buf.append(c); // Parse [''] outside quotes as [']
++pos;
} else {
/* This loop picks up a segment of quoted text of the
* form 'aaaa' each time through. If this segment
* hasn't really ended ('aaaa''bbbb') then it keeps
* looping, each time adding on a new segment. When it
* reaches the final quote it breaks.
*/
quoteStart = buf.length();
for (;;) {
if (iq < 0) {
return syntaxError(U_UNTERMINATED_QUOTE, rule, start);
}
scratch.truncate(0);
rule.extractBetween(pos, iq, scratch);
buf.append(scratch);
pos = iq+1;
if (pos < limit && rule.charAt(pos) == QUOTE) {
// Parse [''] inside quotes as [']
iq = rule.indexOf(QUOTE, pos+1);
// Continue looping
} else {
break;
}
}
quoteLimit = buf.length();
}
continue;
}
switch (c) {
case ANCHOR_START:
if (buf.length() == 0 && !anchorStart) {
anchorStart = TRUE;
} else {
return syntaxError(U_MISPLACED_ANCHOR_START,
rule, start);
}
break;
case SEGMENT_OPEN:
case SEGMENT_CLOSE:
// Handle segment definitions "(" and ")"
// Parse "(", ")"
if (segments == NULL) {
segments = new Segments(parser.status);
}
segments->addParenthesisAt(buf.length(), c == SEGMENT_OPEN, parser.status);
break;
case END_OF_RULE:
--pos; // Backup to point to END_OF_RULE
done = TRUE;
break;
case SymbolTable::SYMBOL_REF:
// Handle variable references and segment references "$1" .. "$9"
{
// A variable reference must be followed immediately
// by a Unicode identifier start and zero or more
// Unicode identifier part characters, or by a digit
// 1..9 if it is a segment reference.
if (pos == limit) {
// A variable ref character at the end acts as
// an anchor to the context limit, as in perl.
anchorEnd = TRUE;
break;
}
// Parse "$1" "$2" .. "$9" .. (no upper limit)
c = rule.charAt(pos);
int32_t r = u_charDigitValue(c);
if (r >= 1 && r <= 9) {
++pos;
while (pos < limit) {
c = rule.charAt(pos);
int32_t d = u_charDigitValue(c);
if (d < 0) {
break;
}
if (r > 214748364 ||
(r == 214748364 && d > 7)) {
return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
rule, start);
}
r = 10*r + d;
}
if (r > maxRef) {
maxRef = r;
}
buf.append(parser.getSegmentStandin(r));
} else {
pp.setIndex(pos);
UnicodeString name = parser.parseData->
parseReference(rule, pp, limit);
if (name.length() == 0) {
// This means the '$' was not followed by a
// valid name. Try to interpret it as an
// end anchor then. If this also doesn't work
// (if we see a following character) then signal
// an error.
anchorEnd = TRUE;
break;
}
pos = pp.getIndex();
// If this is a variable definition statement,
// then the LHS variable will be undefined. In
// that case appendVariableDef() will append the
// special placeholder char variableLimit-1.
varStart = buf.length();
parser.appendVariableDef(name, buf);
varLimit = buf.length();
}
}
break;
case CONTEXT_ANTE:
if (ante >= 0) {
return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start);
}
ante = buf.length();
break;
case CONTEXT_POST:
if (post >= 0) {
return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start);
}
post = buf.length();
break;
case SET_OPEN:
pp.setIndex(pos-1); // Backup to opening '['
buf.append(parser.parseSet(rule, pp));
if (U_FAILURE(parser.status)) {
return syntaxError(U_MALFORMED_SET, rule, start);
}
pos = pp.getIndex();
break;
case CURSOR_POS:
if (cursor >= 0) {
return syntaxError(U_MULTIPLE_CURSORS, rule, start);
}
cursor = buf.length();
break;
case CURSOR_OFFSET:
if (cursorOffset < 0) {
if (buf.length() > 0) {
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
}
--cursorOffset;
} else if (cursorOffset > 0) {
if (buf.length() != cursorOffsetPos || cursor >= 0) {
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
}
++cursorOffset;
} else {
if (cursor == 0 && buf.length() == 0) {
cursorOffset = -1;
} else if (cursor < 0) {
cursorOffsetPos = buf.length();
cursorOffset = 1;
} else {
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
}
}
break;
case KLEENE_STAR:
case ONE_OR_MORE:
case ZERO_OR_ONE:
// Quantifiers. We handle single characters, quoted strings,
// variable references, and segments.
// a+ matches aaa
// 'foo'+ matches foofoofoo
// $v+ matches xyxyxy if $v == xy
// (seg)+ matches segsegseg
{
int32_t start, limit;
UBool isOpenParen;
UBool isSegment = FALSE;
if (segments != 0 &&
segments->getLastParenOffset(isOpenParen) == buf.length()) {
// The */+ immediately follows a segment
if (isOpenParen) {
return syntaxError(U_MISPLACED_QUANTIFIER, rule, start);
}
if (!segments->extractLastParenSubstring(start, limit)) {
return syntaxError(U_MISMATCHED_SEGMENT_DELIMITERS, rule, start);
}
isSegment = TRUE;
} else {
// The */+ follows an isolated character or quote
// or variable reference
if (buf.length() == quoteLimit) {
// The */+ follows a 'quoted string'
start = quoteStart;
limit = quoteLimit;
} else if (buf.length() == varLimit) {
// The */+ follows a $variableReference
start = varStart;
limit = varLimit;
} else {
// The */+ follows a single character
start = buf.length() - 1;
limit = start + 1;
}
}
UnicodeMatcher *m =
new StringMatcher(buf, start, limit, isSegment, *parser.data);
int32_t min = 0;
int32_t max = Quantifier::MAX;
switch (c) {
case ONE_OR_MORE:
min = 1;
break;
case ZERO_OR_ONE:
min = 0;
max = 1;
break;
// case KLEENE_STAR:
// do nothing -- min, max already set
}
m = new Quantifier(m, min, max);
buf.truncate(start);
buf.append(parser.generateStandInFor(m));
}
break;
// case SET_CLOSE:
default:
// Disallow unquoted characters other than [0-9A-Za-z]
// in the printable ASCII range. These characters are
// reserved for possible future use.
if (c >= 0x0021 && c <= 0x007E &&
!((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
(c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
(c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
return syntaxError(U_UNQUOTED_SPECIAL, rule, start);
}
buf.append(c);
break;
}
}
if (cursorOffset > 0 && cursor != cursorOffsetPos) {
return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start);
}
// text = buf.toString();
return pos;
}
/**
* Remove context.
*/
void RuleHalf::removeContext() {
//text = text.substring(ante < 0 ? 0 : ante,
// post < 0 ? text.length() : post);
if (post >= 0) {
text.remove(post);
}
if (ante >= 0) {
text.removeBetween(0, ante);
}
ante = post = -1;
anchorStart = anchorEnd = FALSE;
}
/**
* Create and return an int32_t[] array of segments.
*/
int32_t* RuleHalf::createSegments(UErrorCode& status) const {
return (segments == 0) ? 0 : segments->createArray(status);
}
//----------------------------------------------------------------------
// END RuleHalf
//----------------------------------------------------------------------
TransliterationRuleData*
TransliteratorParser::parse(const UnicodeString& rules,
UTransDirection direction,
UParseError& parseError,
UErrorCode& ec) {
TransliteratorParser parser(rules, direction, parseError);
UnicodeString idBlock;
int32_t idSplitPoint, count;
parser.parseRules(idBlock, idSplitPoint, count);
if (U_FAILURE(parser.status) || idBlock.length() != 0) {
delete parser.data;
parser.data = 0;
ec = U_FAILURE(parser.status) ? parser.status : U_ILLEGAL_ARGUMENT_ERROR;
}
return parser.data;
}
/**
* Parse a given set of rules. Return up to three pieces of
* parsed data. These are the header ::id block, the rule block,
* and the footer ::id block. Any or all of these may be empty.
* If the ::id blocks are empty, their corresponding parameters
* are returned as the empty string. If there are no rules, the
* TransliterationRuleData result is 0.
* @param ruleDataResult caller owns the pointer stored here.
* May be NULL.
* @param headerRule string including semicolons for the header
* ::id block. May be empty.
* @param footerRule string including semicolons for the footer
* ::id block. May be empty.
*/
void TransliteratorParser::parse(const UnicodeString& rules,
UTransDirection direction,
TransliterationRuleData*& ruleDataResult,
UnicodeString& idBlockResult,
int32_t& idSplitPointResult,
UParseError& parseError,
UErrorCode& ec) {
if (U_FAILURE(ec)) {
ruleDataResult = 0;
return;
}
TransliteratorParser parser(rules, direction, parseError);
int32_t count;
parser.parseRules(idBlockResult, idSplitPointResult, count);
if (U_FAILURE(parser.status) || count == 0) {
delete parser.data;
parser.data = 0;
}
ruleDataResult = parser.data;
ec = parser.status;
}
/**
* @param rules list of rules, separated by newline characters
* @exception IllegalArgumentException if there is a syntax error in the
* rules
*/
/* Ram: Reordered member initializers to match declaration order and make GCC happy */
TransliteratorParser::TransliteratorParser(
const UnicodeString& theRules,
UTransDirection theDirection,
UParseError& theParseError)
:
rules(theRules), direction(theDirection),data(0),parseError(theParseError), variablesVector(status)
{
parseData = new ParseData(0, &variablesVector);
if (parseData == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
}
/**
* Destructor.
*/
TransliteratorParser::~TransliteratorParser() {
delete parseData;
}
/**
* Parse the given string as a sequence of rules, separated by newline
* characters ('\n'), and cause this object to implement those rules. Any
* previous rules are discarded. Typically this method is called exactly
* once, during construction.
* @exception IllegalArgumentException if there is a syntax error in the
* rules
*/
void TransliteratorParser::parseRules(UnicodeString& idBlockResult,
int32_t& idSplitPointResult,
int32_t& ruleCount) {
status = U_ZERO_ERROR;
ruleCount = 0;
// Clear error struct
//if (parseError != 0) {
//parseError->code = parseError->line = 0;
parseError.offset = 0;
parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
//}
delete data;
data = new TransliterationRuleData(status);
if (U_FAILURE(status)) {
return;
}
parseData->data = data;
variablesVector.removeAllElements();
/* if (parseError != 0) {
parseError->code = 0;
}
*/
determineVariableRange();
UnicodeString str; // scratch
idBlockResult.truncate(0);
idSplitPointResult = -1;
int32_t pos = 0;
int32_t limit = rules.length();
// The mode marks whether we are in the header ::id block, the
// rule block, or the footer ::id block.
// mode == 0: start: rule->1, ::id->0
// mode == 1: in rules: rule->1, ::id->2
// mode == 2: in footer rule block: rule->ERROR, ::id->2
int32_t mode = 0;
while (pos < limit && U_SUCCESS(status)) {
UChar c = rules.charAt(pos++);
if (u_isWhitespace(c)) {
// Ignore leading whitespace.
continue;
}
// Skip lines starting with the comment character
if (c == RULE_COMMENT_CHAR) {
pos = rules.indexOf((UChar)0x000A /*\n*/, pos) + 1;
if (pos == 0) {
break; // No "\n" found; rest of rule is a commnet
}
continue; // Either fall out or restart with next line
}
// We've found the start of a rule or ID. c is its first
// character, and pos points past c.
--pos;
// Look for an ID token. Must have at least ID_TOKEN_LEN + 1
// chars left.
if ((pos + ID_TOKEN_LEN + 1) <= limit &&
rules.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
pos += ID_TOKEN_LEN;
c = rules.charAt(pos);
while (u_isWhitespace(c) && pos < limit) {
++pos;
c = rules.charAt(pos);
}
int32_t p = pos;
UBool sawDelim;
UnicodeString regenID;
Transliterator::parseID(rules, regenID, p, sawDelim, direction,parseError, FALSE,status);
if (p == pos || !sawDelim) {
// Invalid ::id
syntaxError(U_ILLEGAL_ARGUMENT_ERROR, rules, pos);
} else {
if (mode == 1) {
mode = 2;
idSplitPointResult = idBlockResult.length();
}
rules.extractBetween(pos, p, str);
idBlockResult.append(str);
if (!sawDelim) {
idBlockResult.append((UChar)0x003B /*;*/);
}
pos = p;
}
} else {
// Parse a rule
pos = parseRule(pos, limit);
if (U_SUCCESS(status)) {
++ruleCount;
if (mode == 2) {
// ::id in illegal position (because a rule
// occurred after the ::id footer block)
syntaxError(U_ILLEGAL_ARGUMENT_ERROR,rules,pos);
}
}else{
syntaxError(status,rules,pos);
}
mode = 1;
}
}
// Convert the set vector to an array
data->variablesLength = variablesVector.size();
data->variables = data->variablesLength == 0 ? 0 : new UnicodeMatcher*[data->variablesLength];
// orphanElement removes the given element and shifts all other
// elements down. For performance (and code clarity) we work from
// the end back to index 0.
int32_t i;
for (i=data->variablesLength; i>0; ) {
--i;
data->variables[i] =
(UnicodeSet*) variablesVector.orphanElementAt(i);
}
// Index the rules
if (U_SUCCESS(status)) {
data->ruleSet.freeze(parseError,status);
if (idSplitPointResult < 0) {
idSplitPointResult = idBlockResult.length();
}
}
}
/**
* MAIN PARSER. Parse the next rule in the given rule string, starting
* at pos. Return the index after the last character parsed. Do not
* parse characters at or after limit.
*
* Important: The character at pos must be a non-whitespace character
* that is not the comment character.
*
* This method handles quoting, escaping, and whitespace removal. It
* parses the end-of-rule character. It recognizes context and cursor
* indicators. Once it does a lexical breakdown of the rule at pos, it
* creates a rule object and adds it to our rule list.
*/
int32_t TransliteratorParser::parseRule(int32_t pos, int32_t limit) {
// Locate the left side, operator, and right side
int32_t start = pos;
UChar op = 0;
const UnicodeString& rule = rules; // TEMPORARY: FIX LATER
// Use pointers to automatics to make swapping possible.
RuleHalf _left(*this), _right(*this);
RuleHalf* left = &_left;
RuleHalf* right = &_right;
undefinedVariableName.remove();
pos = left->parse(rule, pos, limit);
if (U_FAILURE(status)) {
return start;
}
if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(pos++))) == NULL) {
return syntaxError(U_MISSING_OPERATOR, rule, start);
}
// Found an operator char. Check for forward-reverse operator.
if (op == REVERSE_RULE_OP &&
(pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
++pos;
op = FWDREV_RULE_OP;
}
pos = right->parse(rule, pos, limit);
if (U_FAILURE(status)) {
return start;
}
if (pos < limit) {
if (rule.charAt(pos) == END_OF_RULE) {
++pos;
} else {
// RuleHalf parser must have terminated at an operator
return syntaxError(U_UNQUOTED_SPECIAL, rule, start);
}
}
if (op == VARIABLE_DEF_OP) {
// LHS is the name. RHS is a single character, either a literal
// or a set (already parsed). If RHS is longer than one
// character, it is either a multi-character string, or multiple
// sets, or a mixture of chars and sets -- syntax error.
// We expect to see a single undefined variable (the one being
// defined).
if (undefinedVariableName.length() == 0) {
// "Missing '$' or duplicate definition"
return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start);
}
if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
// "Malformed LHS"
return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start);
}
if (left->anchorStart || left->anchorEnd ||
right->anchorStart || right->anchorEnd) {
return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start);
}
// We allow anything on the right, including an empty string.
UnicodeString* value = new UnicodeString(right->text);
data->variableNames->put(undefinedVariableName, value, status);
++variableLimit;
return pos;
}
// If this is not a variable definition rule, we shouldn't have
// any undefined variable names.
if (undefinedVariableName.length() != 0) {
return syntaxError(// "Undefined variable $" + undefinedVariableName,
U_UNDEFINED_VARIABLE,
rule, start);
}
// If the direction we want doesn't match the rule
// direction, do nothing.
if (op != FWDREV_RULE_OP &&
((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
return pos;
}
// Transform the rule into a forward rule by swapping the
// sides if necessary.
if (direction == UTRANS_REVERSE) {
left = &_right;
right = &_left;
}
// Remove non-applicable elements in forward-reverse
// rules. Bidirectional rules ignore elements that do not
// apply.
if (op == FWDREV_RULE_OP) {
right->removeContext();
delete right->segments;
right->segments = NULL;
left->cursor = left->maxRef = -1;
left->cursorOffset = 0;
}
// Normalize context
if (left->ante < 0) {
left->ante = 0;
}
if (left->post < 0) {
left->post = left->text.length();
}
// Context is only allowed on the input side. Cursors are only
// allowed on the output side. Segment delimiters can only appear
// on the left, and references on the right. Cursor offset
// cannot appear without an explicit cursor. Cursor offset
// cannot place the cursor outside the limits of the context.
// Anchors are only allowed on the input side.
if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
right->segments != NULL || left->maxRef >= 0 ||
(right->cursorOffset != 0 && right->cursor < 0) ||
// - The following two checks were used to ensure that the
// - the cursor offset stayed within the ante- or postcontext.
// - However, with the addition of quantifiers, we have to
// - allow arbitrary cursor offsets and do runtime checking.
//(right->cursorOffset > (left->text.length() - left->post)) ||
//(-right->cursorOffset > left->ante) ||
right->anchorStart || right->anchorEnd) {
return syntaxError(U_MALFORMED_RULE, rule, start);
}
// Check integrity of segments and segment references. Each
// segment's start must have a corresponding limit, and the
// references must not refer to segments that do not exist.
if (left->segments != NULL) {
if (!left->segments->validate()) {
return syntaxError(U_MISSING_SEGMENT_CLOSE, rule, start);
}
int32_t n = left->segments->count();
if (right->maxRef > n) {
return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start);
}
}
data->ruleSet.addRule(new TransliterationRule(
left->text, left->ante, left->post,
right->text, right->cursor, right->cursorOffset,
left->createSegments(status),
left->anchorStart, left->anchorEnd,
data,
status), status);
return pos;
}
/**
* Called by main parser upon syntax error. Search the rule string
* for the probable end of the rule. Of course, if the error is that
* the end of rule marker is missing, then the rule end will not be found.
* In any case the rule start will be correctly reported.
* @param msg error description
* @param rule pattern string
* @param start position of first character of current rule
*/
int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
const UnicodeString& rule,
int32_t pos) {
// if (parseError != 0) {
/* parseError->line = 0; // We don't return a line #
parseError->offset = start; // Character offset from rule start
int32_t end = quotedIndexOf(rule, start, rule.length(), END_OF_RULE);
if (end < 0) {
end = rule.length();
}
int32_t len = uprv_min(end - start, U_PARSE_CONTEXT_LEN-1);
// Extract everything into the preContext and leave the postContext
// blank, since we don't have precise error position.
// TODO: Fix this.
rule.extract(start, len, parseError->preContext); // Current rule
parseError->preContext[len] = 0;
parseError->postContext[0] = 0;
*/
parseError.offset = pos;
parseError.line = 0 ; /* we are not using line numbers */
// for pre-context
int32_t start = (pos <=U_PARSE_CONTEXT_LEN)? 0 : (pos - (U_PARSE_CONTEXT_LEN-1));
int32_t stop = pos;
rule.extract(start,stop-start,parseError.preContext);
//null terminate the buffer
parseError.preContext[stop-start] = 0;
//for post-context
start = pos+1;
stop = ((pos+U_PARSE_CONTEXT_LEN)<= rule.length() )? (pos+(U_PARSE_CONTEXT_LEN-1)) :
rule.length();
rule.extract(start,stop-start,parseError.postContext);
//null terminate the buffer
parseError.postContext[stop-start]= 0;
// }
status = (UErrorCode)parseErrorCode;
return pos;
}
/**
* Parse a UnicodeSet out, store it, and return the stand-in character
* used to represent it.
*/
UChar TransliteratorParser::parseSet(const UnicodeString& rule,
ParsePosition& pos) {
UnicodeSet* set = new UnicodeSet(rule, pos, *parseData, status);
set->compact();
return generateStandInFor(set);
}
/**
* Generate and return a stand-in for a new UnicodeMatcher. Store
* the matcher (adopt it).
*/
UChar TransliteratorParser::generateStandInFor(UnicodeMatcher* adopted) {
// assert(adopted != 0);
if (variableNext >= variableLimit) {
// throw new RuntimeException("Private use variables exhausted");
delete adopted;
status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
variablesVector.addElement(adopted, status);
return variableNext++;
}
/**
* Append the value of the given variable name to the given
* UnicodeString.
*/
void TransliteratorParser::appendVariableDef(const UnicodeString& name,
UnicodeString& buf) {
const UnicodeString* s = (const UnicodeString*) data->variableNames->get(name);
if (s == NULL) {
// We allow one undefined variable so that variable definition
// statements work. For the first undefined variable we return
// the special placeholder variableLimit-1, and save the variable
// name.
if (undefinedVariableName.length() == 0) {
undefinedVariableName = name;
if (variableNext >= variableLimit) {
// throw new RuntimeException("Private use variables exhausted");
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
buf.append((UChar) --variableLimit);
} else {
//throw new IllegalArgumentException("Undefined variable $"
// + name);
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
} else {
buf.append(*s);
}
}
UChar TransliteratorParser::getSegmentStandin(int32_t r) {
// assert(r>=1);
if (r > data->segmentCount) {
data->segmentCount = r;
variableLimit = data->segmentBase - r + 1;
if (variableNext >= variableLimit) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
}
return data->getSegmentStandin(r);
}
/**
* Determines what part of the private use region of Unicode we can use for
* variable stand-ins. The correct way to do this is as follows: Parse each
* rule, and for forward and reverse rules, take the FROM expression, and
* make a hash of all characters used. The TO expression should be ignored.
* When done, everything not in the hash is available for use. In practice,
* this method may employ some other algorithm for improved speed.
*/
void TransliteratorParser::determineVariableRange(void) {
UnicodeRange privateUse(0xE000, 0x1900); // Private use area
UnicodeRange* r = privateUse.largestUnusedSubrange(rules, status);
data->variablesBase = variableNext = variableLimit = (UChar) 0;
if (r != 0) {
// Segment references work down; variables work up. We don't
// know how many of each we will need.
data->segmentBase = (UChar) (r->start + r->length - 1);
data->segmentCount = 0;
data->variablesBase = variableNext = (UChar) r->start;
variableLimit = (UChar) (r->start + r->length);
delete r;
}
if (variableNext >= variableLimit) {
status = U_ILLEGAL_ARGUMENT_ERROR;
}
}
/**
* Returns the index of a character, ignoring quoted text.
* For example, in the string "abc'hide'h", the 'h' in "hide" will not be
* found by a search for 'h'.
*/
int32_t TransliteratorParser::quotedIndexOf(const UnicodeString& text,
int32_t start, int32_t limit,
UChar charToFind) {
for (int32_t i=start; i<limit; ++i) {
UChar c = text.charAt(i);
if (c == ESCAPE) {
++i;
} else if (c == QUOTE) {
while (++i < limit
&& text.charAt(i) != QUOTE) {}
} else if (c == charToFind) {
return i;
}
}
return -1;
}